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Abstract: To achieve an automatic unloading of a reactor during the sherardizing process, it is necessary
to calculate the pose and position of the reactors in an industrial environment with various amounts of
luminance and floating dust. In this study, the defects of classic image processing methods and deep
learning methods used for locating the reactors are first analyzed. Next, an improved You Only Look
Once(YOLO) model is employed to find the region of interest of the handling hole and a handling hole
corner detection method based on the image morphology and a Hough transform is presented. Finally,
the position and pose of the reactors will be obtained by establishing a 3D handling hole model according
to the principle of a binocular stereo system. To test the performance of the proposed method, a set
of experimental systems was set up and experiments were conducted. The results indicate that the
proposed location method is effective and the precision of the position recognition can be controlled
to within 4.64 mm and 1.68◦ when the cameras are approximately 5 m away from the reactor, meeting
the requirements.
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1. Introduction

Sherardizing is an important method for the formation of corrosion-resistant Fe-Zn layers on steel [1].
The corrosion resistance of steel is significantly improved after this method, which has been widely used in
steel workpieces. However, sherardizing has a low-level automation owing to its complicated technology,
and there are steps that need to be conducted manually. This is not only inefficient, but is also bad for
worker health, the reason for which is that some zinc powder will inevitably be inhaled by workers during
long-term work even if wearing a dust mask. Therefore, it is necessary to intelligentize the industry.

Figure 1 shows a schematic of the automatic unloading during the sherardizing. These reactors are
used to hold steel workpieces and zinc powder, and a square handling hole and numerous circular vent
holes are present at the bottom of the reactors. During the heating process, the reactors continuously rotate
with the furnace and thus the steel workpieces will be covered in zinc powder. After heating, the furnace
needs to continue to rotate to place the outermost reactor near the furnace door in an ideal pose. The
reactor can then be transported easily by a robot, as shown in Figure 1. At present, the locating of the
reactors is conducted manually. To achieve an automatic uploading, a sensor must be used in place of
a human worker to obtain the pose and position of the reactors, which is the core part of the automatic
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uploading system. If a camera is used as the sensor and image processing methods are applied to obtain
the location information from an image, the above process can be considered a visual location in an
industrial environment. It should be noted that the concept of a visual location is quite different between
the fields of mobile robot navigation and industry. The former aims to find the position of a robot in the
environment [2]. For the latter, the goal is to calculate the pose and position of the object in the reference
coordinate by applying image processing and spatial geometry. These are clearly different, and thus the
concept of visual location here refers to the locating of an object.

Robot

Reactor

Furnace

Figure 1. Schematic of a new automatic unloading system.

The visual location system is similar to a visual measurement system [3] and a visual detection
system [4], and has a higher efficiency and lower error rate than a manual operation. In addition, a visual
location system is often used in conjunction with robots. A robot system based on visual location has
significant value and has been successfully applied to an intelligent assembly [5], automatic welding [6],
agricultural picking [7], and robot sorting [8]. To maximize the advantages of this system, the efficiency and
precision are two indispensable requirements for a vision location system. However, these requirements
could not be achieved at the same time. In other words, there are many requisite steps that are needed
when we are pursuing a higher location accuracy, which will increase the time consumption. This indicates
that some simple and effective image processing methods should be used in a vision location system.
For example, a circular projection [9], Hu moment [10], and various template matching methods are
employed to find different objects. The area, center, and orientation are three of the most commonly used
parameters in visual location, and are calculated using the image moments [11]. Although these methods
have been proven to be effective, an ideal working environment is needed, which is difficult to achieve
in some factories. The reason is that images obtained in industrial environments are not perfect. The
commonly used image segmentation methods are hard to separate the object and background. In this case,
the position and pose could not be calculated accurately by these simple image processing methods owing
to the poor robustness. Therefore, the scope of application of the visual location system is greatly limited.

Fortunately, the purposes of visual location methods and object detection methods are the same, both
aiming to find objects in an image. This also provides another method for visual location. It is widely
accepted that the progress of object detection has generally passed through two historical periods: a
traditional object detection period and a deep-learning-based detection period [12]. Compared with a
traditional detection method, the deep learning detection method makes the recognition of an object in
a complex environment possible owing to its extraction of the high-dimensional features of the object.
To achieve the practicality of this method, numerous detection models have been proposed. Initially,
several two-stage detection models including R-CNN [13], fast R-CNN [14], and a faster R-CNN [15] were
proposed. These models have advantages of a high precision and strong generalization, although the
time consumption is unsatisfactory because large amounts of computing resources are consumed by a
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regional suggestion [16], and the requirement of a real-time processing has yet to be met. Shortly thereafter,
single-stage detection models represented by a Single Shot MultiBox Detector (SSD) [17] and the You Only
Look Once (YOLO) [18] method were proposed. These two models regard object detection as a regression
problem, and some advanced strategies, such as anchor [15,19], bounding box regression[13–15,17–20],
and multi-scale prediction [20], have been introduced. Therefore, the efficiency of a single-stage detection
method is extremely high and they have shown superiority in object detection and have been applied in
numerous fields in recent years [21]. As one of the most representative networks, the YOLO network can
get good performance in both speed and accuracy. In CVPR2017, YOLOv2 was presented and YOLOv3
was presented in 2018. The state-of-the-art version is not only faster and more accurate than the previous
version, but also performs well with detecting small targets.

