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Abstract: In this paper, we investigate various machine learning classifiers used in our Virtual 
Reality (VR) system for treating acrophobia. The system automatically estimates fear level based on 
multimodal sensory data and a self-reported emotion assessment. There are two modalities of 
expressing fear ratings: the 2-choice scale, where 0 represents relaxation and 1 stands for fear; and 
the 4-choice scale, with the following correspondence: 0—relaxation, 1—low fear, 2—medium fear 
and 3—high fear. A set of features was extracted from the sensory signals using various metrics that 
quantify brain (electroencephalogram—EEG) and physiological linear and non-linear dynamics 
(Heart Rate—HR and Galvanic Skin Response—GSR). The novelty consists in the automatic 
adaptation of exposure scenario according to the subject’s affective state. We acquired data from 
acrophobic subjects who had undergone an in vivo pre-therapy exposure session, followed by a 
Virtual Reality therapy and an in vivo evaluation procedure. Various machine and deep learning 
classifiers were implemented and tested, with and without feature selection, in both a user-
dependent and user-independent fashion. The results showed a very high cross-validation accuracy 
on the training set and good test accuracies, ranging from 42.5% to 89.5%. The most important 
features of fear level classification were GSR, HR and the values of the EEG in the beta frequency 
range. For determining the next exposure scenario, a dominant role was played by the target fear 
level, a parameter computed by taking into account the patient’s estimated fear level. 

Keywords: fear classification; emotional assessment; feature selection; affective computing. 
 

1. Introduction 

According to statistics, 13% of the world’s population is affected by phobias, a type of anxiety 
disorder manifested by an extreme and irrational fear towards an object or a situation. 275 million 
people suffer from anxiety disorders throughout the world and anxiety disorders are ranked as the 
6th-most common contributors to global disability [1]. Phobias are classified into social phobias (fear 
of relating to others or speaking in public) and specific phobias (generated by particular objects or 
situations). Social phobias affect people of all ages, though they usually start to manifest in 
adolescence. 17% of people with social phobias develop depression. The majority of them turn to 
medication, and even substance abuse and illegal drugs (nearly 17%) or alcohol (nearly 19%), and 
only 23% seek specialized help [2]. With regard to specific phobias, a significant percent (15–20%) of 
the world’s population faces one specific phobia during their lifetime [3]. The most common specific 
phobias and their prevalence are: acrophobia (fear of height)—7.5%; arachnophobia (fear of 
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spiders)—3.5%; aerophobia (fear of flying)—2.6%; astraphobia (fear of lightning and thunder)—2.1%; 
and dentophobia (fear of dentist)—2.1%. [4]. Specific phobias begin during childhood and can persist 
throughout one’s life, affecting more women than men. Most of these patients do not seek treatment 
for phobias and, of those who do, only 20% recover completely [2]. 

The treatment for phobias is either medical or psychological. 80% of people suffering from 
phobias turn to medicines and Cognitive Behavior Therapy (CBT), a form of psychotherapy that 
encourages patients to modify destructive patterns of cognition and behavior and to replace them 
with positive thoughts [5]. Immersion therapy consists of gradual exposure to anxiety-producing 
stimuli, in the presence of the therapist who controls the intensity of immersion [6]. Thus, the patients 
are urged to understand their fears and find a way to adjust their attitude towards the anxiety-
provoking object/situation in a conscious and apperceptive fashion. The medical or psychological 
treatment should be continued for as long as required since statistics reveal that phobia tends to 
relapse in approximately 50% of cases [7]. With the technological advancement, Virtual Reality has 
significantly emerged in recent decades, allowing the design of immersive virtual worlds that 
provide stimuli in a safe and controlled manner [8]. 

In 1997, Picard published a seminal book entitled Affective Computing, in which are presented 
the theories and principles of a new interdisciplinary field encompassing computer science, 
neuroscience, psychology, and engineering [9]. Affective Computing (AC) is defined as “computing 
that relates to, arises from, or influences emotions”. 

According to Picard, computers need to understand human emotions and even have and express 
emotions for the purpose of communicating with humans. AC enables an integration of human 
emotions into technology. The field comprises: the study of affect recognition and generation 
methods, expressing affection techniques, affect aware systems development, research on the 
modality in which affect influences human-technology interactions. AC helps people understand 
psychological phenomena, human behaviors, and to build better software applications [10]. AC has 
many applications in education, game development, health, robots, cyber-psychology, VR, 
marketing, entertainment, and so on.  

The integration of affective information in game development opens the path to new methods 
of maintaining players’ engagement [11], by dynamically adjusting game levels difficulty to tailor the 
users’ individual emotional characteristics [12]. In healthcare applications, AC involves automatic 
emotion detection and provides decisions accordingly. Relational agents have been developed in 
order to help patients in hospitals or to assist childbirth, offering information and emotional support 
[13]. Conversational agents and robots interact with children suffering from ASD, helping them to 
develop from the socio-emotional point of view [14].  

In this paper, we propose a VR game for treating acrophobia, based on the idea of real-time 
automatic adaptation of in-game height exposure according to the subject’s level of fear. With 
physiological signals as input (EEG, GSR and HR), our system determines the subject’s current fear 
level and predicts the next exposure scenario.  

The current fear level and the next exposure scenario were obtained using various machine 
learning (ML) and deep learning (DL) classifiers: Support Vector Machine (SVM), k-Nearest 
Neighbors (kNN), Linear Discriminant Analysis (LDA), Random Forest (RF), and 4 deep neural 
network architectural models. The data used for training the classifiers was recorded in a preliminary 
experiment in which 8 acrophobic subjects were in vivo and virtually exposed to various heights. For 
computing the accuracy of the classifiers, both a user-dependent and a user-independent modality 
were used. Therefore, each classifier was trained using the data of the other subjects in the case of the 
user-independent modality. We calculated cross-validation and test accuracies applying the trained 
model on the data of the tested user. Moreover, this is the research idea towards which we are 
inclined, given the fact that training a classifier for every subject is an unfeasible and highly time-
consuming activity. On the other hand, in the case of the user-dependent modality, for each subject, 
each classifier was trained using their own data, obtained from the preliminary experiment. The 
trained model was then applied on the test records of the same participant. Feature selection was also 
computed for each classifier in order to improve generalization across subjects. 
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To validate our method, we performed an experiment with the same 4 acrophobic users, in 
which they played the proposed acrophobia game twice. The first classifier predicted the current fear 
level, while the second one estimated the next exposure scenario (or game level to be played next). 
The results showed a very high cross-validation accuracy on the training set (obtained by the kNN 
and RF classifiers) and good test accuracies, ranging from 42.5% (for the 4-choice scale) to 89.5% (for 
the 2-choice scale) (both for SVM, for the player-dependent modality). Also, we determined that the 
most relevant features for fear level classification were GSR, HR and the values of the EEG in the beta 
frequency range. For the next exposure scenario prediction, an important role was played by the 
target fear level. 

The paper is organized as follows: Section 2 presents the state of the art regarding the current 
VR-based therapies, Section 3 introduces a short description of the emotional models and types of 
physiological signals employed in our research, Section 4 details similar experiments and the 
modalities in which various machine learning techniques have been used for emotion classification, 
Section 5 presents our acrophobia game, together with the ML and DL approach for fear level and 
next exposure scenario prediction, Section 6 provides an insight into the methodology for training, 
dataset construction and experimental procedure, while Section 7 emphasizes the results of our 
experiments. Finally, we discuss the research findings in Section 8 and present the conclusions and 
future work directions in Section 9. 

2. VR-Based Phobia Therapy 

Virtual Reality has been involved in phobia treatment since the 1990s. In the study presented in 
[15], 60 participants suffering from agoraphobia have been equally divided into two groups: a control 
group and an experimental group. Eight virtual environment scenes were used to expose 30 
participants from the experimental group in session sequences of about 15 minutes. The Attitude 
Towards Agoraphobia Questionnaire (ATAQ) and Subjective Unit of Discomfort (SUD) were used 
as instruments to assess the anxiety states of the subjects. SUD means decreased over the eight 
sessions, from 5.66 to 2.42, indicating habituation with the agoraphobic stimuli. The results proved 
that agoraphobic patients can be successfully treated with VR technologies. VR technologies have 
manifold applications in phobia treatment, from understanding the causes of these disorders, to 
evaluating and treating them [16,17].  

