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Abstract: The optimization-based alignment (OBA) methods, which are implemented by the optimal
attitude estimation using vector observations—also called double-vectors—have proven to be
effective at solving the in-flight alignment (IFA) problem. However, the traditional OBA methods
are not applicable for the low-cost strap-down inertial navigation system (SINS) since the error
of double-vectors will be accumulated over time due to the substantial drift of micro-electronic-
mechanical system (MEMS) gyroscope. Moreover, the existing optimal estimation method is subject
to a large computation burden, which results in a low alignment speed. To address these issues,
in this article we propose a new fast IFA method based on modified double-vectors construction
and the gradient descent method. To be specific, the modified construction method is implemented
by reducing the integration interval and identifying the gyroscope bias during the construction
procedure, which improves the accuracy of double-vectors and IFA; the gradient descent scheme
is adopted to estimate the optimal attitude of alignment without complex matrix operation, which
results in the improvement of alignment speed. The effect of different sizes of mini-batch on the
performance of the gradient descent method is also discussed. Extensive simulations and vehicle
experiments demonstrate that the proposed method has better accuracy and faster alignment speed
than the related traditional methods for the low-cost SINS/global positioning system (GPS) integrated
navigation system

Keywords: in-flight alignment; integrated navigation system; optimization-based alignment

1. Introduction

The strap-down inertial navigation system (SINS) has been widely used in the determination
of attitude, velocity and position of an object based on the dead-reckoning by making use of the
measurements provided by the inertial measurement unit (IMU) [1–3]. To reduce the long-time
navigation error mainly caused by the bias of accelerometers and gyroscopes, the SINS is often
integrated with the global positioning system (GPS), which constructs the SINS/GPS integrated
navigation system [4–8]. The heart of guaranteeing the performance of SINS is to accomplish the initial
alignment and obtain an accurate initial condition [9,10]. In the SINS/GPS integrated navigation system,
the initial velocity and position can usually be obtained directly from GPS. Therefore the main aim of
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initial alignment is to determine the initial attitude between the body frame and reference navigation
frame [11]. In recent years, many attitude determination methods have been proposed for the initial
attitude alignment, for example, analytic alignment method, transfer alignment method [12–16].
However, they are not applicable when the carrier is in-flight, which is the main focus of this paper.

To address the in-flight alignment of GPS-aided SINS, the optimization-based alignment (OBA)
method has been proposed for high accuracy SINS [17–22]. The OBA method is derived based on the
idea of attitude matrix decomposition, where the real-time attitude matrix is decomposed into three
parts—two time-varying matrices which are respectively the attitude change of the body frame and the
navigation frame and one constant matrix which is the objective attitude matrix of the alignment [23].
The vector observations can be constructed with the former two matrices to calculate the objective
matrix [24–29]. The heart of the OBA method is how to construct the vector observations and calculate
the optimal alignment matrix [23,30]. For the construction procedure, the OBA method constructs the
double-vectors as vector observations based on the traditional velocity/position integration formula by
making use of the measurements provided by the outputs of accelerometer, gyroscope and GPS [30].
It has been proven that the above-mentioned construction method can achieve high enough accuracy for
the computation of double-vector in IFA [31]. However, the construction method is not applicable for
the low-cost SINS since the low-cost IMU contains substantial bias, which will be integrated with time
during the construction procedure and leading to the large calculation error in double-vectors. For the
optimal estimation procedure of the alignment matrix, the IFA can be regarded as Wahba’s problem,
which is aimed to minimize the loss function constructed by double-vectors [32]. To solve the problem,
many optimization-based methods have been proposed, among which the most representative ones
include singular value decomposition (SVD), TRIAD and quaternion estimator (QUEST). The SVD
method can obtain the objective attitude by decomposing the matrix, which is constructed with the
cross-product of the sequence of double-vectors, into one diagonal matrix and two unit-orthogonal
matrices. The product of the latter two matrices is exactly the objective matrix [25]. However, this
matrix operation is very complicated and computationally expensive. TRIAD is a simple and effective
estimation method and the objective matrix can be obtained by the product of two matrices which are
respectively constructed by the cross-product of two double-vectors [33]. However, it has low accuracy
and poor robustness because only two observations are used in each estimation [24]. Davenport’s
q-method derives the quaternion form of Wahba’s problem [34]. The optimal quaternion can be obtained
by an eigenvalue equation. To simplify the solution, the QUEST method, which is developed from
Davenport’s q-method and the most adopted in practical use, transforms the solution of the eigenvalue
equation in Davenport’s q-method into a solution of the quartic equation [35]. However, the equation is
still complicated to build and solve for low-cost processors. According to the aforementioned analysis,
the traditional IFA method cannot be performed well on the low-cost integration navigation systems.
So a fast, accurate and robust IFA method needs to be designed for low-cost SINS/GPS integration
navigation systems and this is also the main research content of this article.

In this paper, we propose a new in-flight alignment method with an application to the low-cost
SINS/GPS integrated navigation system. The main contributions of our research are twofold—(1)
a modified construction method is proposed to construct the double-vectors more accurately. In
this method, the integration interval of construction is shorter than the traditional method, so
the accelerometer bias is suppressed, and the error will not increasingly accumulate with time.
A linear Kalman filter model is adopted to identify the bias of gyroscope for improving the accuracy
of double-vectors. (2) A fast IFA method based on gradient descent is designed to improve the
performance of the optimal estimation method and make it available on the low-cost system. It can
obtain the initial attitude directly and does not involve any complex matrix operation, so the proposed
method is very efficient and easy to implement. Verified by the simulations, this method can become
faster or more accurate and robust to meet different usage needs by adjusting the size of the mini-batch.
The simulations and experiments are implemented to compare the performance of different IFA
algorithms and the results show that the proposed method is superior to traditional methods.
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The rest of this paper is organized as follows. The traditional OBA methods and their problems of
the application on low-cost systems are formulated in Section 2. The proposed method consisting of
the modified double-vectors construction method and the fast IFA method based on gradient descent
is detailed in Section 3. The results of simulations and experiments are used to verify the performance
of the proposed method and shown in Section 4. Finally, the article is concluded in Section 5.