It should be noted that, although many methods are effective, they are unsuitable for industry
for which location accuracy should be within several millimeters. The calculation result of advanced
object detection methods based on deep learning is a rectangular box containing the object rather than
a coordinate. The reason for this lies in the difference of concept between the object detection methods
and classical visual location methods. For object detection based on deep learning, we need to mark the
pedestrians by red rectangular boxes and make sure there are no omissions. The box is worthless for
industrial location and there is no doubt that the location error is huge if the midpoint of the box is used as
the result. This is difficult to achieve through an object detection method based on deep learning solely,
and thus such methods have been limited in industrial applications.

For the automatic unloading system in Figure 1, it works in a sherardizing factory that is filled with
dust, which cannot be completely removed by the air circulation system. The effect of dust on an image is
similar to fog, both making the boundary between the object and adjacent area unclear. The other obvious
reason is an unstable luminance. The luminance must be different in the factory between the day and
night, even if an auxiliary light is used. According to the above analysis, most existing methods are not
suitable for this system. In this study, a new binocular visual location method suitable for locating a reactor
is presented. This method combines traditional location methods with the YOLO model, and the reactor
location is realized by calculating the pose and position of the handing hole. The problems caused by dust
and unstable light cannot be solved, and an accurate locating of the reactors can be achieved using this
method. The rest of this paper is organized as follows. Section 2 establishes a binocular visual location
system. Section 3 clarifies the limitations of existing methods and describes a new visual location method
in detail. Section 4 introduces the relevant experiments and discusses the experiment results. Finally, some
concluding remarks are provided in Section 5.

2. System Design and Calibration

2.1. System Structure

An automatic unloading system based on binocular vision is shown in Figure 2 and the visual location
system is marked in the red dotted box. The visual location system consists of two CCDs, a gigabit
switch, an industrial personal computer (IPC), and an analog output card with a peripheral component
interconnect (PCI).

The system works as follows: First, the images are captured in real time by the CCD. Next, the position
and pose of the handing hole will be calculated using the proposed visual location method. This part is
the core procedure, which determines the accuracy and efficiency of the system. There are two points that
should be noticed. The first one is that the handing hole rather than the whole reactor is regarded as a
locating object. The reason is that the handing-hole is a big rectangular hole on the reaction surface and
the difference between the handing hole and the surrounding is obvious. It is convenient to process the
handing-hole rather than the whole reactor. The second one is that the locating result could be shown as a
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locating vector (z, θ). Z is used to describe the position of the reactors because there are two movement
directions of reactor in the furnace. θ is used to describe the pose of reactors. Finally, the data are output.
An analog output card is then used to convert it into two current signals for which a range is 5–30 mA.
These signals are regarded as the input of the motion control system used to adjust the state of the reactors.

CCD

Gigabit Switch

IPC

Analog Output Card

Display

Motor

Reactor

Riding Wheel
Furnace

Furnace Wire Support Motion Controller

Robot

cover

Figure 2. Structure of the automatic unloading system.

At present, a sherardizing factory is still under construction. To verify the effectiveness of the visual
location system, a rotatable furnace model is produced, as shown in Figure 3. The experimental model
consists of a rotatable cylinder, a disk, and a servo motor for simulating the furnace, reactor, and dynamical
system, respectively. The cylinder is rotated by the motor, which rotates the disc through friction, and thus
a real situation can be simulated. The size of the disk is the same as that of the reactor, the diameter of
which is 1200 mm and the size of the handing-hole is 180 mm × 130 mm. There are many round holes on
the surface of the disk simulating the vent holes.

Reactor

Cylinder

(a)

Servo Motor

Driver

Bearing

(b)

Figure 3. Experimental model. (a) front of the model; (b) back of the model.

2.2. Camera Selection and Calibration

The requirements should be analyzed before the equipment selection because the equipment
parameters are related to the accuracy of the system. According to the planning scheme, we need
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to trace the handing hole in the entire surface of the reactor, and the location error should not exceed
6 mm and 2◦. The CCD should be installed on the side with at least a 4 m distance because this area
will be occupied by a robot and the transport vehicles. To meet the accuracy requirements, the real size
corresponding to a single pixel is no more than 1 mm. According to the test, an MV-EM200M model CCD
is selected with a 1600× 1200 pixel resolution and a 25 mm lens.