Virtual Reality Exposure Therapy (VRET) is a behavioral treatment for anxiety disorders, 
including phobias. The patient is immersed in a computer-generated virtual environment which 
presents stimuli that are dangerous in real-world situations [18]. VRET is equally as efficient as the 
classical evidence-based interventions (CBT and in vivo exposure), provides real-life impact, has 
good stability of results in time and engages the patients in the therapy as much as in vivo exposure 
does [8,16]. The existing VRET systems can be classified into platforms, academic research projects 
or experiments and mobile/desktop game applications. 

2.1. Platforms 

C2Phobia [19] was designed by mental health professionals, psychiatrists, psychologists and 
psychotherapists. Using a VR headset, the patient is gradually exposed to anxiogenic situations. The 
system can also be used at home, allowing the specialist to treat patients and prescribe personal 
exercises at a distance. C2Phobia is recognized as a medical device, a complete therapeutic software, 
but the developers did not disclose whether they use machine learning techniques or not.  

PSIOUS [20] provides animated and live VR and Augmented Reality (AR) environments, as well 
as 360-degree videos for anxiety disorders, fears and phobias treatment. It offers patients monitoring 
capabilities, generation of automatic reports and the possibility of home training. PSIOUS contains 
70 VR scenes. The developers did not disclose whether they used machine learning techniques or not. 

Stim Response Virtual Reality [21] provides a wide range of virtual worlds for acrophobia, 
aerophobia and social phobias treatment, as well as physiological data synchronization. The VR and 
AR scenes change in real time, based on the subject’s responses to the environment. It performs 
automatic data analysis. 
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Virtual Reality Medical Center [22] uses 3D virtual environments, biofeedback and CBT to treat 
phobias and anxieties (especially pre-surgical anxiety), relieve stress, and teach relaxation skills. Non-
invasive physiological monitoring with visual feedback allows control for both the patient and the 
therapist. Virtually Better [23] is a system available only for the therapist’s office which is aimed at 
providing therapeutic applications for treating phobias, job interview anxiety, combat-related post-
traumatic stress disorders, and drug or alcohol addiction. Virtually Better has been used by the VR 
Treatment Program at Duke Faculty [24], where the therapist guided the participants through the 
environment and interacted with them through the entire event. Research studies have indicated that 
6 to 12 45–50-minute-long therapy sessions were enough to achieve maximum benefit. The 
Bravemind system [25] was used for treating soldiers who served in Iraq and Afghanistan with 
anxiety disorders. It works by providing vibrotactile and olfactive sensations associated with war 
zones. Limbix [26] contains interactive scenes made of panoramic images and videos that can be 
changed by the therapist in real-time. Lastly, PHOBOS [27] was designed in consideration of CBT 
protocols. It provides interactive environments, gradual exposure and realistic crowd and social 
group dynamics simulations for treating social and specific phobias.  

2.2. Academic Research Projects and Experiments 

Acrophobia Therapy with Virtual Reality (AcTiVity-System – UniTyLab, Hochschule Heilbronn, 
Germany) [28] is played on an Android device and uses the Oculus Rift headset [29] to render 3D 
scenes, Microsoft Kinect [30] for motion tracking, and a heart rate sensor for measuring HR. The 
virtual environment contains buildings that have a walk route on the sides. A large experiment was 
performed in which 100 users were divided into a VR group and a control group. The participants 
from the VR group had to take a tour in a 10-storey office complex. All 44 subjects from the VR group 
who completed the six sessions of the experiment had an average reduction of 68% of their fear of 
heights. VR Phobias [31] presents a static virtual environment depicting the view from the balcony 
of a hotel. The results of an experiment in which 15 acrophobic patients were exposed to heights in 
vivo and virtually showed that the success rates of both procedures were similar. However, the VR 
exposure sessions were shorter, safer and more comfortable for the patients. The acrophobia system 
presented in [32] contained three virtual environments in a cityscape. The results of an experiment in 
which twenty-nine subjects participated and rated their fear levels in the presence of a therapist who 
adjusted exposure according to their affective state showed that both anxiety and avoidance levels 
decreased. Virtual therapy proved to be as effective as in vivo exposure to fear-provoking stimuli. 

2.3. Mobile/Desktop Game Applications 

Some of the most popular desktop game applications available for the Oculus Rift [29] and HTC 
Vive [33] headsets are The Climb [34], Ritchie’s Plank Experience [35], Arachnophobia [36] and 
Limelight [37]. The first two try to overcome fear of heights, Arachnophobia treats fear of spiders, 
while Limelight puts the user in front of a crowd with changeable moods where he/she gives lectures 
or presentations, in order to overcome their fear of public speaking. Samsung Fearless Cityscapes [38] 
and Samsung Fearless Landscapes [39] are dedicated to acrophobia therapy and are rendered via 
Gear VR [40] glasses. Hear rate can also be monitored when they are paired with Gear S2 [41]. 

Most of the VR applications mentioned above do not provide any details related to the 
technologies and the methods used. Thus, we cannot ascertain whether ML techniques were 
deployed for adapting the therapy. On the other hand, we are interested in building Machine 
Learning-based applications tailoring therapy to the individual characteristics of each patient.  

Our system detects the fear level in real time and automatically selects the next exposure 
scenario. By training the classifiers in a user-independent way with the data obtained from in vivo 
and virtual experiments, we aim to construct robust classification models that would accurately 
evaluate the patients’ affective states and adjust the levels of exposure accordingly. Thus, we intend 
to provide a reliable therapeutic solution for phobia alleviation based on Virtual Reality and human-
centered machine learning. Our system can be used in clinics, for home therapy and deployed on 
mobile devices, incorporating all the advantages of the above-mentioned systems.  
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3. Emotion Models and Physiological Data 

3.1. Emotion Models 

Emotion is defined as a feeling deriving from one’s circumstances, mood or relationship with 
others [42]. It is a complex psycho-physiological experience generated by the conscious or 
unconscious perception of an object or situation [43], manifested through bodily sensations and 
changes in mood and behavior. The bodily sensations originate from the autonomic nervous system 
(increased cardiac activity, dilatation of blood vessels, involuntary changes in the breathing rate), 
cortex (activation of emotion-related brain areas) and are accompanied by physical expressions such 
as tremor, crying or running [44]. Various classifications of emotions have been proposed, from both 
the discrete and the dimensional perspective. One of the first categorizations identified six discrete 
emotions: happiness, sadness, fear, anger, disgust and surprise [45]. Consequently, the list was 
updated with embarrassment, excitement, contempt, shame, pride, satisfaction, amusement, guilt, 
relief, wonder, ecstasy, and sensory pleasure [46]. Complex emotions can be constructed from a 
combination of basic emotions. Plutchik introduced the wheel of emotions to illustrate how basic 
emotions (joy versus sadness; anger versus fear; trust versus disgust; surprise versus anticipation) 
can be mixed to obtain different emotions [47]. Plutchik’s model is not the only tool used to assess 
emotional reactions. The Geneva emotional wheel (GEW) uses a circular structure with the axes 
defined by valence (bipolar subjective evaluation of positive/negative) and control to arrange 40 
emotion terms in 20 emotion families [48]. The dimensional models organize emotions within a space 
with two or three dimensions along which the responses vary. Russell’s Circumplex Model of Affect 
[49] encompasses valence on the x-axis, indicating the positive or negative component of emotion 
and arousal along the y-axis, reflecting the degree of mental activation or alertness that is elicited 
[50]. Arousal ranges from inactive (not excited) to active (excited, alert) [43]. Besides valence and 
arousal, a third dimension, called dominance, specifies the degree of control the subject exerts over 
the stimulus. Dominance ranges from a weak, helplessness feeling to a strong, empowered one. For 
instance, fear is defined as having low valence, high arousal and low dominance. From the behavioral 
decision-making perspective, we mention the approach-withdrawal (or appetitive-aversive) 
motivational model which reflects the tendency of approaching or rejecting the stimulus. According 
to [51], fear is generated by an aversive response that conducts to either active or passive physical 
reactions. 

3.2. Physiological Data 

Electroencephalography (EEG) non-invasively measures electrical potentials produced by 
neural activity which falls in the frequency ranges corresponding to the delta (<3 Hz), theta (3 Hz–8 
Hz), alpha (8 Hz–12 Hz), beta (12 Hz–30 Hz) and gamma (>30 Hz) waves. EEG offers high precision 
time measurements—it can detect brain activity at a resolution of one millisecond—but unfortunately 
lacks spatial resolution. The recording area of an electrode is approximately one centimeter of the 
scalp, which corresponds to hundreds of thousands of neurons in the cerebral cortex. Thus, it is 
difficult to accurately pinpoint the exact source of brain activity or to distinguish between activities 
occurring at contiguous locations [52]. Moreover, EEG signals are prone to electrical interferences or 
artefacts resulting from body movements (eye blinks, muscular or cardiac activity) or environmental 
causes.  