2. Problem Formulation

2.1. Preliminary

The local geographical coordinate is selected as the navigation frame denoted by n and the
inertial measurement unit (IMU) coordinate frame fixed on the carrier as the body frame denoted by b.
Freezing the navigation frame and body frame in the inertial frame denoted by I at the initial time, they
are respectively renamed by the inertial navigation frame denoted by in and the inertial body frame
denoted by ib. These two frames are stationary in the i frame and respectively coincident with the n
frame and b frame at the initial moment. In this article, the direction cosine matrix (after this referred
to as the attitude matrix) is used for representing the transformation between two frames which are
respectively denoted by the superscripts and the subscripts of the attitude matrix. According to the
chain rule of the attitude matrix, the real-time attitude matrix Cb(t)

n(t)
from n frame to b frame can be

written as [11]
Cb(t)

n(t)
= Cb(t)

ib Cib
inCin

n(t), (1)

where Cb(t)
ib is the real-time attitude matrix from ib frame to current b frame, Cib

in is the constant attitude
matrix from in frame to ib frame, Cin

n(t) is the real-time attitude matrix from the current n frame to the in

frame. Cb(t)
ib can be calculated as follows

.
C

b(t)
ib = −

(
ωb

ib×
)
Cb(t)

ib , (2)

where ωb
ib is the body angular rate that can be obtained by gyroscopes. The operation (·×) is the

cross-product matrix. The value of the Cb(t)
ib can be calculated by many commonly used methods and

the details are omitted for brevity [36]. According to the differential equation of the attitude matrix,
Cn(t)

in can be calculated as [37]

Cin
n(t) =


cos ∆λ − sin L(t) sin ∆λ cos L(t) sin ∆λ

sin Lin sin ∆λ sin Lin sin L(t) cos ∆λ+ cos Lin cos L(t) − sin Lin cos L(t) cos ∆λ+ cos Lin sin L(t)
− cos Lin sin ∆λ − cos Lin sin L(t) cos ∆λ+ sin Lin cos L(t) cos Lin cos L(t) cos ∆λ+ sin Lin sin L(t)

 (3)

where λin and Lin are the longitude and latitude at the initial moment of alignment respectively; λ(t)
and L(t) are the longitude and latitude of the current local position respectively; the increment of
longitude ∆λ = λ(t) − λin + ωn

iet, where ωn
ie is a constant representing the earth rotation rate. The

longitude and latitude can be measured by GPS, so Cin
n(t) can be determined according to (3). Because

the constant matrix Cib
in is the only unknown item on the right side of the equal sign of (1), the current

attitude Cb(t)
n(t)

can be determined by the constant matrix Cib
in. Therefore, the key to IFA is how to get the

accurate value Cib
in which is also called the objective matrix.

2.2. Traditional Optimization-based Alignment Method

According to (1), The vector observations in n frame and b frame can be transformed into
that in in frame and ib frame by Cin

n(t) and Cb(t)
ib , which is called double-vectors. And they can be

constructed infinitely as long as the measurement of inertial sensors and GPS is valid. For each pair
of double-vectors, they can only be converted to each other by a unique constant matrix, which is



Sensors 2020, 20, 512 4 of 20

also the objective matrix. So it can be calculated by optimal estimation methods. Traditional OBA
methods have two procedures. The first is constructing the double-vectors in in frame and ib frame
with the information measured by inertial sensors and GPS; The second is the optimal estimation of the
initial attitude using double-vectors. In this section, the traditional construction method and optimal
estimation method are introduced in detail.

To construct the double-vectors, The specific force equation is introduced as

.
vn

= f n
−

(
2ωn

ie +ωn
en

)
× vn + gn, (4)

where vn is the velocity can be obtained by GPS of the carrier, f n is the specific force of carrier, gn is the
gravity vector, ωn

en is the angular rate from e frame to n frame and ωn
ie is the earth rotation rate. The

superscript n represents that they are measured in the n frame. ωn
en and ωn

ie can be calculated as follows ωn
ie =

[
0 ωi

ie cos L ωi
ie sin L

]
ωn

en =
[
−

vN
RM

vE
RN

vE
RN

tan L
] , (5)

where vE and vN are respectively the east and north velocity in the n frame, RM and RN are the radius
of the prime vertical circle and meridian circle respectively [29]. According to (1), the specific force
equation can be written as

.
vn

= Cn
inCin

ib Cib
b f b
−

(
2ωn

ie +ωn
en

)
× vn + gn, (6)

where f b is the specific force in the b frame (6) can be rewritten as

Cib
inCin

n

( .
vn

+
(
2ωn

ie +ωn
en

)
× vn

− gn
)
= Cib

b f b. (7)

Cib
b and Cin

n can be obtained according to (2) and (3), ωn
en and ωn

ie can be calculated by the velocity and
position information provided by GPS according to (5), f b can be measured by the accelerometer of
SINS. To avoid the velocity differential error, both sides of (7) are integrated for constructing the vector
observations [30]. It is given by

α(t) = Cib
inβ(t), (8)

where  α(t) =
∫ t

0 Cib
b(t) f bdt

β(t) = Cin
n(t)v

n
− vn(0) +

∫ t
0 Cin

n(t)

(
2ωn

ie +ωn
en

)
× vndt−

∫ t
0 Cin

n(t)gndt
. (9)

α and β are commonly called double-vector [38]. It can be seen from (9) that
.
vn is replaced by vn which

can be measured by GPS directly. Many pairs of double-vectors can be obtained over time through
(9) and only the objective matrix Cib

in can satisfy the relationship as (8). So Cib
in can be obtained by the

optimal estimation method.
For the optimal estimation of the objective attitude, it can be regarded as a Wahba’s problem. The

optimal Cib
in can be obtained by minimizing the loss function J of the Wahba’s problem as [32]

J
(
Cib

in

)
=

1
2

N∑
k=1

sk‖αk −Cib
inβk‖

2
, (10)

where N is the number of double-vectors, k = 1, 2, · · · , M, sk are positive weight and
N∑

k=1
sk = 1. Wahba’s

problem is obviously a least-squares problem. Many mathematical methods have been proposed to
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solve it and the most contributing is Davenport’s q-method [34]. In this method, the loss function is
expanded as

J
(
Cib

in

)
=

1
2

N∑
k=1

sk
[
αk −Cib

inβk
]T[
αk −Cib

inβk
]
= 1−

N∑
k=1

[
skαk

TCib
inβk

]
. (11)