A camera calibration is an important step in 3D computer vision for extracting metric information
from 2D images. In this paper, we need to correct the lens distortion and epipolar line and acquire the
camera parameters through a calibration process. The pinhole model can be used to describe the principle
of the CCD as follows:

Zc
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dx 0 u0

0 f
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( R T
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where f is the focal length, dx and dy are the distances between adjacent pixels in the u and v axes, (u, v)
is the pixel coordinate, (Xw, Yw, Zw) is the world coordinate, and (R, T) is the transfer matrix.

A lens distortion always occurs owing to manufacturing errors of the lens and a deviation in the
assembly. This unwelcome factor is manifested by the deviation between the ideal pixel coordinates (ui, vi)

and the actual pixel coordinates (ua, va). The relationship between these two coordinates is as follows:{
ui = k1uara + k2uar2
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a
)
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where p1, p2, and p3 are the radial distortion coefficients, and k1 and k2 are the tangential distortion
coefficients. All camera parameters can be calculated using the method developed by Zhang [22]. This
method overcomes the defect of the high-precision calibration required by a traditional calibration method,
and the result is more accurate than a self-calibration method [23]. Therefore, the Zhang calibration
method is widely used in machine vision. The calibration board has nine divisions, each of which is
30 mm × 30 mm in size. The calibration board is generated using OpenCV and then printed using a
high-precision printer.

The purpose of epipolar line correction is to adjust the distortion caused by the camera pose. After a
correction, the optical axes of the two CCDs are parallel and the height of one point on both the left and
right images is the same. Therefore, only the matching points in the same row are searched, which can
greatly improve the efficiency of the stereo matching.

3. Deficiency of the Existing Visual Method in Handling Hole Location

3.1. Deficiency of Traditional Location Method

The contour is often used to find an object and calculate the center coordinate when using a traditional
visual location method. This means we should first separate the object from the image, which is called
image segmentation. The core step of image segmentation is to find a range Ů(θn

thresh) that sets up
Equation (3):

f (x, y) =

{
object, f (x, y) ∈ Ů(θn

thresh),
background, other,

(3)

where Ů is related to several threshold θthresh. It is difficult to find a valid Ů(θn
thresh) for some complicated

images to separate objects.
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Figure 4a shows a raw image with dust, and the other three images are the results obtained using
Otus [24], a watershed algorithm [25], and histogram segmentation, respectively. The results indicate that,
although these methods have been proven to be effective in other fields, they have difficulty separating
handling holes from an image. Through an experimental analysis, there are two main factors regarding
this case. The first is unwelcome dust. In an ideal environment, the gray-scale value of a handling hole is
lower than the background, and it is easy to separate the object through a threshold segmentation. Dust
can be regarded as numerous solid opaque particles that may block or change the propagation path of the
light. The contrast between the handling hole and background is reduced by dust, creating an inconsistent
contrast. It is difficult to find a Ů(θn

thresh) that can be applied in all images. The second factor is inconsistent
light, which is a classic problem for image segmentation. To achieve an uninterrupted production, it is
necessary to consider the difference in light between day and night. The pixel distribution of the image is
not the same under different light conditions, even if the object can be distinguished. This is extremely
problematic for a pixel-based segmentation method. As mentioned above, such classic image segmentation
methods are invalid for this type of case.

(a) (b)

(c) (d)

Figure 4. The results of classical image segmentation. (a) raw image; (b) Otus; (c) watershed algorithm;
(d) histogram segmentation

3.2. Deficiency of the Deep Learning Method

In this section, we discuss the limitations of deep learning methods in a handing hole location. Before
furthering the discussion, the concept of a minimum bounding rectangle (MBR) should first be introduced.
An MBR refers to the smallest of boxes that can completely contain an object. This is an ideal box rectangle
and is difficult to find. By contrast, a ground-truth bounding box refers to a rectangular box that can
completely contain an object. This type of rectangle box is made through a manual operation. During the
annotation, we try to make the ground-truth bounding boxes close to the MBR. There is a deep implication
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regarding the above description. Ground-truth bounding boxes made by different people are not exactly
the same, and such boxes are usually slightly bigger than an MBR to allow the object to be completely
contained. Figure 5 shows a schematic in which the yellow box is a ground-truth bounding box and the red
box is an MBR. It is clear that there is a difference between the MBR and the ground-truth bounding box.