The right hemisphere processes negative emotions or aversive behaviors, while the left one is 
involved in mediating positive emotions or approach behaviors. The people who experience negative 
feelings, who are angry, afraid or depressed, present activations in the amygdala (part of the limbic 
forebrain) and in the right prefrontal cortex [53]. The literature largely supports the 
approach/withdrawal model of alpha asymmetry, which states that activation in the right cortical 
area (low alpha waves) is associated with an aversive behavior, while activation in the left cortical 
area indicates positive feelings [54–57].  

Park et al. [58] observed an increase of the beta waves at the left temporal lobe when the users 
experienced fear. The work of [59] showed reduced beta power in the bilateral temporal and right 



Sensors 2020, 20, 496 6 of 27 

 

frontal cortex for individuals suffering from panic disorders. An increase of beta intensity in the left 
temporal lobe was also noticed in [58] whenever the subjects felt threatened. 

The research performed by [60] showed that the patients who experienced fear exhibited high 
theta, delta and alpha absolute power and low beta levels. The authors suggest that the increase of 
the alpha waves accompanies and regulates the excessive excitation of the slow waves in the temporal 
regions and in the limbic system. In [61], a patient suffering from agoraphobia and panic attacks had 
an increase in the beta activity and a sudden decrease of frontal-central theta power. Time-domain 
EEG analysis indicated a reduced P300 Event Related Potential (ERP) and an increase in the beta 
activity in the right temporal lobe, an increase in the alpha activity in F4 and a decrease of the T5 
theta activity [62].  

In [63], a negative relationship was observed between delta and alpha 2 activity. A decreased 
beta-delta coherence in anxious individuals was shown in [61], together with a significant decrease 
in delta during panic attacks. Beta activity in the central part of the frontal cortex increased, being 
accompanied by a significant reduction of the theta waves all over the cortex, similar to what has 
been found in [64]. 

The ratio of slow waves to fast waves (SW/FW) has a negative correlation with fear [65–67]. 
There was a statistically significant reduction in the SW/FW ratio (delta/beta and theta/beta) in the 
left frontal lobe in an experiment where data has been recorded from a single electrode [68]. Neutral 
states are reflected in equal levels of activation in both hemispheres [69]. Quantitative EEG studies, 
and in particular coherence (linear synchronization between EEG signals measured at different brain 
locations), indicated a lower degree of inter-hemispheric functional connectivity at the frontal region 
and intra-hemispheric at the temporal region [70]. 

Plethysmography (PPG) is a non-invasive circulatory assessment method that uses an infrared 
photoelectric sensor to record changes in blood flow from the finger or from the ear lobe. It 
determines blood volume pulse by calculating how much of the emitted light is reflected back. The 
PPG values are converted into heart rate, which is measured in beats per minute (bpm). Heart rate 
variance is a strong indicator of emotion. In [71], a decrease in variance while the heart rate was high 
was an indicator of fear. Heart rate, combined with other variables, can successfully classify emotions 
[72,73], although in others it was found that it had the smallest contributing factor [74].  

Electrodermal Activity (EDA) or Galvanic Skin Response (GSR) is a measure of sweat glands 
production and therefore skin activity, in direct relation with the sympathetic nerve’s state of 
excitation. GSR has two main components: tonic skin conductance, the baseline value recorded when 
no emotional stimulus is applied and phasic skin conductance, the response acquired when 
environmental and behavioral changes occur [50]. Increased GSR indicates arousal. It was the main 
contributing factor for emotion classification in several studies, including [75,76], being effective for 
discriminating fear from other negative emotions [77]. GSR recording devices are comfortable for 
users due to their light, easily attachable sensors [78]. 

In conclusion, we consider that the most relevant physiological signals to account for in fear 
assessment experiments are GSR, HR and the values of the alpha, beta and theta waves. In addition, 
the ratio of slow/fast waves is a good indicator of fear, together with alpha asymmetry—the 
difference in cortical activation between the right and left hemisphere in the alpha frequency band. 

4. Physiological Data in VR-Based Machine Learning Applications for Treating Phobias 

Virtual Reality can induce the same level of anxiety as real-life situations, and physiological data 
can be used to reflect stress level. In this section, we perform a short review on physiological data 
analysis in VR and on the ML techniques involved in emotion recognition and phobias treatment. 

4.1. Physiological Data in VR-Based Applications for Treating Phobias 

In the study presented in [79], the authors investigated the physiological responses of both 
nonphobic and phobic subjects in the VR environment. They monitored the skin resistance (SR), heart 
rate (HR) and skin temperature of 36 participants suffering from fear of flying and 22 participants 
with no fear. The anxiety level of the phobic participants was evaluated using Subjective Units of 
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Distress, on a scale from 0 to 100 (0—no anxiety, 100—highest anxiety). The results showed a 
significant difference in the case of SR between two groups and no major difference in the case of HR 
and skin temperature. More intensive VR-based therapy sessions applied on the phobic subjects had 
a greater effect on 33 persons who succeeded to fly by plane after the VR treatment.  

More physiological data was recorded in the experiment performed in [80], which confirmed 
the following hypotheses: virtual heights increased the subjects’ stress levels and the cognitive load 
during beam-walking was higher in VR. Heart rate variability, heart rate frequency power, heart rate, 
electrodermal activity and EEG data have been recorded and analyzed to validate the two 
hypotheses. Heart rate variability varied from 6.6 beats/min in the unaltered low view to 7 beats/min 
in low VR conditions and 8.3 beats/min in high VR conditions. Heart rate started from 92 beats/min 
in unaltered view, continued with 97 beats/min in VR low and 97.1 beats/min in VR high conditions. 

Electrodermal activity of five subjects was analyzed in [81] to measure stress level in VR 
conditions. The participants have not been diagnosed with acrophobia, but they claimed a certain 
discomfort in height situations. Each subject underwent a 15 minutes session consisting of three sub-
sessions: height exposure in the real world (standing on the balcony of a building); height exposure 
in VR (the users did not interact with the VR environment); and height exposure in VR with VR 
environment interaction. The results proved that interaction with the environment during phobia 
treatment is important and that physiological measurements help in assessing emotional states. 

Human responses to fear of heights in immersive VR (IVR) conditions were investigated in [82]. 
The authors performed two experiments: the first experiment on 21 subjects with ages ranging from 
20 to 32 years and the second on 13 subjects with ages in the interval 20–27 years. During the first 
experiment, in which the subjects were exposed to four heights: 2, 6, 10, and 14 m in IVR conditions, 
GSR, heart rate and the participants’ view direction were measured. In the second experiment, the 
subjects were exposed till 40 m in an immersive virtual environment. The authors measured 
physiological responses and head motion. Also, the participants had to report the perceived anxiety 
level. The results showed that there was a correlation between the anxiety level and the subjects’ head 
pitch angle and that the anxiety level is accurately visible in phasic skin conductance responses. Also, 
it was established a correlation between anxiety/height and GSR measurements.  

4.2. Machine Learning for Emotion Recognition 

Automatic emotion recognition has gained the attention of many researchers in the past few 
decades. As of now, there are three major approaches to automatic emotion recognition: the first 
approach consists in analyzing facial expressions and speech, the second approach uses the 
peripheral physiological signals, and the third approach uses the brain signals recorded from the 
central nervous system [83]. Certainly, a method that will embrace all these three approaches will 
provide the best results. The emotion recognition models are used in applications such as man-
machine interfaces, brain-machine communications, computer-assisted learning, health, art, 
entertainment, telepresence, telemedicine and driving safety control [84–86]. 

Machine Learning offers computers the ability to learn from large data sets [87]. Among the ML 
techniques, Deep Learning is increasingly used in various applications, due to its higher accuracy 
when huge amounts of data are used for training. For emotion recognition, different ML techniques 
have been employed.  