Defining the gain function g
(
Cib

in

)
as

g
(
Cib

in

)
=

N∑
k=1

[
skαk

TCib
inβk

]
= tr

[
Cib

inBT
]
, (12)

with B given by

B =
N∑

k=1

skαkβ
T
k . (13)

It can be seen that minimizing J
(
Cib

in

)
can be achieved by maximizing g

(
Cib

in

)
. Using quaternion q

instead of attitude matrix, Cib
in can be regarded as the function of q as

Cib
in(q) =

(
η2
− εTε

)
I3×3 + 2εεT

− 2ηε×, (14)

where q =
[
η ε

]T
, η is the scalar part and ε is the vector part are respectively the scalar and vector

part of the quaternion and q =
[
ε η

]T
. Substituting (14) into (12), the gain function in the quaternion

form is as
g(q) = σ

(
η2
− εTε

)
I3×3 + εTSε+ 2ηεTZ = qTKq, (15)

where

σ = tr(B) = tr
(
BT

)
, S = B + BT, Z =

N∑
k=1

sk(αk × βk), K =

[
S− σI Z1×3

ZT
3×1 σ

]
. (16)

g(q) can be maximized by the optimal quaternion of IFA. Considering the constraint qTq = 1, the
Lagrange multiplier λ can be introduced to reconstruct the loss function as

g′(q) = qTKq− λ
(
qTq− 1

)
, (17)

where g′(q) is the new gain function with the constraint of the quaternion feature. Set its derivative to
0 to find the max value of the gain function and yields

Kq = λq. (18)

It can be clearly seen that λ is an eigenvalue of K and the optimal quaternion qopt is the eigenvector
corresponding to the largest eigenvalue. It is a very complex process to calculate the eigenvector of the
matrix [34]. To simplify the computation, the QUEST method which is developed from Davenport’s
method derives a quartic equation about λ as

λ4
− (a + b)λ2

− cλ+ (ab + cσ− d) = 0, (19)

where
a = σ2

− tr(adj S), b = σ2 + ZTZ,
c = det S + ZTSZ, d = ZTS2Z

(20)

where the tr (·) is the trace of the matrix, adj (·) is the adjoint matrix and det (·) is the determinant
of the matrix. The max solution of the equation is also the max eigenvector of K [24]. However, the
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construction and solution of the eigenvalue are still very complicated. The computation module of
low-cost navigation systems may not be able to afford such a large amount of computation.

2.3. Problem Formulation

The traditional OBA method requires high sensor accuracy and computing power. However, The
low-cost integrated navigation systems are usually equipped with low-precision inertial sensors and
low-computing power processor. So a more efficient method should be proposed to offset the shortage
of hardware.

For the traditional construction method, the vector in ib frame is calculated with f b and ωb
ib

by integrating from the initial moment to the current moment. According to (9), the output of
accelerometers has been integrated once and the output of gyroscopes has been integrated twice.
The double-vectors cannot be accurately calculated after the alignment has been implemented for a
long time. For low-cost inertial sensors, the bias error cannot be ignored. It will accumulate a huge
error with time and seriously affect the accuracy during the double-vectors construction [39]. The
double-vectors are vitally important for the accuracy of the alignment because the optimal attitude is
aiming to minimize the loss function constructed by the double-vectors. If the double-vector error is
very large, the loss function will mislead the estimator to a wrong objective attitude, and it will even
result in the failure of alignment. So the traditional method cannot meet the accuracy requirement of
double-vectors for alignment.

For the part of the optimal estimation, the traditional method is very complicated and not
applicable to the low-cost systems. Using Davenport’s method, the optimal quaternion can be obtained
by finding the max eigenvalue of K, which is a matrix calculated with double-vectors. But it requires
a significant amount of computing resources to calculate the eigenvalue and eigenvector. QUEST is
derived from Davenport’s method to simplify the solution, which is the representative of traditional
optimization-based alignment methods. The eigenvalues of K are the solution of the quartic equation.
However, the computational burden of constructing and solving the quartic equation is also too heavy
for low-cost processors.

The problem of the traditional OBA method can be mainly summarized as follows—(1) the
double-vectors cannot be accurately constructed due to the error of low-cost inertial sensors; (2) the
optimal quaternion or attitude matrix cannot be quickly obtained on the low-cost processors. Our
research in this article is devoted to solving these problems.

3. The Proposed IFA Method

In this section, a new IFA method for the low-cost SINS/GPS integrated navigation system is
investigated. This method has two parts—(1) The traditional construction method of double-vectors
is modified to accurately construct the double-vectors with the measurement from low-cost inertial
sensors. (2) A fast optimal attitude estimation method based on gradient descent is specially designed
for low-cost systems. They are specified as follows.

3.1. Modified Construction Method of Double-Vectors

The error of double-vectors is mainly caused by the long-term integration of the bias of initial
sensors according to the previous analysis. The construction method of double-vectors is modified to
reduce the integration time of f b and identify the bias of gyroscope. Both α and β can be divided into
two parts as {

α(t) = α(0, tm) + α(tm, tm+1)

β(t) = β(0, tm) + β(tm, tm+1)
, (21)

where
α(0, tm) =

∫ tm

0 Cib
b(t) f bdt

α(tm, tm+1) =
∫ tm+1

tm
Cib

b(t) f bdt = Cib
b(tm)

∫ tm+1
tm

Cb(tm)

b(t)
f bdt

(22)



Sensors 2020, 20, 512 7 of 20

and

β(0, tm) = Cin
n(tm)

vn(tm) − vn(0) +
∫ tm

0 Cin
n(t)

(
2ωn

ie +ωn
en

)
× vndt−

∫ tm

0 Cin
n(t)gndt

β(tm, tm+1) = Cin
n(tm+1)

vn(tm+1) −Cin
n(tm)

vn(tm) +
∫ tm+1

tm
Cin

n(t)

(
2ωn

ie +ωn
en

)
× vndt−

∫ tm+1
tm

Cin
n(t)gndt

.