A(765,384)

B(863,243)

C(926,313)

D(868,453)

Figure 5. The MBR and counter of the handing-hole

One primary goal is to find the accurate centers of the handling holes in the images. The MBR center
of a handling hole must be the center of the handling hole because such a hole is rectangular. In theory, we
can find the MBR of an object using a deep learning method to achieve its location. However, a deviation
will occur between the network output and the MBR because the annotation boxes used in training are
not an MBR. The center of a predicted bounding box is not the center of a handling hole, the reason for
which is obvious in that an intersection over union (IoU) is used to express the accuracy of the network
in the training, and the final value of the IoU is generally greater than 0.9, rather than 1. Assuming that
the size of a predicted bounding box is 200× 200 and there are 4000 pixels, an error will occur owing to a
0.1 deviation in the IoU. This is a major measurement error, and little improvement can be obtained by
increasing the number of training steps and improving the quality of the annotation.

In addition, the part caused by the perspective projection can be called a minor error. This error is
caused by the non-perpendicularity between the optical axis and the surface of the reactor. In this case,
the shape of the handing hole in the image is a quadrilateral rather than a perfect rectangle. In Figure 5,
the blue lines indicate a counter of the handling hole, and AB and CD should in theory be equal to BC
and AD, respectively, but are not the same in actuality. Thus, we cannot prove that the center of the MBR
coincides with the center of the handling hole.

Another goal is to obtain the pose of the reactor by calculating the rotation angle of the handling hole.
There is one handing hole and several small vent holes in the surface of reactor according to the planning,
and it is difficult to find another obvious object. In this case, it is difficult to calculate the rotation angle
using a prediction box.

4. Method for Handling Hole Location in an Industrial Environment

It can be seen from the above analysis that, although the deep learning method can find an object in a
complex and varied environment, it is difficult to achieve our goals. By contrast, the traditional method
has a good effect with a poor robustness. Therefore, a novel roughly accurate location (RAL) method,
which is divided into three parts, is presented to find the position and pose of the handling hole in an
industrial environment. The method applies a complex technique integrating a YOLO model, Hough



Sensors 2020, 20, 504 8 of 21

transform, and 3D reconstruction. The details of this method are illustrated below, and a flow chart is
shown in Figure 6.

Start

Raw Right Image

Raw Left Image

Images Acquisition

Corrected 

Right Image

Image Correction

Corrected 

Left Image
Left ROI

Right ROI

3D ModelEnd

Rough Location 

Left 

Corner Point

Right 

Corner Point

Accurate Location 3D ReconsitutionPose and Position

Figure 6. Flowchart of the RAL method.

4.1. Rough Location Based on YOLO-MobileNet

The rough location is used to find the region of interest (ROI), which contains the handling hole as
quickly as possible. The deep learning method is selected according to the above analyses. At present,
numerous methods have been proposed for object detection, in which the YOLO network has a high
efficiency and can be used in a real-time detection.

The YOLO-V3 network [20] is the latest version of YOLO and has achieved a trade-off between
accuracy and real-time performance. Darknet-53 is used as a backbone network of the YOLO-V3 model
and consists of 53 convolutional layers. The residual module is introduced into the Darknet-53 network,
which helps overcome the gradient problem of a deep network. In addition, a multi-scale prediction
and bounding box regression are also added, which makes YOLO-V3 more effective and accurate than
YOLO-V2.

To meet the requirements of this study, the raw YOLO-V3 model should be modified, and an improved
version which could be called YOLO-MobileNet is employed. Figure 7 shows the network structure of
YOLO-MobileNet, and the following two points should be illustrated:

(1) There is only one object to detect in this study. To improve the efficiency, MobileNet [26] is used
instead of darknet-53 as the backbone. MobileNet is a lightweight network proposed by Google, which
stacks several layers of depthwise separable convolutions. By weighing the delay time and accuracy
requirements, a MobileNet architecture of the right size and speed is built based on the width and
resolution factors. The basic idea of its network structure is to completely separate the correlation and
spatial correlation between channels, and significantly reduce the number of calculations and parameters.
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S2 S1 S1 S2 S1 S1 S1 S2 S1 S1 S1 S2 S1 S1 S2 S1 S2 S1

Predict Two Predict One

Figure 7. Structure of the YOLO-MobileNet.

(2) Figure 8 shows the size distribution of the bounding boxes. The coordinates x and y indicate the
width and height of the ground-truth bounding boxes, and each blue ∗ indicates one instance. It could be
seen that all points are concentrated in a V-shaped region and there are no small objects because almost
all of the sizes are larger than 120 pixels. Therefore, the number of predictions is reduced to two and the
number of anchors is reduced to six. The K-means method is then used to obtain six clusters from all
points, and the results are used to set the anchor size.