A research tool called the Multimodal Affective User Interface is proposed in [85] for emotion 
discrimination. To obtain an accurate and reliable recognition tool, the system’s inputs were 
“physiological components (facial expressions, vocal intonation, skin temperature, galvanic skin 
response and heart rate) and subjective components (written or spoken language)” [85]. Using short 
films as stimuli for eliciting emotions and the GSR, temperature and heart rate records from 29 
subjects, the authors implemented three ML algorithms: kNN, Discriminant Function Analysis (DFA) 
and Marquardt Backpropagation (MBP), in order to obtain six classes of emotions (sadness, anger, 
surprise, fear, frustration and amusement). The reported recognition accuracies were: kNN—67% for 
sadness, 67% for anger, 67% for surprise, 87% for fear, 72% for frustration and 70% for amusement; 
DFA—78% for sadness, 72% for anger, 71% for surprise, 83% for fear, 68% for frustration and 74% for 
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amusement; MBP—92% for sadness, 88% for anger, 70% for surprise, 87% for fear, 82% for frustration 
and 83% for amusement. Also, the authors pointed out “that detection of emotional cues from 
physiological data must also be gathered in a natural environment rather than in one where emotions 
are artificially extracted from other naturally co-occurring states” [85]. 

A stack of three autoencoders with two softmax classifiers was used in the EEG-based emotion 
recognition system proposed in [86]. 230 power spectral features of EEG signals extracted in 5 
frequency bands (theta, lower alpha, upper alpha, beta and gamma) and the differences between the 
spectral powers of all the 14 symmetrical pairs of electrodes on the right and on the left hemispheres 
have been used as inputs for some DL networks. The efficiency of the system was evaluated in four 
experimental setups: DLN-100 using a DL network with 100 hidden nodes on each layer; DLN-50 
using a DL network with 50 hidden nodes; DLN-50 with PCA (Principal Component Analysis to 
address the overfitting problem); and DLN-50 with PCA and CSA (Covariate Shift Adaptation to 
solve the problem of non-stationarity in EEG signals). The accuracies obtained for each experiment 
were: DLN-100: 49.52% for valence and 46.03% for arousal; DLN-50: 47.87% for valence and 45.50% 
for arousal; DLN-50 with PCA: 50.88% for valence and 48.64% for arousal; DLN-50 with PCA and 
CSA: 53.42% for valence and 52.03% for arousal. 

A comprehensive review of physiological signals-based emotion recognition techniques is 
presented in [88]. 16 studies including various classifiers such as Support Vector Machine, Linear 
Discriminant Analysis, k-Nearest Neighbors, Regression Tree, Bayesian Networks, Hidden Markov 
Model, Random Forest, Neural Networks, Canonical Correlation Analysis, Hybrid Linear 
Discriminant Analysis, Marquardt Back Propagation, Tabu search, and Fisher Linear Discriminant 
Analysis are compared with respect to their accuracies, bio-signal data, stimuli employed and feature 
extraction techniques. Emotions are considered in two models: discrete and dimensional. In the case 
of user dependent systems, the best performance (accuracy 95%) was achieved using linear 
discriminate in a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) for 
joy, anger, sad and pleasure classification [89]. The bio-signals used were: and Electromyogram, 
Electrocardiogram, Skin Conductance, Respiration. An accuracy of 86% was obtained to classify joy 
and sadness in the case of user independent system [90]. The ECG feature extraction was performed 
using a non-linear transformation of the first derivative and tabu search was involved to acquire the 
best combination of the ECG features.  

Bayesian classifiers are used in a multimodal framework for analysis and emotion recognition 
[91]. Eight emotional states: anger, despair, interest, pleasure, sadness, irritation, joy and pride were 
recognized based on facial expressions, gestures and speech. The authors reported that all emotions 
except despair can be recognized with more than 70% accuracy and the highest accuracy was 
recorded for anger recognition (90%) [91]. 

A Deep Convolutional Neural Network-based approach for expression classification on the 
EmotiW (The Emotion Recognition in the Wild contest) dataset is presented in [92]. Seven basic 
expressions (neutral, happy, surprised, fearful, angry, sad and disgusted) were recognized, with an 
overall accuracy of 48.5% in the validation set and 55.6% in the test set. 

The usage of VR environments as stimuli for human emotion recognition has barely been 
studied. In most research regarding automatic recognition of human emotions, the stimuli were 
either images, sequences of films or music. One of the first reports on EEG-based human emotion 
detection using VR stimuli is presented in [93]. Four deep neural networks were tested: standard, 
deep network with dropout, deep network with L1 regularization and deep network with dropout 
and L1 regularization. The last one achieved a 79.76% accuracy. Also, a high classification accuracy, 
close to 96%, was obtained for excitement detection while being immersed in a VR environment. 

In [11], the physiological data of 20 Tetris players were recorded and analyzed using three 
classifiers: LDA, Quadratic Discriminant Analysis (QDA) and SVM. The results showed that playing 
the Tetris game at different levels of difficulty gives rise to different emotional states. Without feature 
selection, the best classifiers obtained an accuracy of 55% for peripheral signals and 48% for EEG 
(LDA, followed by SVM). Feature selection increased the classification accuracy to 59%, respectively, 
56%. After the fusion of the two signal categories, the accuracy increased to 63%. A comparative study 



Sensors 2020, 20, 496 9 of 27 

 

of four popular ML techniques aimed at identifying the affective states (anxiety, engagement, 
boredom, frustration and anger) of users solving anagrams or playing Pong is presented in [94]. The 
authors reported that SVM with a classification accuracy of 85.81% performed the best, closely 
followed by RT (83.5%), kNN (75.16%) and Bayesian Network (74.03%) [94]. A Dynamic Difficulty 
Adjustment (DDA) of game levels based on physiological data is presented in [12]. The authors used 
psychological responses during gameplay and a RT-based model for recognizing anxiety levels (low, 
medium, high). The model gave 78% correct predictions [12]. However, the adjustment was based on 
clauses and conditions, not on a prediction method. 

A more detailed investigation of ML techniques used in emotions classification was performed 
in [95].  

Fourteen physiological signals were recorded in VR conditions and used for emotion recognition 
in [96]: EEG f4, vertical and horizontal Electrooculography (EOG), Electromyography (EMG), 
Electrodermal Activity (EDA), Electrocardiogram (ECG), Chest Respiration (RIP), Abdomen 
Respiration (RIP), Peripheral Temperature, Heart Rate via PulseOx, Blood Volume (PPG) via 
PulseOx, Blood Oxygen (SpO2) via PulseOx, Head Acceleration and Rotation, Body Acceleration and 
Rotation. The Naive Bayes, k-Nearest Neighbor and Support Vector Machine techniques have been 
used to perform a binary classification: high-arousal or moderate/low arousal. The best accuracy was 
achieved in the case of SVM (89.19%). 

4.3. Machine Learning for Identifying Anxiety Level in Phobia Therapy 

In [97], a deep convolutional network was used to detect acrophobia level (level 1 = only 
somewhat strong or not strong, level 2 = moderately strong, level 3 = quite strong, level 4 = very 
strong). However, a tailored treatment was not performed. Richie’s Plank Experience was used as the 
virtual environment, and EEG data from 60 subjects was acquired to feed a deep learning network 
model VGG-16. The performance of the model has been measured using the accuracy, recall and 
precision parameters. The average accuracy obtained was 88.77%.  

A VRET system used to overcome public speaking anxiety, fear of heights and panic disorder is 
described in [98]. The system contains a mental stress prediction framework, which uses data 
extracted from GSR, blood volume pressure (BVP) and skin temperature signals to predict anxiety 
level. 30 persons participated in the experiments from [98], focused on public speaking anxiety. Four 
classes were defined for anxiety level: low, mild, moderate and high, and a SVM classifier with radial 
basis function (RBF) as kernel was used to train the models with various window lengths: 3, 5, 8, 10, 
13, 15, 18, 20, 23, 25, 28, 29, and 30 s. A comparison between models was performed, and the results 
highlighted that the model using signal fusion outperformed the models using standalone signals. 
The early fusion method achieved the best accuracy of 86.3%. Model training and data processing 
were not performed during the experiments (Table 1). 

Table 1. Performance in phobia level classification using ML. 

 Classifiers  Goal Signals 
Number of 

Subjects 
Performance or 

Significant Results 
[97] 
2018 

CNN with  
VGG-16 

Detect acrophobia level EEG 60 subjects 
average accuracy 

88.77%  

[98] 
2019  

SVM with RBF 
kernel 

Predict anxiety level 
(public speaking fear) 

GSR, BVP, skin 
temperature 

30 persons 

BVP accuracy window 
size 18 s 

74.1% 
GSR accuracy window 

size 23 s 76.6% 
Skin temperature 

accuracy 
window size 18 s 75.1% 

Signal fusion (early) 
window size 20 s  

86.3% 
Signal fusion (late) 
window size 20 s  
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83.2%  

 
Currently, VRET is seen as an efficient method for phobia treatment, both from a financial and 

a comfort point of view. It offers flexibility, confidentiality and trust, encouraging more people to 
seek treatment [16,96].  