(23)
α(0, tm) and β(0, tm) are the double-vector constructed from time 0 to time tm, α(tm, tm+1) and β(tm, tm+1)

are the double-vector constructed from time tm to time tm+1. Substituting (21) into (8) yields

α(0, tm) + α(tm, tm+1) = Cib
inβ(0, tm) + Cib

inβ(tm, tm+1). (24)

It can obviously be seen that α(0, tm) = Cib
inβ(0, tm) according to (8), so the relationship between

modified double-vectors is as same as (8) and given by

α(tm, tm+1) = Cib
inβ(tm, tm+1). (25)

For brevity, α(tm, tm+1) and β(tm, tm+1) is hereafter omitted as α and β. In any same time interval,
α and β can be converted to each other through Cib

in and they can be used for calculating the attitude
matrix through the optimal estimation method. Compared to (9), the integration interval will not
increase with time because the lower limit of integration of (22) can be an arbitrary moment before the
current moment, which must be the initial time in (9). So the integration time of f b will not increase
over time and the error caused by accelerometer bias can be reduced significantly.

However, the gyroscope measurement ωb
ib which is used for calculating the attitude matrix Cib

b still
needs to be integrated from the initial time. The calculated ib frame denoted by ib’ is not coincident with
the true ib frame due to the gyroscope bias denoted by εb and the error angle between them is defined

as ϕ =
[
ϕθ ϕγ ϕψ

]T
[40]. So the bias should be identified and feedback to the construction

procedure. At the beginning of the alignment, the bias will not accumulate to a large error. The
estimation attitude will close to the objective attitude and the misalignment angle can be regarded as a
small angle. The Kalman filter is adopted to identify the gyroscope bias. According to liner inertial
navigation system error equation, the simplified attitude error model is given by

.
ϕ = −Cib

b ε
b. (26)

Equation (26) is the process model of the Kalman filter. The equation of state transition is given by

xk = Fkxk−1 + wk−1, (27)

where
xk =

[
ϕk, εb

k

]T

Fk =

[
I3×3 −Cin′

b
03×3 I3×3

] . (28)

xk is the state of Kalman filter, Fk is the state transition matrix and wk is the process noise. Denoting α′

as the vector observation in ib’ frame and α = Cib
ib′α
′. The Equation (8) can be rewritten as

Cin
ibβ = Cib

ib′α
′ = (I3 + (ϕ×))α′. (29)

According to (29), the measurement model of Kalman filter is given by

α′ −Cib
inβ = −(ϕ×)α

′ = (α′×)ϕ. (30)
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The equation of measurement can be written as

zk = Hkxk + nk, (31)

where
zk = α′ −Cib

inβ

Hk =
[
α′× 03×3

] . (32)

zk is the vector of measurement, Hk is the transformation matrix linking the state vector and the
measurement vector. nk is the measurement noise.

3.2. Fast IFA Method Mased on Gradient Descent

The double-vectors can be accurately obtained by the modified construction method mentioned
above. For calculating the attitude matrix between the double-vectors, a fast IFA method based on
gradient descent is proposed in this article. Denoting the Euler angle between ib frame and in frame as

A =
[
θ γ ψ

]T
and Cib

in can be derived by A as follow

Cib
in = C(γ)C(θ)C(ψ)

=


cosγ 0 − sinγ

0 1 0
sinγ 0 cosγ




1 0 0
0 cosθ sinθ
0 − sinθ cosθ




cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (33)

So β =
[
βx βy βz

]
can be converted to α =

[
αx αy αz

]
in three steps according to (25) and

(33) as

β
C(ψ)
→ β1

C(θ)
→ β2

C(γ)
→ α, (34)

where β1 and β2 is the transition attitude matrix from β to α. The estimation of Cib
in is denoted by C̃ib

in
and the estimation of α is α̃ = C̃ib

inβ. The objective function of gradient descent is given by

J(A) =
N∑

k=1

1
2N [α̃k − αk]

T[α̃k − αk] =
N∑

k=1

1
2N ∆αT

k ∆αk

=
N∑

k=1

1
2N

(
∆α2

kx + ∆α2
ky + ∆α2

kz

) , (35)

where ∆αk = α̃k − αk which is a function of the attitude matrix A. The attitude angle θ, γ and ψ which
can minimize the objective function J(A) is the solution of the IFA problem. The gradient equation
objective function is given by

∇J(A) =

[
∂J(A)

∂γ
,
∂J(A)

∂θ
,
∂J(A)

∂ψ

]
=

N∑
k=1

1
N

D(A)∆αT
k , (36)

where D(A) is the Jacobian matrix. α̃k is the only term which contains attitude angle in ∆αk, So D(A)

can be written as follow

D(A) =



(
∂∆αk
∂γ

)T

(
∂∆αk
∂θ

)T(
∂∆αk
∂ψ

)T

 =


(
∂α̃k
∂γ

)T

(
∂α̃k
∂θ

)T

(
∂α̃k
∂ψ

)T


=


∂α̃kx
∂γ

∂α̃ky
∂γ

∂α̃kz
∂γ

∂α̃kx
∂θ

∂α̃ky
∂θ

∂α̃kz
∂θ

∂α̃kx
∂ψ

∂α̃ky
∂ψ

∂α̃kz
∂ψ

, (37)
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where
[

∆αkx ∆αky ∆αkz
]
= ∆αk. ∂α̃k

∂γ is the first row of the Jacobian matrix and it represents the

gradient of ∆αk in the direction of γ. According to (34), ∂α̃k
∂γ can be calculated as

∂α̃k
∂γ

=
∂(C(γ)β2k)

∂γ
=


− sinγ 0 − cosγ

0 0 0
cosγ 0 − sinγ



β2kx
β2ky
β2kz

 =

− sinγβ2kx − cosγβ2kz

0
cosγβ2kx − sinγβ2kz

, (38)

where

β2k =


β2kx
β2ky
β2kz

 =


1 0 0
0 cosθ sinθ
0 − sinθ cosθ




cosψ − sinψ 0
sinψ cosψ 0

0 0 1



βkx
βky
βkz


=


cosψβkx − sinψβky

cosθ sinψβkx + cosψ cosθβky + sinθβkz
sinθ sinψβkx + cosψ cosθβky + cosθβkz


. (39)

∂α̃k
∂θ can be calculated as

∂α̃k
∂θ =

∂(C(γ)βk2)
∂βk2

∂βk2
∂θ = C(γ) ∂(C(θ)βk1)