120 140 160 180 200 220 240

width

120

240
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220

h
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Figure 8. The distribution of handling hole image set.

In theory, the output of the trained YOLO-MobileNet model is always the ROI of the handing hole. In
fact, the detection error cannot be zero owing to the limitations of the deep learning method itself. When a
detection error occurs, the output of the subsequent step must be wrong. To ensure the reliability of the
locating system, an examination is established here, and the following three terms are added:

(1) The number of objects is one.
(2) The area of the predicted bounding box is within a reasonable range, which is obtained from

Figure 8.
(3) Assume that the area of the predicted bounding box of the (i− 1)-th image is Si−1. The area of the

predicted bounding box of the i-th image should be in [Si − ζ, Si + ζ], where ζ is a threshold.
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The results satisfying the above three terms can only be considered as a correct output of the
YOLO-MobileNet model. In this way, the location error caused by the YOLO-MobileNet model can
be significantly reduced.

4.2. Accurate Location of Handling Hole Based on Hough Transformation

The most effective way to locate a handling hole is to find the four corners because the handling hole
is a rectangle. However, it can be seen from Figure 4a that these contour corner points are not obvious in
the presence of dust. It is therefore difficult to extract the corner points directly. Fortunately, a portion of
the contour is still visible and the handling hole still looks like a rectangle. If the clear part of contour can
be extracted, the intersection points where the contour extend can be regarded as the corner points. The
location method is illustrated in detail below, and a flow chart is shown in Figure 9.

Start ROI Raw Contour

CentersEnd

Denoising

Smooth Image

Rough Extraction

Segment Extension

Part Real Contour

Accurate Extraction 

Figure 9. Flowchart of the accurate location

First, we should expand the ROI, which is the result of a rough location. It is necessary to ensure that
the handing hole is contained in the ROI completely because the purpose is to extract the contour of the
handing hole. This requires an accurate output of the network, which is difficult to achieve. To this end,
the ROI expansion is proposed to optimize the ROI to achieve this goal. The ROI in the image is usually
shown as a vector (x, y, lwidth, lheight), where (x, y) is the coordinate of the top-left corner and lwidth and
lheight are the width and height of the bounding box. Assuming that the expansion length in each direction
is lexp, the vector of the expanded ROI can be shown as (x− lexp, y− lexp, lwidth + 2lexp, lheight + 2lexp). Here,
lexp is related to the accuracy of the network and the result is shown in Figure 10a.

A filtering is then needed to remove noise in the image. By observing Figure 4a, the dust in the
image can be regarded as additive noise, which makes the counter of the handing hole appear unclear
and the inside of the handing hole looks unsmooth, which is similar to the effect of Gaussian noise.
Therefore, an image filter is needed, and the counter cannot be blurred after filtering. Although a
bilateral filter can achieve this goal, its time consumption is unsatisfactory owing to the large number of
computations. Therefore, we conduct multiple morphological operations to improve the quality of the
ROI. The corresponding corrosion and expansion operators can be defined as follows:

[I 	 Sa](x, y) = min
s,t∈S
{I (x + s, y + t)} , (4)

[I ⊕ Sa](x, y) = max
s,t∈S
{I (x + s, y + t)} , (5)

where Sa is an a× a mask. The ROI after the operations is I̊, and thus I̊ = I0 	 S0 ⊕ S0 	 S1 ⊕ S1 · · · 	
Sn ⊕ Sn. We can see from Figure 10b that, after several corrosion and expansion operations, the ROI is
smoother and the counter of handling hole remains clear.
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(a) (b) (c)

(d) (e)

P1

P2

P3

P4

(f)

Figure 10. Processing of accurate handing hole location: (a) ROI, (b) denoised image, (c) result of counter
detection, (d) parameter coordinate system, (e) raw line detection result, (f) result of corner extraction.

In the next step, the canny method is used to find all points that might be on the counter. The Canny
method is one of the most commonly used edge detection methods and its popularity could be attributed
to its optimality [27]. It should be noted that, not only are the true points found in the results, some other
points can also be seen, as shown in Figure 10c. The reason for this is that the edge detection can be
regarded as a specific type of image segmentation, which can be defined as follows:

Ĩ(x, y) =

{
counter I(x, y) ./ Ψ̃(I(x, y)),
background other,

(6)

where Ψ̃ represents a series of operations, and ./ indicates that point I(x, y) can set up Ψ̃. In addition, Ψ̃ of
the canny method has four steps: denoising, a gradient calculation, non-maximum suppression (NMS),
and false edge removal. The points that meet Ψ̃ are considered along the contour. Moreover, the first step
could be abandoned in this study because the image had already been filtered.