As far as we know, the issue of classifying emotion levels in VR conditions, meaning how 
intensely an emotion is felt based on different factors, has not been yet properly defined.  

In the proposed system, we focus our study on the ML and DL methods, which automatically 
classify fear level using physiological data. The dataset has been acquired in direct relation to our 
acrophobia therapy application, more specifically, by exposing the users to different heights in both 
the real-world and virtual environment. 

5. The Machine Learning and Deep Neural Networks Approach for the Acrophobia VRET Game 

The proposed VR system contains an ML-based decision support that adjusts the playing 
scenario according to the patient’s level of fear. It incorporates a real-time decision engine which uses 
the patient’s physiological data and determines the game level to be played next. In our ML-based 
decision support, the data obtained from the users contribute to configuring the game in order to suit 
each patient’s individual characteristics. 

For this purpose, two classifiers were used: one to estimate the patient’s current fear level (C1) 
and one that determines the appropriate treatment according to the target fear level (C2). In our 
previous approaches [99,100], we used only deep neural networks as classifiers, but the obtained 
results pushed us to continue to test with various ML techniques. In this paper, we extended our 
work by defining a ML-based decision support that relies on various ML techniques such as SVM, 
kNN, LDA, RF and 4 deep neural network models (Figure 1).  

 
Figure 1. ML-based decision support for phobia treatment. 

As in our previous work, we used two different fear level scales [99,100]: 
- 2-choice scale, with 2 possible values, 0 and 1. 0 stands for relaxation and 1 stands for fear. 
- 4-choice scale, with 4 possible values (0-3). 0—complete relaxation, 1—low fear, 2—

moderate fear and 3—high level of anxiety. 
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The game scenarios consist of different game levels, each game level corresponding to a certain 
degree of height exposure in different contexts or a combination of certain height exposure degrees. 
The data recorded in real time from the patient is fed to the C1 classifier and the current fear level 
(FLcr) is computed. C1 estimates the level of fear the patient currently experiences. 

To determine the target fear level (FLt) that ensures a gradual and appropriate exposure to 
height, we used the following formulas:  

2-choice scale 4-choice scale 

if FLcr = = 0 then FLt = 1 

if FLcr = =1 then FLt = 0 

if FLcr = = 0 or FLcr = = 1 then FLt  =  FLcr + 1 

if FLcr = = 2 then FLt = FLcr 

if FLcr= = 3 then FLt  = FLcr – 1 

 
The target fear level (FLt), together with the patient’s physiological data, are fed to the C2 

classifier and the next game scenario (GSpr) is predicted. C2 estimates the phobia treatment. 
The user plays the predicted level of the game and new physiological data is acquired. C1 

computes a new general fear level and C2 predicts the game scenario to be played next. The process 
goes on for as long as the patient or the therapist consider appropriate—the patient can exit the game 
at any time if he/she feels uncomfortable—or a total predefined number of scenarios is reached.  

6. Experimental Methodology 

The experiment was conducted in summer–autumn 2018 and involved the participation of 8 
subjects who played an acrophobia game while their physiological (HR and GSR) and EEG data were 
recorded. The experiment was approved by the ethics committee of the UEFISCDI project 1/2018 and 
UPB CRC Research Grant 2017 and University POLITEHNICA of Bucharest, Faculty of Automatic 
Control and Computers. Prior to the experiment, the subjects signed a consent form and filled in a 
demographic and a Visual Height Intolerance questionnaire [101]. Prior to the tests, they were 
informed about the purpose of the experiment and research objectives. Moreover, they were 
presented with the steps of the procedure and the experimenter made sure that they fully understood 
what they were required to do. From the 8 users (aged 22–50 years, 6 women and 2 men), 2 suffered 
from a mild form of acrophobia, 4 from a medium-intensity fear of heights and 2 experienced a severe 
form of height intolerance. This classification resulted by assessing the responses to the Visual Height 
Intolerance questionnaire. More details can be found in [99,100]. They did not consume coffee or other 
energizing drinks before the experiment and made sure they had a relaxing sleep in the previous 
night. With respect to the therapy history, our subjects have not undergone any phobia alleviation 
treatment beforehand, neither medical nor psychological. Half of the users had previous experience 
in using VR systems and the others had not. For the second category, we provided some VR 
introductory sessions to accommodate them with the VR perception. Thus, we explained to them 
what a VR environment represents, which are the hardware components (VR glasses, controllers, 
sensors), how they work and how they can be adjusted. We presented the users the actions occurring 
in the game when each of the buttons from the controllers are pressed. Then, the subjects played a 
basic demo game which accommodated them with the VR perception. 

The EEG data have been acquired using the Acticap Xpress Bundle [102] device with 16 dry 
electrodes, while HR and GSR have been recorded via Shimmers Multi-Sensory [103]. The next 
exposure scenario has been predicted in real-time by C2, based on the EEG, physiological data and 
the target fear level. The target fear level was calculated according to the formulas mentioned above, 
by taking into account the patient’s current fear level. The current fear level was estimated by C1.  

The classifiers we used were: kNN, SVM with linear kernel, RF, LDA and 4 deep neural network 
models with a varying number of hidden layers and neurons per layer. 
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6.1. Experiments and Dataset Construction  

The 16 dry electrodes of the Acticap Xpress Bundle device [102] were placed according to 10/20 
system in the following locations: FP1, FP2, FC5, FC1, FC2, FC6, T7, C3, C4, T8, P3, P1, P2, P4, O1 and 
O2. The log-normalized powers of all the 16 channels in the alpha, beta and theta frequency ranges 
were recorded and pre-processed in real-time for artefact removal. The ground and reference 
electrodes were attached to the ears. Using the Shimmer3 GSR+ Unit [104] of the Shimmers Multi-
Sensory device, we acquired the subjects’ electrodermal activity and heart rate values. The Shimmer3 
GSR+ Unit, which has Bluetooth connectivity, measures the skin’s electrical characteristics in 
microSiemens and captures a PPG signal (using the Shimmer optical pulse probe) that is later 
converted to estimate heart rate (HR).  

The two classifiers C1 and C2 have been fed with training data originating from two preliminary 
experiments where the subjects have been both in vivo and virtual y exposed to the first, fourth and 
sixth floors of a building, as well as on the ground floor, at 4 m, 2 m and a few centimeters away from 
a terrace’s railing. In the virtual environment, the players have been also exposed to the view from 
the building’s rooftop. The experiment in the virtual environment (consisting of three sessions, 
expanded over three days) has been preceded and succeeded by a real-world session. The EEG, GSR 
and HR data has been collected, together with the user’s perceived level of fear, called Subjective Unit 
of Distress (SUD), during each trial. Each patient was required to rate his/her fear on the 11-choice 
scale, a gradual scale with values from 0 to 10, where 0 corresponds to complete relaxation and 10 to 
extreme fear. The modality of reporting the SUD was verbally for the in vivo experiment and by 
pointing a virtual laser with the controller on a panel in the virtual environment (Figure 2). 

The acrophobia game was rendered on the HTC Vive head-mounted display [33]. Interaction in 
the virtual environment was ensured through the controllers, so that the player advances in the game 
by teleportation—he/she presses on the floor in the virtual environment at various positions where 
he/she wants to go, is free to navigate wherever he/she wants, but he/she has to accomplishes the 
tasks of collecting coins of different colors (bronze, silver and gold) at 4 m, 2 m and 0 m distance from 
the balcony’s railing at ground level and at the first, fourth, sixth floors, as well as on the roof of the 
building. A coin is collected by bending and grabbing it with the controller. The game contained only 
visual and vestibular stimuli. There were no audio cues or animations to accompany the graphical 
presentation. 

In both the real-world and virtual environment, each user totalized several 63 trials (3 sessions 
x 5 building levels x 3 distances from the railing = 45 in the virtual environment and 2 sessions x 3 
building levels x 3 distances from the railing = 18 in the real-world environment). We thus obtained 
a dataset of 25,000 entries on average for each patient, which was saved in a database and used for 
training classifiers C1 and C2.  

 
Figure 2. User during in vivo and virtual exposure with physiological signals monitoring. 