∂θ =


cosγ 0 − sinγ

0 1 0
sinγ 0 cosγ




0 0 0
0 − sinθ cosθ
0 − cosθ − sinθ



β1kx
β1ky
β1kz


=


cosθ sinγβ1ky + sinθ sinγβ1kz
− sinθβ1ky + cosθβ1kz

cosθ cosγβ1ky − sinθ cosγβ1kz


(40)

where

β1k =


β1kx
β1ky
β1kz

 =


cosψ − sinψ 0
sinψ cosψ 0

0 0 1



βkx
βky
βkz

 =


cosψβkx − sinψβky
sinψβkx + cosψβky

βkz

. (41)

∂α̃k
∂ψ can be calculated as

∂α̃k
∂ψ =

∂(C(γ)C(θ)β1k)
∂β1k

∂β1k
∂ψ = C(γ)C(θ) ∂(C(ψ)β)∂ψ

=


cosγ 0 − sinγ

0 1 0
sinγ 0 cosγ




1 0 0
0 cosθ sinθ
0 − sinθ cosθ



− sinψ − cosψ 0
cosψ − sinψ 0

0 0 0



βkx
βky
βkz


=


−(cosγ sinψ− sinγ sinθ cosψ)βkx − (cosγ cosψ+ sinγ sinθ sinψ)βky

cosθ cosψβkx − cosθ sinψβky
−(sinγ sinψ+ cosγ sinθ cosψ)βkx − (sinγ cosψ− cosγ sinθ sinψ)βky


. (42)

The gradient of the objective function ∇J(A) can be obtained according to (36)–(42). The update
equation of gradient descent is

Ai+1 = Ai − h · ∇J(Ai), (43)

where h is the learning rate, which decides the size of the steps to approach the objective attitude. The
subscript i denotes the ith estimation of attitude angle. The attitude angle will converge to the objective
value along the opposite direction of the gradient through iteration. The parameter N in Equation
(36) determines how many pairs of double-vectors are used for calculating the ∇J(A). The gradient
descent method has many forms in terms of different batch sizes [41]. For the batch gradient descent
(BGD), N is the number of the whole data and each update of the gradient will use all double-vectors.
The attitude angle will be converged along the fastest direction of gradient descent to minimize the
objective function, but this method is computationally intensive. For the stochastic gradient descent
(SGD), only one random double-vectors is used for updating the gradient, so the computing burden
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is reduced. Each descent will not follow the fastest direction of whole data, so the fluctuation of the
estimation process may be very severe. And it performs poor robustness in our practical use. Different
from the above two methods, the mini-batch gradient descent (GDMBGD) use a part of the whole data
for gradient update. It will take less time to update the gradient than BGD and have better robustness
than SGD. The performance of MBGD will be different with different sizes of mini-batch data.

4. Simulation and Experiment Results

In this section, extensive simulations and experiments are implemented to verify and evaluate
the performance of the proposed IFA method. Firstly, the simulation is carried out for comparing the
proposed method with the traditional method. Secondly, a series of simulations are implemented to
discuss the performance of the gradient descent for different sizes of mini-batch. Finally, a vehicle
experiment verifies the proposed method is superior to the traditional method in practical use.

4.1. Simulation For the Proposed IFA Method

In this section, a simulation is carried out to compare the performance of the proposed IFA
method and the traditional method represented by QUEST. The raw data of inertial and GPS data are
generated by the simulator. The bias of three-axis accelerometers is set to 1mg and the bias of three-axis
gyroscopes is set to 10◦/h. The true pitch, roll and yaw angle are 20◦, 40◦ and 60◦, respectively. The
learning rate of gradient descent is 0.2. In this simulation, the proposed BGD and modified construction
method (MDCM) are compared with QUEST and the traditional double-vectors construction method.

The true simulation trajectory is shown in Figure 1 and the simulation results are shown in
Figures 2–4 and Table 1. The root-mean-square error (RMSE) is adopted to compare the accuracy of the
alignment after convergence. It is defined as

RMSE =

√√√
1
N

N∑
i=1

(
Ai − Âi

)2
. (44)
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Table 1. Simulation results of four IFA methods.

Method
Errors(deg) Alignment Time(s)

Pitch Roll Yaw

QUEST 0.493 0.824 20.34 39.20
QUEST+MDCM 0.050 0.055 2.95 37.85

BGD 0.462 1.17 20.01 8.08
BGD+MDCM 0.013 0.040 0.705 7.60

According to the results, it can be clearly seen that the attitude angle error of QUEST and BGD
with the traditional method is very large. For the traditional double-vectors construction method, the
bias error of inertial sensors will be accumulated over time and resulting in huge calculation errors of
double-vectors. It will mislead the optimal estimator to a wrong objective value because the minimum
point of the objective function is not at the objective attitude. So, the traditional construction method is
not able to estimate the attitude angle accurately when the bias cannot be ignored. The performance of
both two methods is obviously improved by MDCM because the inertial bias is identified and fed back
to the procedure of double-vector construction, so the error is suppressed significantly. This simulation
shows that the proposed MDCM is very effective and necessary for the alignment. It also can be seen
that BGD has better performance than QUEST. The BGD is very stable after convergence. It has better
precision and robustness. Due to the simplicity of the algorithm, the BGD takes less alignment time
than QUEST.

4.2. Simulation For Different Sizes of Mini-Batch

In this section, the simulations are carried out to discuss the effect of different sizes of mini-batch
on gradient descent performance. The objective function is the core of the gradient method. Because it
determines the gradient and the objective attitude of the optimal estimation. The objective functions
constructed with different sizes of mini-batch have different effects on the performance of gradient
descent. The distinction can be visually seen through the four-dimensional graph of the objective
function as shown in Figure 5.

Figure 5 from (a) to (d) are the objective functions which are respectively calculated with 1
double-vectors, one double-vectors, 10 double-vectors, 60 double-vectors and 1000 double-vectors.
Three axes are respectively the pitch angle, roll angle and yaw angle of objective attitude. The color
indicates the value of the objective function and the value of the objective function decreases as the
hue warms. Three slices which are respectively at 20◦, 40◦ and 60◦ of three-axis are selected to see the
value of the function. The intersection of the three slices is the objective attitude angle. And it is the
minimum point of the objective function in all four figures.