The next step is to perform a Hough transformation to find the real counter from Figure 10f. Compared
with other methods, it is easy to implement and has strong strong robustness [28]. As shown in Figure 11,
for any point Pi

line(x, y) on the line L, Equation (7)is set up:

r sin θ − y
r cos θ − x

= − 1
tan θ

, (7)

where lr is a line through which the origin is perpendicular to L. The length of lr is equal to r, and the
angle between lr and the x direction is θ. Thus, Equation (7) can be rewritten as follows:

r = x cos θ + y sin θ. (8)
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For any point in the Cartesian coordinate, there must be a curve in the parameter coordinate and a
mapping between the Cartesian coordinates, and the parameter coordinate is therefore established. We
then calculate all lines corresponding to all white points in Figure 10c, and a voting system is established
to count the number of lines passing through each point in the parameter coordinate. The statistical
results are shown in Figure 10d, and there are four points (ri, θi) in which the highest number of votes are
marked, where i = 1, 2, 3, 4. To obtain the real counter in the Cartesian coordinates, we substitute (ri, θi)

into Equation (8), the result of which is shown in Figure 10e.

i

lineP

( cos( ), sin( ))P r r 

rl



o

y

x

Figure 11. Schematic of a line.

To ensure the reliability of the location method, another examination is added here. The following
two terms are applied:

(1) The number of lines obtained by a Hough transformation is greater than three.
(2) All lines are classified according to the slope, and there must be two lines with a large intercept in

each class.
If the above terms are met, the detection results are regarded as correct, and the following step should

be conducted. Otherwise, these images will be abandoned and the system will continue to process the
next image.

Finally, we should extract all corners. As shown in Figure 10e, the four blue lines are only a part of
the counter. To obtain all corners, all blue lines should be extended, and the four intersection points can be
regarded as the corners, as shown in Figure 10f. In this way, the accurate location of the handing hole is
achieved using the above methods.

4.3. 3D Reconstruction of Handing Hole

The pose and position of a handing hole is obtained by establishing a 3D model. Figure 12 shows the
principle of binocular stereo vision. The point P in the left and right images are Pl and Pr, respectively. In
addition, B is the baseline, which can be obtained through a calibration, and L is the disparity calculated
through stereo matching.

Then, the z-coordinate of point P will be calculated according to the triangle similarity, and the 3D
coordinate in the left camera coordinate will be calculated as follows:

x =
xl ∗ b

xl − xr
, z =

b ∗ f
xl − xr

, y =
b ∗ y

xl − xr
. (9)

Another problem also needs to be solved. Figure 13 shows a non-collinear problem of the matching
points. Here, Al and Ar are a pair of matching points, which are not on the same line. In this case, a larger
reconstruction error can occur when using the result of Equation (9) directly. As the reason for this, the
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corner points on both the left and right are obtained by contour fitting rather than stereo matching. The
error caused by this case can be called a non-collinear error. Here, point A is regarded as an example to
illustrate a new method for reducing non-collinear errors.

Ol
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Yr

Xl

Yl

Zl
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yl
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vr
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L
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Figure 12. Principle of binocular stereo vision.

(1) Calculate the difference between yl
P and yr

P. The reconstruction should be conducted without the
following steps when the result is less than threshold Erl

P . Otherwise, the second step is applied.
(2) Create a line ll through point Al and another line lr through point Ar. The slope of these two lines

is zero. In the left image, two intersection points A1
l and A2

l will be calculated and a triangle whose points
are A1

l , A2
l , and Al will be established. In the same way, another triangle is established in the right image.

(3) The centers of the two triangles are calculated and will replace Al and Ar as the new corners.
Each point should be processed by the above method, and perfect matches will then be obtained.

P4
2

lA1

lA

lA

rA

1

rA 2

rA

Figure 13. Schematic of non-collinear problem for matching points.

Assuming that the robot coordinate is regarded as a reference, an extra step of coordinate
transformation is then needed. This process can be expressed through Equation (10):

Xr

Yr

Zr

1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1




Xc

Yc

Zc

1

 , (10)

where M is the transform matrix obtained through a hand-eye calibration. In addition, (Xr, Yr, Zr) are
the robot coordinates and (Xc, Yc, Zc) are the camera coordinates. The 3D model will then be established
using the four corner coordinates. Next, we calculate the position and pose of the handing hole. To reduce
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the measurement error, (x̃, ỹ) calculated using Equation (11) can be regarded as the center point, and its
coordinate is used as the position:

x̃ =
4

∑
n=1

xi, ỹ =
4

∑
n=1

yi. (11)

To calculate the pose, a vector
−→
EF based on four corners should be set up. The center of the edge

closer to the profile of the reactor is treated as the starting point E, and the center of the edge away from
the rector profile is regarded as ending point F. The goal is to make the vector EF parallel to the plane XoZ
and the angle between