For training C1, we had as input features the physiological data recorded during the 63 trials—
the EEG log-normalized powers of the 16 channels in the alpha, beta and theta frequencies, the GSR 
and HR values. The output feature was the fear level (SUD) on three scales: the 11-choice scale (values 
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as they were recorded, ranked from 0 to 10), 4-choice (fear rates from 0 to 3) and 2-choice (values of 
either 0 or 1).  

The ratings from the 11-choice-scale have been grouped into 4 clusters in order to create the 4-
choice-scale (Table 2): 

- 0 (relaxation)—rating 0 in the 11-choice-scale 
- 1 (low fear)—ratings 1–3 in the 11-choice-scale 
- 2 (medium fear)—ratings 4–7 in the 11-choice scale 
- 3 (high fear)—ratings 8–10 in the 11-choice scale 

Similarly, the ratings from the 4-choice-scale have been grouped into 2 clusters in order to 
create the 2-choice scale : 

- 0 (relaxation)—ratings 0–1 in the 4-choice scale 
- 1 (fear)—ratings 2–3 in the 4-choice scale 

Table 2. Fear level classification scales. 

11-choice-scale 4-choice-scale 2-choice-scale 
0 0 (relaxation) 

0 (relaxation) 
1 

1 (low fear) 2 
3 
4 

2 (medium fear) 

1 (fear) 

5 
6 
7 
8 

3 (high fear) 9 
10 

 
The classifiers we used were: kNN, SVM with linear kernel, RF, LDA and 4 deep neural network 

models with different numbers of hidden layers and neurons per hidden layer. We have chosen these 
classifiers because they have been widely used in the literature (see Sections 4.2 and 4.3). SVM 
provides the best results for emotion classification. kNN is used for signal classification. LDA has 
been used for binary and multi-class classification, being highly employed in the medical field. RF is 
a top classifier and the deep neural networks provide good classification results due to their ability 
to learn high-level features from large amounts of data in an incremental way. 

The Sequential Forward Selection (SFS) feature selection algorithm was applied for kNN, RF 
and LDA. kNN is a non-parametric, feature similarity-based method used especially for classifying 
signals and images. The decision is made by taking into account the class of the majority of the k-
nearest neighbors. SVM is a supervised machine learning algorithm that finds the hyperplane best 
segregating two or more classes. RF operates by constructing an ensemble of decision trees. The 
predicted class is obtained by combining the prediction of all individual trees, based on the “bagging” 
method stating that a combination of learning models increases the overall result. LDA is a 
dimensionality reduction technique that projects the dataset onto a lower dimensional space and 
finds the axes that maximize the separation between multiple classes, avoiding overfitting and 
reducing the computational cost. All these algorithms were run in Python, using their corresponding 
implementations from the scikit-learn library [105]. 

Using the TensorFlow deep learning framework [106], we created four Keras [107] sequential 
models for binary and multi-class classification: DNN_Model_1, DNN_Model_2, DNN_Model_3 and 
DNN_Model_4 (Table 3). Each network has an input layer of 50 neurons (16 neurons for the alpha 
values, 16 for the beta values, 16 for the theta values, 1 for GSR and 1 for HR) and an output of one 
neuron, corresponding to the predicted level of fear. Before training, the data has been standardized 
to reduce it to zero mean and unit variance. We performed a 10-fold cross-validation procedure 10 
times and saved the weights of each network in .hdf5 files, together with the corresponding 
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accuracies. The 10-fold cross-validation procedure was computed using the functionalities 
implemented in the scikit-learn library for k-fold cross-validation, with k = 10. The procedure has one 
parameter k that represents the number of groups the data is split into. Each group is taken as a test 
data set and the remaining k-1 groups are taken as training data set. Then, the model is fit on the 
training set and tested on the test set. The evaluation score is retained, and the model is discarded. In 
the end, the cross-validation accuracy is calculated based on the k evaluation scores computed at each 
step. 

Finally, the model version with the highest accuracy for each network has been selected and 
further used in the experiment. This procedure was repeated for every user, for the 2-choice, 4-choice 
and 11-choice scales. This technique was applied and published in [99,100]. In the current stage of 
research, we also trained ML classifiers (kNN, RF, LDA and SVM) in the same way—for every user, 
10 times, for each fear scale—and the model providing the highest accuracy was saved for further 
use. 

Table 3. Properties of the Deep Neural Network models. 

DNN Models Activation 
Function 

Activation 
Function in 
the Output 

Layer 

Loss Function Optimization 
Algorithm 

Epochs 
and 

Batch 
Size 

DNN_Model_1 
3 hidden layers, 

with 150 neurons 
on each hidden 

layer 
DNN_Model_2 
3 hidden layers, 

with 300 neurons 
on each hidden 

layer 
DNN_Model_3 
6 hidden layers, 

with 150 neurons 
on each hidden 

layer 
DNN_Model_4 
6 hidden layers, 

with 300 neurons 
on each hidden 

layer 
 

Rectified 
Linear Unit 

(RELU) 

2-choice scale 
Sigmoid 

activation 
function 

 
4-choice scale 

Softmax 
activation 
function 

2-choice scale 
Binary 

crossentropy  
 

4-choice scale 
Categorical 

crossentropy 
and one-hot 

encoding  

Adam 
gradient 
descent 

1000 
epochs 

for 
training 

 
Batch 

size of 20 

Classifier C2 predicts the game level that should be played next, i.e., the next exposure scenario 
(parameter GSpr). The Sequential Forward Selection (SFS) feature selection algorithm has been 
applied for kNN, RF and LDA. For training C2, the deep learning and machine learning models 
received as inputs the EEG, GSR, HR and SUD values, while the output represented an encoding of 
the height where these physiological values have been recorded—0 for ground floor, 1 for the first 
floor, 2 for the fourth floor, 3 for the sixth floor, and 4 for the roof of the building. For testing classifier 
C2, we provide as input EEG, GSR, HR and target fear level (FLt) and obtain as output the encoding 
of the height where the player should be taken to in the game (from 0 to 4, as mentioned above). Thus, 
if the user is currently feeling anxious (FLcr = 3), we calculate a target fear level FLt = 2 (so we want 
him to feel less anxious) and feed this value as input to classifier C2 in order to generate for us the 
next exposure scenario GSpr, on a scale from 0 to 4: 0 for ground floor, 1 for the first floor, 2 for the 
fourth floor, 3 for the sixth floor and 4 for the roof of the building. 
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The same DNN models were used for classifier C1, with the same number of hidden layers and 
neurons on each hidden layer (Table 3). Each network had an input layer of 51 neurons (16 neurons 
for the alpha values, 16 for the beta values, 16 for the theta values, 1 for GSR, 1 for HR and 1 for the 
“target fear level” feature). The output represented the level in the building from where the user 
should restart playing the game. The method for obtaining a personalized height exposure model to 
be validated on test dataset was: we repeated the 10-fold cross-validation procedure 10 times for each 
subject and saved the weights and the corresponding accuracies of each network in .hdf5 files; the 
model version with the highest accuracy for each network has been selected and further used in the 
experiment for all fear scales.  

The ML classifiers (kNN, RF, LDA and SVM) were trained in the same way—for every user, 10 
times, for each fear scale—and the model resulting in the highest accuracy was saved for further use. 
For cross-validation, the data has been divided into 70% training and 30% test. 

For computing the accuracy of the classifiers, both a user-dependent and a user-independent 
modality were used. Each classifier was trained using the data of the other subjects in the user-
independent modality. We applied the trained model on the data of the tested user in order to 
calculate cross-validation and test accuracies. This approach makes it possible to calculate the 
performance of the classifiers in the worst possible case, where the model lacks user specificity. On 
the other hand, in the case of the user-dependent modality, for each subject, each classifier has been 
trained, cross-validated and tested on his/her own data. Feature selection has been also computed for 
each classifier in order to improve generalization across subjects. We used Sequential Forward 
Selection (SFS), a greedy algorithm that reduces the d-dimensional space to a k-dimensional space. 
In our case, we set k to 20, so that it would extract the most relevant 20 features from the total number 
of 50 features (16 EEG channels for the alpha, beta and theta waves, GSR and HR). The goal of feature 
selection was two-fold: we wanted to improve the computational efficiency and to reduce the 
generalization error of the model by removing irrelevant features or noise. SFS has been applied for 
kNN, RF and LDA. 