It can be clearly seen that as the mini-batch size increases, the gradient becomes steeper. It means
the estimation process will be faster and more stable and the performance will be better. As shown in
Figure 5a, the minimum point is not unique, the descent may not follow the direction of the objective
point even all into the trap. So SGD needs more iterations to approach the lowest point of the objective
function and the convergence process will fluctuate violently. In Figure 5b, the objective function is
calculated with 10 pairs of double-vectors and there is only one minimum point which is the objective
attitude. The direction of descent is clearer compared with Figure 5a. It can be seen from Figure 5c,
whose function is calculated with 60 pairs of double-vectors and Figure 5d, whose function is calculated
with 1000 pairs, that there is little difference between them. So The performance of MBGD which takes
less computation is similar to that of BGD. Actually, the SGD and BGD can also regard as the MBGD
with one and all double-vectors, in other word, mini-batch=1 and mini-batch=1000, respectively. So
the key to the problem is to find a proper mini-batch to make the best performance for practical use.
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SGD, MBGD and BGD are adopted for implementing the IFA simulation to compare their
performance. The 10mg accelerometer bias noise and 10◦/h gyroscope bias noise are added to the raw
inertial data for simulating the measurement obtained by low-cost inertial sensors. The learning rate is

set to 0.2. The initial estimation of the attitude angle can be arbitrary and is set to A0 =
[

0 0 0
]T

in this simulation. The code is running on a computer of which CPU is Intel Core i5-10210@1.6GHz
and the operating system is Windows 10.

Figures 6 and 7 respectively show the simulation results of the IFA for four methods, which differ
in the size of mini-batch. All four gradient descent methods are convergent near the objective attitude
angle, but they have different performances. According to the Figures 6 and 7 and Table 2, the attitude
angle estimated by SGD fluctuates violently around the objective attitude and its error is the biggest
among the four methods. For MBGD with mini-batch =10, the convergence is smoother and more
accurate than SGD but there are still some fluctuations. When the mini-batch increased to 60, the
performance of MBGD is improved significantly. BGD has the best accuracy and robustness and it is
very stable near the objective attitude angle after convergence.
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Table 2. Performance comparison of four methods.

Method
Errors(Degree) Each Update

Time 1 (ms)
Convergence
Time 1 (ms)Pitch Roll Yaw

SGD 0.138 0.553 2.848 0.08 3.9
MBGD(mini-batch = 10) 0.032 0.155 2.352 0.13 5.8
MBGD(mini-batch = 60) 0.025 0.038 1.756 0.27 12.7

BGD 0.014 0.015 1.334 2.05 88.3
1 “Time” means the code running time.

Figure 8 is the descent curve of objective functions. The value of objective functions directly
reflects the error of the attitude angle and all four methods can converge to a small value. It can be
seen that as the number of double-vectors increases, the function converges more stably. Figure 9 is the
descent path map of the four methods. The length of the path has no actual physical meaning and
it is only used to compare the length of the descent process. The length of the path decreases with
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the increase of mini-batch. SGD has the longest path because the descent does not always follow the
direction which is to the minimum point. BGD has the shortest path because each descent is in the
right direction. However, different methods take different time for each descent. As shown in Table 2,
the method whose mini-batch is bigger will cost more time to accomplish one attitude angle update.
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According to the simulation result, there is not much difference in the number of iterations
required for convergence. So the alignment will be faster with the size of the mini-batch reduce but
the accuracy will also be reduced accordingly. The results of each update time and convergence time
are measured. The mini-batch should be selected appropriately for different situations to balance
computation speed and precision.
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4.3. Experiment Results

In this section, the vehicle experiment is implemented as shown in Figure 10 to compare the
performance of the proposed method and the traditional method. The SINS is composed of three
gyroscopes of which bias is 1◦/h (1σ) and three accelerometers of which bias is 1 mg (1σ), the position
and velocity accuracy of GPS is 2 m (1σ) and 0.2 m/s (1σ) respectively. The vehicle used in the
experiment is equipped with a high-precision navigation system produced by NovAtel, which can
provide attitude (pitch and roll accuracy 0.008◦, yaw accuracy 0.023◦), velocity (accuracy 0.03 m/s) and
position (accuracy 0.6 m) information as a reference for the alignment. The experiment was carried out
at 112◦26′44” E, 38◦0′51” N (The North University of China, Taiyuan, Shanxi). The length of data is
100 s. The alignment starts at the 20 s and the objective attitude, which is the attitude angle between
the ib frame and in frame at this moment, is respectively −3.79◦, 3.12◦ and 160.24◦ according to the
reference navigation system.Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 
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Figure 10. (a) Vehicle experiment trajectory; (b) Vehicle experiment platform.

Figures 11–13 show the alignment results of three different IFA methods, which are, respectively,
QUEST, MBGD (mini-batch = 60) and BGD. They use the same set of data to estimate the optimal
attitude angle. The performance of both two gradient descent methods is better than the traditional
method QUEST. They have better accuracy and faster alignment time. Moreover, BGD is more robust
in practical use. According to Figures 11–13 and Table 3, MBGD and BGD perform similarly in this
experiment. From the above simulation analysis, it can be known that each update of BGD will
consume more computing resources than MBGD, because more double-vectors are used for calculating
the gradient. However, the accuracy may be only improved slightly. But for the case that the signal
of measurement is seriously disturbed, the BGD will be more robust. The measurement noise of
GPS is also the main cause of alignment error. Using higher precision GPS can further improve the
alignment accuracy.
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Table 3. Performance comparison of three methods in the experiment.

Method
Errors(Degree) Alignment Time(s)

Pitch Roll Yaw

QUEST 0.037 0.022 2.69 38.79
MBGD(mini-batch = 60) 0.056 0.025 1.47 7.36

BGD 0.003 0.021 1.41 6.08

5. Conclusions

From the simulations and experiments above, the proposed method is superior to the traditional
OBA methods. Using the modified double-vector construction method, the bias error of the inertial
sensor can be identified and suppressed. For the gyroscope with bias 10◦/h and the accelerometer
with bias 10mg, the maximum level attitude angle error can be reduced from 1.17◦ to 0.05◦ and the
yaw angle error can be reduced from 20.34◦ to 0.705◦. Using the proposed IFA method, the alignment
time is reduced from 39.2 s to 7.6 s. The accuracy and alignment speed are significantly improved.
The simulation results of the gradient descent show that the size of the mini-batch determines the
performance of the algorithm. The accuracy and robustness are better as the mini-batch size is larger
and the code runs faster as the mini-batch size is smaller. So the proposed method is very adaptable.
The vehicle experiments show that compared with the QUEST, the maximum level attitude angle error
is reduced from 0.037◦ to 0.021◦, the yaw angle error is reduced from 2.69◦ to 1.41◦,and the alignment
time is reduced from 38.79 s to 6.08 s.