−→
EF and −→ez (0, 0, 1) less than 90◦. Therefore, the angle between EF and −→ey (0, 0, 1)

and −→ez (0, 0, 1) is as expressed through Equation (12):

θy = arccos
−→
EF×−→ey∣∣∣−→EF
∣∣∣ ∣∣−→ey

∣∣ , θz = arccos
−→
EF×−→ez∣∣∣−→EF
∣∣∣ ∣∣−→ez

∣∣ . (12)

5. Experiments and Discussion

5.1. Data Acquisition and Annotation

Whether the network can process the images collected in different cases depends on the integrity
of the dataset [29]. To enhance the richness of the dataset effectively, the image set contains six types of
images, as shown in Figure 14. There are 1800 images in the dataset. All images are collected on site, and
the dataset augmentation is not needed because we have complete experiment equipment for simulating
all situations occurring during production.

(a) (b) (c) (d) (e) (f)

Figure 14. The categories of training images: (a) low brightness images without dust, (b) low brightness
images with dust, (c) high brightness images without dust, (d) low brightness images with dust, (e) normal
brightness images without dust, (f) normal brightness images with dust

The following two points should be introduced:
(1) To obtain the images of the handling hole at different angles, the model is rotated during the

acquisition.
(2) To simulate different illuminations, we adjust the aperture and brightness of the external light

source.
(3) The dust concentration is an uncontrollable factor. The zinc powder has difficulty remaining in

the air for a long time owing to its large density. We use a smoke generator instead of artificial dusting.
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We inject smoke into the air at intervals, and 500 images will then be obtained as a raw dataset in each
illumination. We manually select 300 images to add to the image dataset.

In the next moment, LabelImg is used to label all images. To improve the accuracy of the network,
we should try to make the rectangle containing only the handling hole. Finally, we divide the image
dataset. The training set has 1260 images, which are randomly selected from the image set. There are
360 images randomly selected to form the new test set, and the rest of the images form the validation
set. The percentages of the training set, test set, and validation set are approximately 70%, 20%, and 10%,
respectively.

5.2. Model Training

The models are trained and tested on a computer with a Nvidia RTX2080. Considering the memory
constraint of the GPU, the batch size is no more than 6. The momentum is set to 0.9, the learning rate is set
to 0.001, and the decay is set to 0.0005. It should be noted that there is only one object and the dataset is
not large, and thus the epoch cannot be set too big, or an over-fitting will occur. In this case, the epoch is
set to 6000. The model is then trained after defining the training parameters. Figure 15 shows the training
loss curve. It can be seen that the initial value is large and the training loss then decreases rapidly during
the first 1000 batches. As the number of training batches increases, the loss slowly decreases and gradually
tends to reach stabilization. The loss value fluctuates at around 2 after 3000 batches, which is the ideal
result. Excessive training may lead to an over-fitting, in the training model, the weight is output every 100
batches, and we need to evaluate all the results to choose the best weight.

Figure 15. The training loss curve.
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5.3. Evaluation

In this section, we describe the testing of the RAL method under different conditions to evaluate if it
can be used in an industrial environment.

5.3.1. Preference of YOLO-MobileNet

We tested the performances of YOLO-MobileNet and the complete RAL method. It should be noted
that, in several studies, the detection results of partial occlusion objects, multiple objects, and small objects
are usually regarded as a reference to evaluate a network. Such cases will not occur during the sherardizing
process. Even if the handing hole is blocked completely by dust, a secondary inspection will be used
to maintain the reliability of the system. Therefore, in this study, we only need to estimate whether
YOLO-MobileNet can find the ROI of the handing hole in a general industrial environment.

Table 1 lists the test results of YOLO-MobileNet using several categories of images. Table 2 shows
a comparison with four other object detection models including YOLOv3, SSD, Faster-RCNN, and
tiny-YOLOV3, by using the AP parameters and time consumption per image. The AP is higher in
the absence of dust and can reach 100%. The detection results of images with dust are worse than those of
clear images, and the AP is 91.48%.

Table 1. Test results of YOLO-MobileNet.

Parameters Image Category

Dark Dark&dust Bright Bright&dust Normal Normal&dust

AP-50 88.48% 82.48% 90.16% 88.28% 92.65% 90.53%
AIOU 0.81 0.79 0.83 0.8 0.86 0.83

Table 2. Comparison with four popular object detection models.