6.2. The Acrophobia Game 

The the game, which has been developed using the Unity engine [108], was synchronized in 
real-time with the Open Vibe [109] application for collecting EEG signals and with the Shimmer3 
GSR+ Unit that records GSR and HR via Lab Stream Layer (LSL) [110]. Using a multi-thread C# 
application, we ran 5 threads simultaneously: one for recording the input from the game (fear ratings, 
events from the game, such as when the coins have been collected or when a level has been finished), 
peripheral physiological data (HR and GSR from the Shimmers3 Unit), alpha, beta and theta power 
spectral densities. At each session, 5 separate log .csv files were generated, each of them containing 
the timestamps (a timestamps represents the number of milliseconds passed since 1st January 1970) 
and the recorded data (either from the game, peripheral, alpha, beta or theta). The EEG data is 
extracted at an interval of 62.5 ms and the GSR and HR values were extracted at an interval of 19.53 
ms. As the data has been saved at different sampling frequencies, we developed another processing 
module that merged the information from the log .csv files, averaged and aligned them according to 
the timestamps in order to have a compact dataset of EEG and peripheral recordings mapped onto 
the events occurring in the game.  

In order to extract the EEG data, we applied a bandpass Butterworth temporal filter, time-based 
epoching with the epoch duration of 1 second, and then squared the input values using the Simple 
DSP box from Open Vibe Designer. In addition, we averaged the signal and applied log-
normalization using again the Simple DSP box. After all this preprocessing of the raw data, the alpha, 
beta and theta frequency powers have been extracted (Figure 3).  
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Figure 3. EEG signal recording and decomposition in frequency bands. 

All data was denoised and preprocessed in real time by applying a method named “the last 
correct value”, introduced by us. In our preprocessing module, all EEG and physiological data were 
inspected in real-time. As LSL was pulling sample data from the recording devices, before saving it 
into the corresponding log files, it was inspected to see if faulty values occur. For instance, if a 
negative value or one exceeding one and a half than the average of the previous values on a 5-seconds 
time span appeared, it was replaced with the average of the data recorded in the previous 5 seconds. 
If the device malfunctioned since the moment it started recording (suppose it took a longer time to 
initialize or calibrate), we initialized the last correct value with some average values—4.5 microVolts2 
for the EEG log-normalized powers, 1 microSiemens for GSR and 75 bpm for HR. This method has 
been applied because we could not manually remove the noisy data nor stop the recording whenever 
such type of artefacts occurred in real-time. 

In addition, it was saved in a database in both processed and unprocessed format for ulterior 
study and analysis. At the start of the game, the user was placed on the ground floor, where he/she 
had to navigate freely in the scene and collect a bronze, a silver and a gold coin (Figure 4, Figure 5). 
The Shimmers Unit has been attached to the left hand and the right hand has been used for holding 
the HTC Vive controller. In this way, we tried to reduce the chances of introducing hand movement 
artefacts in the GSR and HR signals. At all time, the users were required to sit on a chair and move 
only their head and the right hand.  

Consequently, he/she reported the perceived SUD by pointing with a virtual laser on a panel 
which contained a range of options from 0 to 10 for fear level evaluation. The physiological data were 
averaged and classifier C1 predicted the subject’s current level of fear. To validate the accuracy of C1, 
we collected self-estimated SUDs. C1 predicted the current fear level based on the classification 
model created using the data from the previous experiment and a measure of assessing its accuracy 
was by comparing its output with the SUD perceived and acknowledged by the users directly during 
gameplay (during each trial of the game, we also asked the users to report the perceived fear level 
(SUD)). This parameter was called test accuracy. Based on the EEG, physiological data and target fear 
level (obtained using the fear level estimated by classifier C1), the next level of exposure was 
determined by classifier C2, either on the 2-choice or on the 4-choice scale.  
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Figure 4. The virtual environment, view of the building from the ground floor. 

 
Figure 5. The view from the building’s rooftop. 

7. Results 

The subjects played the game twice—once using the 2-choice and once using the 4-choice model. 
During each session, they were exposed to and played 10 scenes. At any time, the users could 
interrupt the game if they felt uncomfortable or the experimenter could terminate the session 
whenever he/she observed any abnormal events occurring. However, this was not the case, as all the 
subjects succeeded in completing both sessions without any difficulties. The maximum cross-
validation accuracies on the training dataset and the validation (test) accuracies for each model, for 
both the player-independent and player-dependent modalities, with and without feature selection, 
are presented in Tables 4, 5, 6 and 7. The Test column for the C2 classifier is empty because we did 
not use any method for testing the accuracy of C2. This classifier has only been cross-validated on the 
training dataset. 

With SFS feature selection, the most selected features were: for the 2-choice scale—alpha FC2, 
C3, T8, O2, beta P4, theta C3, T8 and HR; for the 4-choice scale—alpha FC5, C3, T8, P4 and O2, beta 
FP2, FC5, P4 and theta T8; for the 11-choice scale—alpha FC2, C3, T8, beta FP2, C5 and HR. We 
observed that the most important features where the alpha values in the right pre-frontal area, left 
central and right temporal, beta values in the frontal and parietal areas, theta values in the temporal 
area and the heart rate. 
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Table 4 Maximum cross-validation accuracy and test (validation) accuracy (in %) for the player-
independent modality, without SFS feature selection. 

Classifier Type 
C 1 

2-choice scale 4-choice scale 11-choice scale 
Cross-Validation Test Cross-Validation Test Cross-Validation 

SVM 80.5 64.75 60.5 46 59.5 
kNN 99.5 43.75 99 52.75 98.25 
RF 99.25 66.5 99 39.25 99 

LDA 79.5 64.75 57.5 37.75 49.25 
DNN_Model_1 95 58.3 87.825 45.425 79.4 
DNN_Model_2 95.77 58.15 90.525 20.8 84.95 
DNN_Model_3 94.75 58.3 86.55 37.7 74.025 
DNN_Model_4 94.7 79.12 88.275 37.1 80.85 

 C 2 
 2-choice scale 4-choice scale 11-choice scale 
 Cross-Validation Test Cross-Validation Test Cross-Validation 

SVM 64.25 - 69 - 71 
kNN 22.75 - 22.75 - 22.75 
RF 99.75 - 100 - 100 

LDA 24.5 - 25.75 - 29.5 
DNN_Model_1 98.325 - 98.6 - 98.475 
DNN_Model_2 98.5 - 98.725 - 98.3 
DNN_Model_3 97.675 - 97.825 - 98.325 
DNN_Model_4 97.8 - 98.15 - 97.575 

Table 5. Maximum cross-validation accuracy and test (validation) accuracy (in %) for the player-
independent modality, with SFS feature selection. 

Classifier type 
C 1 

2-choice scale 4-choice scale 11-choice scale 
Cross-validation Test Cross-validation Test Cross-validation 

kNN 54 49.9175 32.25 30.24 25 
RF 54.5 60.4175 33.25 38.5725 29.75 

LDA 65.75 64.585 35.25 33.5725 25.25 
 C 2 
 2-choice scale 4-choice scale 11-choice scale 
 Cross-validation Test Cross-validation Test Cross-validation 

kNN 32.75 - 36 - 41.75 
RF 35.5 - 40.5 - 41.75 

LDA 37.25 - 42.75 - 44.5 

Table 6. Maximum cross-validation accuracy and test (validation) accuracy (in %) for the player-
dependent modality, without SFS feature selection. 

Classifier Type 
C 1 

2-choice scale 4-choice scale 11-choice scale 
Cross-validation Test Cross-validation Test Cross-validation 

SVM 88 89.5 74.75 42.5 77.75 
kNN 99.5 77 99 29.25 98.25 
RF 99.75 77 99.25 21 99 

LDA 87 60.5 71.25 21.75 64 
DNN_Model_1 95.03 72.9 87.945 41.8975 79.485 
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DNN_Model_2 95.51 68.735 90.4975 24.9925 85.095 
DNN_Model_3 94.4375 62.45 86.325 34.15 74.275 
DNN_Model_4 94.575 54.125 88.28 38.325 80.45 

 C2 
 2-choice scale 4-choice scale 11-choice scale 
 Cross-validation Test Cross-validation Test Cross-validation 

SVM 82.75 - 86.5 - 86.5 
kNN 23.75 - 23.75 - 23.75 
RF 99.75 - 99.75 - 100 

LDA 23 - 20.5 - 27.5 
DNN_Model_1 98.4 - 98.675 - 98.75 
DNN_Model_2 98.725 - 98.5 - 98.65 
DNN_Model_3 97.45 - 97.825 - 98.5 
DNN_Model_4 97.375 - 97.775 - 98.175 

Table 7. Maximum cross-validation accuracy and test (validation) accuracy (in %) for the player-
dependent modality, with SFS feature selection. 