The advantages of the new IFA method proposed in this article can be summarized as follows:

1. The accuracy of double-vectors, which is an important prerequisite for the accurate attitude
estimation, is improved by MDCM. The affect from the bias of inertial sensor is greatly
reduced, so the double-vectors can be accurately constructed by this method on the low-cost
navigation systems.

2. The proposed optimal method based on gradient descent is more flexible. And it can meet various
needs by adjusting the size of mini-batch in practical use. This method is very simple and easy to
implement. This method does not involve any multi-dimensional matrix operations in the whole
optimal estimation process. So it will consume fewer computing resources than the traditional
methods and it is very friendly to low-performance processors.

3. Our method has high accuracy and robustness. When the measurement contains bias of sensors
and white noise, The proposed method has better performance than the traditional method
represented by QUEST, which is proved by the results of simulations and experiments in
this article.

Author Contributions: Z.L. finished writing the article and analyzed the simulation and experiment results; J.L.,
X.Z. and K.F. conceived the idea of this research; X.W. and D.Z. provided the simulation data; J.M. and Y.L. carried
out the experiments; All authors reviewed and approved the manuscript.

Funding: This research was funded by the National Natural Science Funds for Distinguished Young Scholars
(No.51225504), the National Natural Science Foundation of China (No.51575500, No.51705477, No.61973280) and
the Foundation for Middle-Aged and Young Talents in Higher Education Institutions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Yu, F.; Gao, W.; Wang, Y. An improved strapdown inertial navigation system initial alignment
algorithm for unmanned vehicles. Sensors 2018, 18, 3297. [CrossRef]

2. Chang, L.; Qin, F.; Jiang, S. Strapdown Inertial Navigation System Initial Alignment based on Modified
Process Model. IEEE Sens. J. 2019. [CrossRef]

http://dx.doi.org/10.3390/s18103297
http://dx.doi.org/10.1109/JSEN.2019.2910213


Sensors 2020, 20, 512 19 of 20

3. Tian, X.; Chen, J.; Han, Y.; Shang, J.; Nan, L. Pedestrian navigation system using MEMS sensors for heading
drift and altitude error correction. Sens. Rev. 2017, 37, 270–281. [CrossRef]

4. Hu, H.; Zhang, J. Application of Hybrid Filtering Algorithm Based on Neural Network in INS/GPS Integrated
Navigation System. In Proceedings of the 2018 IEEE 4th International Conference on Control Science and
Systems Engineering (ICCSSE), Wuhan, China, 24–26 August 2018; pp. 317–321.

5. Liu, Y.; Fan, X.; Lv, C.; Wu, J.; Li, L.; Ding, D. An innovative information fusion method with adaptive
Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mech. Syst. Sig. Process. 2018, 100,
605–616. [CrossRef]

6. Zhang, H.; Li, T.; Yin, L.; Liu, D.; Zhou, Y.; Zhang, J.; Pan, F. A Novel KGP Algorithm for Improving INS/GPS
Integrated Navigation Positioning Accuracy. Sensors 2019, 19, 1623. [CrossRef] [PubMed]

7. Zhang, Y. A Fusion Methodology to Bridge GPS Outages for INS/GPS Integrated Navigation System. IEEE
Access 2019, 7, 61296–61306. [CrossRef]

8. Kim, Y.; An, J.; Lee, J. Robust navigational system for a transporter using GPS/INS fusion. IEEE Trans. Ind.
Electron. 2018, 65, 3346–3354. [CrossRef]

9. Zhang, G.; Lu, C.; Li, Y. Research on Initial Alignment Method of SINS with Improved CKF. In Proceedings
of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Sichuan, China, 15–17 March 2019; pp. 2315–2319.

10. Li, J.; Xu, J.; Chang, L.; Feng, Z. An Improved Optimal Method For Initial Alignment. J. Navig. 2014, 67,
727–736. [CrossRef]

11. Chang, L.; Li, J.; Chen, S. Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation Systems.
IEEE Trans. Instrum. Meas. 2014, 64, 784–794. [CrossRef]

12. Li, J.; Li, Y.; Liuxs, B. Fast fine initial self-alignment of INS in erecting process on stationary base. J. Navig.
2018, 71, 697–710. [CrossRef]

13. Lu, J.; Liang, S.; Yang, L. Analytic coarse alignment and calibration for inertial navigation system on swaying
base assisted by star sensor. IET Sci. Meas. Technol. 2018, 12, 673–677. [CrossRef]

14. Zhang, W.; Peng, G.; Yuan, B.; Wang, P.; Huo, Z.; Yang, Z. Improved Maximum Likelihood Filter Based
on UD Decomposition Algorithm and its Application in Transfer Alignment. In Proceedings of the 2019
Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 4042–4048.

15. Wei, X.; Huang, G.R.; Lu, H.; Peng, Z.Y.; Hao, S.Y.; Xu, M.Q. Marginal Reduced High-degree CKF and its
Application in Nonlinear Rapid Transfer Alignment. In Proceedings of the 2018 International Conference on
Computer Information Science and Application Technology, Daqing, China, 7–9 December 2018; p. 062030.

16. Ding, Z.J.; Zhou, H.; Zhang, S.F.; Yang, H.B.; Cai, H. Initial Self-Alignment Method for Inertial Platform on a
Stationary Base. J. Astronaut. 2017, 38, 612–620.

17. Xu, Y.; Zhou, T. Research on In-Flight Alignment for Micro Inertial Navigation System Based on Changing
Acceleration using Exponential Function. Micromachines 2019, 10, 24. [CrossRef] [PubMed]

18. Wang, D.; Lv, H.; Jie, W. In-flight Initial Alignment for Small UAV MEMS-based Navigation via Adaptive
Unscented Kalman Filtering approach. Aerosol Sci. Technol. 2017, 61, 73–84. [CrossRef]

19. Wang, D.; Dong, Y.; Li, Q.; Wu, J.; Wen, Y. Estimation of small uav position and attitude with reliable in-flight
initial alignment for MEMS inertial sensors. Metrol. Meas. Syst. 2018, 25, 603–616.