Model Time(s) AP(%)

YOLO-MobileNet 0.02 90.53%
SSD 0.15 82.21%

Faster-RCNN 0.12 87.35%
YOLOV3 0.07 96.57%

tiny-YOLOV3 0.02 88.31%

Some detection results are shown in Figure 16. Figure 16a–d shows good detection results, and Figure
16e–f shows poor detection results. In the environment without dust, there are two main types of detection
errors. In the first type, multiple objects are detected. In this case, YOLO-MobileNet not only finds a true
object, but it also regards a fake object as the detection result or marks several bounding boxes on the
true object. In the second type, the IOU of the detection result is too small. This case occurs when the
dust concentration is high, and only one part of the object is contained in the smaller prediction bounding
box. In fact, this case rarely occurs because there are some dust removers above the furnace and the dust
concentration will not be too large. Even if some unwelcome situations occur, there are two examinations
in the ARL method to maintain the reliability of the locating system.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Detection results of YOLO-MobileNet model: (a–c) good detection results, (d–f) parameter
coordinate system.

5.3.2. Preference of RAL Method

The program is applied using an Intel(R) Core(TM)i7-8700 CPU running at 3.30 GHz with 16 GB of
RAM. The GPU is a Nvidia RTX2080. To reduce the time consumption, a multithreading method is used to
process the left and right images, and, when the accurate location of two images is completed, the position
and pose calculation are applied.

The average process time of YOLO-MobileNet is 0.019 s is shown in Table 2, and the time consumption
of other steps is shown in Table 3. The average time required for the RAL method to process a pair images
is 0.23 s, which means that there is sufficient time remaining for the motion control system and a large lag
will not occur.

Table 3. Time consumption of each step.

Step Time Consumption (s)

ROI expansion 0.002
Denoising 0.05

Counter detection 0.15
Corners extraction 0.01

All 0.21

The location error refers to the distance between the measured and true values. The smaller the error,
the higher the location precision. However, we only have a model and a robot has yet to be installed,
and thus it is difficult to evaluate the precision of the RAL method because we are unable to obtain the
true value dynamically. A new static evaluation method is proposed to evaluate the precision of the RAL
method. Figure 17 shows a flow chart. First, the reactor is set at an angle and maximizes the difference
between the handing hole and the surrounding by adjusting the auxiliary light and CCD aperture. Next,
the threshold segmentation method is used to obtain the perfect counter of the handing hole, and the four
corners are manually obtained. Finally, a 3D model will be established and the location information of
the handing hole can then be easily calculated. Therefore, a static location result obtained by the above
method in a smokeless environment can be approximated as a true value.
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Figure 17. Flowchart of the true value calculation.

We then eject the smoke in the front of the rector, and the result obtained by the RAL method is
regarded as the measured value. By repeating the above process, there are several real values ζ i

r and the
measured value ζ i

m will be obtained. The measurement error ζ i
e is equal to |ζ i

m − ζ i
m| and the average

measurement error ζn
e is then defined as follows:

ζn
e =

1
n

n

∑
i=1

ζ i
e. (13)

There are 100 sets of measurement results shown in Figure 18. It can be seen that the maximum
measurement error is less than 1.68◦ and 4.62 mm, which indicates that the RAL method achieves a
high accuracy.
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Figure 18. Measurement error in the experiment: (a) Measurement error of distance, (b) Measurement error
of rotation angle.
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5.4. Encapsulation

To achieve real-time monitoring and a real-time output of the measured values, we need to package
the entire system into a single software, which is coded using C++ with OpenCV 3.2, and the operational
interface is coded using MFC. The interface of the software is shown in Figure 19. The software consists
of three parts: (1) a calibration system, (2) a real-time display system consisting of an image display and
an information display, and (3) an information storage system designed to save important data during a
program operation.

Figure 19. Interface of software.

6. Conclusions

To achieve an automatic unloading of the reactors during the sherardizing process, in this study, the
defects of the existing method were first analyzed. Next, a RAL method was presented, aiming to calculate
the coordinate and angle of the handing hole. This method is divided into three steps. First, the ROI of the
handing-hole is obtained using an improved version of YOLO-MobileNet. This model is more suitable for
positioning holes than other versions of the YOLO model. Second, a precise positioning method consisting
of a series of conventional image processing algorithms is proposed, which can find the four corners of
the hole. Finally, the pose and position of the handing hole is calculated by establishing a 3D model. The
experiment results show that the the measurement error of the RAL method is less than 4.64 mm and
1.68◦ and the average measurement time for a pair of images is approximately 0.21 s, which can meet the
requirements of visual locating.
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Abbreviations

The following abbreviations are used in this manuscript:

IPC Industrial personal computer
PCI Peripheral component interconnect
CCD Charge coupled device
YOLO You only look once
SSD Single shot multiBox detector
MBB Minimum bounding box
IoU Intersection over union
RAL Rough-accurate location
ROI Region of interest
CPU Central processing unit
GPU Graphics processing unit
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