20. Shuster, M.D. A survey of attitude representations. Navigation 1993, 8, 439–517.
21. Pei, F.; Wei, X.; Liang, Q. A Fast Alignment Algorithm Based on Adaptive Quaternion Kalman Filter. In

Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), Hangzhou, China, 26–27 August 2017; pp. 312–316.

22. Liu, J.; Zhao, T. In-flight alignment method of navigation system based on microelectromechanical systems
sensor measurement. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719844929. [CrossRef]

23. Wu, Y.; Pan, X. Velocity/Position Integration Formula Part II: Application to Strapdown Inertial Navigation
Computation. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1024–1034. [CrossRef]

24. Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control. 1981, 4,
70–77. [CrossRef]

25. Markley, F.L. Attitude determination using vector observations and the singular value decomposition. J.
Astronaut. Sci. 1988, 36, 245–258.

26. Mortari, D. Euler-q Algorithm for Attitude Determination from Vector Observations. J. Guid. Control Dyn.
1998, 21, 328–334. [CrossRef]

http://dx.doi.org/10.1108/SR-07-2016-0125
http://dx.doi.org/10.1016/j.ymssp.2017.07.051
http://dx.doi.org/10.3390/s19071623
http://www.ncbi.nlm.nih.gov/pubmed/30987372
http://dx.doi.org/10.1109/ACCESS.2019.2911025
http://dx.doi.org/10.1109/TIE.2017.2752137
http://dx.doi.org/10.1017/S0373463314000198
http://dx.doi.org/10.1109/TIM.2014.2355652
http://dx.doi.org/10.1017/S037346331700090X
http://dx.doi.org/10.1049/iet-smt.2017.0535
http://dx.doi.org/10.3390/mi10010024
http://www.ncbi.nlm.nih.gov/pubmed/30598021
http://dx.doi.org/10.1016/j.ast.2016.11.014
http://dx.doi.org/10.1177/1550147719844929
http://dx.doi.org/10.1109/TAES.2013.6494396
http://dx.doi.org/10.2514/3.19717
http://dx.doi.org/10.2514/2.4239


Sensors 2020, 20, 512 20 of 20

27. Wu, M.; Wu, Y.; Hu, X.; Hu, D. Optimization-based alignment for inertial navigation systems: Theory and
algorithm. Aerosp. Sci. Technol. 2011, 15, 1–17. [CrossRef]

28. Chang, L.; Li, J.; Li, K. Optimization-based alignment for strapdown inertial navigation system: Comparison
and extension. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1697–1713. [CrossRef]

29. Xu, X. (Xiang Xu); Xu, X. (Xiaosu Xu); Zhang, T.; Wang, Z. In-Motion Filter-QUEST Alignment for Strapdown
Inertial Navigation Systems. IEEE Trans. Instrum. Meas. 2018, 67, 1979–1993. [CrossRef]

30. Wu, Y.; Pan, X. Velocity/Position Integration Formula Part I: Application to In-Flight Coarse Alignment. IEEE
Trans. Aerosp. Electron. Syst. 2013, 49, 1006–1023. [CrossRef]

31. Xu, X.; Xu, D.; Zhang, T.; Zhao, H. In-Motion Coarse Alignment Method for SINS/GPS Using Position Loci.
IEEE Sens. J. 2019, 19, 3930–3938. [CrossRef]

32. Wahba, G. A least squares estimate of satellite attitude. SIAM Rev. 1965, 7, 409. [CrossRef]
33. Lerner, G.M. Three-axis attitude determination. In Spacecraft Attitude Determination and Control; Kluwer

Academic: Dordrecht, The Netherlands, 1978.
34. Keat, J. Analysis of Least-Squares Attitude Determination Routine DOAOP; Technical Report TM-77/6034;

Computer Sciences Corporation Report CSC: Tysons, WV, USA, February 1977.
35. Shuster, M. Approximate algorithms for fast optimal attitude computation. In Proceedings of the Guidance

and Control Conference, Key Biscayne, FL, USA, 20–22 August 1973; p. 1249.
36. Savage, P.G. Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms. J. Guid.

Control Dyn. 1998, 21, 19–28. [CrossRef]
37. Xu, Y. Research on several key techniques of MINS/GNSS integrated navigation system in the guided

projectiles. Ph.D. Thesis, Nanjing University of Science & Technology, Nanjing, China, 2016.
38. Bao, J.; Qiao, X.; Li, D. Double-vector attitude determination algorithm improving coarse alignment accuracy

of strapdown inertial navigation system for sea cucumber fishing device. Trans. Chin. Soc. Agric. Eng. 2017,
33, 286–292.

39. Liu, M.; Gao, Y.; Li, G.; Guang, X.; Li, S. An improved alignment method for the Strapdown Inertial
Navigation System (SINS). Sensors 2016, 16, 621. [CrossRef]

40. Chang, L.; Zha, F.; Qin, F. Indirect Kalman Filtering Based Attitude Estimation for Low-Cost Attitude and
Heading Reference Systems. IEEE/ASME Trans. Mechatron. 2017, 22, 1850–1858. [CrossRef]

41. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ast.2010.05.004
http://dx.doi.org/10.1109/TAES.2016.130824
http://dx.doi.org/10.1109/TIM.2018.2805978
http://dx.doi.org/10.1109/TAES.2013.6494395
http://dx.doi.org/10.1109/JSEN.2019.2896274
http://dx.doi.org/10.1137/1007077
http://dx.doi.org/10.2514/2.4228
http://dx.doi.org/10.3390/s16050621
http://dx.doi.org/10.1109/TMECH.2017.2698639
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Preliminary 
	Traditional Optimization-based Alignment Method 
	Problem Formulation 

	The Proposed IFA Method 
	Modified Construction Method of Double-Vectors 
	Fast IFA Method Mased on Gradient Descent 

	Simulation and Experiment Results 
	Simulation For the Proposed IFA Method 
	Simulation For Different Sizes of Mini-Batch 
	Experiment Results 

	Conclusions 
	References