Classifier type 
C 1 

2-choice scale 4-choice scale 11-choice scale 
Cross-validation Test Cross-validation Test Cross-validation 

kNN 76.75 72.9175 52.25 16.665 42 
RF 77 68.75 49.75 28.5725 45.75 

LDA 81 85.4175 54.5 17.5 40.5 
 C 2 
 2-choice scale 4-choice scale 11-choice scale 
 Cross-validation Test Cross-validation Test Cross-validation 

kNN 50.25 - 52.25 - 53.25 
RF 50.5 - 53.5 - 56.5 

LDA 52 - 56 - 56.75 

The RF algorithm adds the benefit of computing the relative importance of each feature on the 
prediction. The implementation in the scikit-learn library measures feature importance by looking at 
how much the tree nodes using that feature reduce impurity for all the trees in the forest. Table 8 
presents the most relevant 15 features, in descending order according to their importance, for the 2-
choice, 4-choice and 11-choice scales, for both classifiers, for the player-independent modality. Table 
9 contains the same attributes, but for the player-dependent modality. FLt stands for “target fear 
level”, B_ for “beta”, A_ for “alpha” and T_ for “theta”. Thus, B_C3 represents the beta value of the 
C3 electrode (central scalp position, left side). A_FC6 represents the alpha value of the FC6 electrode 
(fronto-central position, right side). 

Table 8. Feature (F) and feature importance (FI) for the player-independent modality. 

C1 C2 
2-choice 

Scale 
4-choice 

Scale 
11-choice 

Scale 
2-choice 

Scale 
4-choice 

Scale 
11-choice 

Scale 
F FI F FI F FI F FI F FI F FI 

GSR 0.41 GSR 0.45 GSR 0.49 GSR 0.44 FLt 0.69 FLt 0.87 
HR 0.28 HR 0.28 HR 0.24 FLt 0.37 GSR 0.41 GSR 0.39 

B_C3 0.15 B_FC6 0.15 B_FC6 0.14 HR 0.23 HR 0.20 HR 0.18 
B_P3 0.13 B_C3 0.13 B_FC5 0.12 B_FC6 0.14 A_FC6 0.12 B_FC6 0.13 

B_FC2 0.13 B_FC2 0.12 B_C3 0.12 A_FC6 0.13 B_FC6 0.12 A_FC6 0.11 
B_FC6 0.13 B_FP1 0.12 B_FC2 0.12 B_FC5 0.10 B_P3 0.10 B_P3 0.09 
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B_FP2 0.12 B_P3 0.12 B_P3 0.11 T_FC6 0.10 B_T8 0.09 B_FC2 0.09 
A_FC6 0.12 T_FC6 0.12 T_FC6 0.11 B_P3 0.09 B_FC2 0.09 T_FC6 0.08 
B_C4 0.10 B_O1 0.11 B_FP1 0.10 B_T8 0.09 B_C3 0.09 B_T8 0.08 

B_FC5 0.10 B_FC5 0.11 A_FC6 0.10 B_O1 0.09 T_FC6 0.08 B_FC5 0.07 
B_FP1 0.09 B_T8 0.09 B_T8 0.10 B_C3 0.09 B_O2 0.08 B_O2 0.07 
T_FC6 0.08 B_P2 0.09 B_O1 0.08 B_FC2 0.09 B_FC5 0.08 B_FP1 0.07 
A_FP1 0.08 B_FC1 0.08 A_FP1 0.08 B_O2 0.09 B_FP1 0.07 B_C3 0.07 
A_FP2 0.08 A_FP1 0.08 B_P2 0.08 B_P2 0.08 A_FP1 0.07 B_P2 0.06 
B_T8 0.08 A_FC6 0.08 T_FP1 0.08 B_FP1 0.08 A_O1 0.06 B_O1 0.06 

Table 9. Feature (F) and feature importance (FI) for the player-dependent modality. 

C 1 C2 
2-choice Scale 4-choice Scale 11-choice Scale 2-choice Scale 4-choice Scale 11-choice Scale 

F FI F FI F FI F FI F FI F FI 
GSR 0.40 GSR 0.46 GSR 0.48 GSR 0.54 FLt 0.66 FLt 0.79 
HR 0.25 HR 0.32 HR 0.27 FLt 0.32 GSR 0.47 GSR 0.42 

B_FC2 0.22 B_FC6 0.17 B_FP1 0.14 HR 0.24 HR 0.20 HR 0.18 
B_C4 0.15 B_FC2 0.16 A_FC6 0.14 A_FC6 0.15 B_FC6 0.14 T_FC6 0.12 

B_FC6 0.14 B_P2 0.12 B_FC2 0.14 B_FC6 0.14 A_FC6 0.11 B_FC6 0.12 
A_FP1 0.14 B_FP1 0.12 B_FC6 0.13 B_FP1 0.12 B_FC2 0.10 A_FC6 0.12 
B_P2 0.13 T_FC6 0.11 T_FC6 0.12 T_FC6 0.10 T_FC6 0.09 B_P3 0.11 

A_FC6 0.12 B_O1 0.10 B_O1 0.12 B_FC2 0.10 B_FC5 0.08 B_FC2 0.11 
B_FP1 0.10 A_FC6 0.10 A_FP1 0.11 B_O2 0.09 B_O2 0.08 B_FP1 0.08 
B_O2 0.10 A_FP1 0.10 B_FC5 0.11 B_P1 0.09 B_C4 0.08 A_FC1 0.08 
T_P2 0.08 B_P3 0.10 B_P2 0.10 B_O1 0.08 B_FP1 0.07 T_FP1 0.07 

T_FC6 0.08 B_C4 0.09 B_P3 0.10 A_O1 0.08 A_P4 0.07 A_O1 0.07 
B_O1 0.08 B_FC5 0.09 B_C3 0.09 B_P2 0.08 A_FP1 0.07 B_T8 0.07 
B_C3 0.08 A_P2 0.08 B_T8 0.09 T_P3 0.07 B_P2 0.07 B_C4 0.07 
B_P3 0.08 B_C3 0.08 B_C4 0.08 A_P2 0.07 B_C3 0.07 B_O2 0.07 

For each relevant feature, we counted the total number of times it appeared across the RF 
classification model for the 2-choice, 4-choice and 11-choice scales. The maximum is 3 for a feature 
that is relevant for training on all the three fear estimation scales.  

The most relevant features for all 3 fear level estimation scales, for the user-independent 
modality, for Classifier 1 were: B_T8, A_FP1, T_FC6, B_FP1, B_FC5, A_FC6, B_FC6, B_FC2, B_P3, 
B_C3, HR and GSR. For Classifier C2, the most relevant features were: B_FP1, B_O2, B_FC2, B_C3, 
B_T8, B_P3, T_FC6, B_FC5, A_FC6, B_FC6, HR, FLt and GSR. With respect to the user-dependent 
modality, for Classifier C1, for all 3 fear estimation scales, the most relevant features were: B_P3, 
B_C3, B_O1, T_FC6, B_FP1, A_FC6, B_P2, A_FP1, B_FC6, B_C4, B_FC2, HR and GSR. With respect to 
classifier C2, we mention: B_O2, B_FC2, T_FC6, B_FP1, B_FC6, A_FC6, GR, FLt and GSR. 

8. Discussion 

The results presented in Tables 4–7 show that the cross-validation and test accuracies obtained 
after SFS feature selection are lower than those obtained without feature selection. In Table 10, we 
present the classifiers providing the highest cross-validation and test accuracies for both the player-
independent and player-dependent cross-validation and testing methods, on the 2-choice, 4-choice 
and 11-choice fear scales.  

Table 10. Highest cross-validation and test accuracies. 

Method 

C 1 
2-choice Scale 4-choice Scale 11-choice Scale 

Cross-
Validation Test 

Cross-
Validation Test 

Cross-
Validation 
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Player-
independent 

kNN 
99.5% 

 
RF 

99.25% 

DNN_Model_4 
79.12% 

kNN 
99% 

 
RF 

99% 

kNN 
52.75% 

 
 
 

kNN 
98.25% 

 
RF 

99% 

Player-dependent 

kNN 
99.5% 

 
RF 

99.75% 

SVM 
89.5% 

kNN 
99% 

 
RF 

99.25% 

SVM 
42.5% 

 
 
 

kNN 
98.25% 

 
RF 

99% 
 C 2 
 2-choice Scale 4-choice Scale 11-choice Scale 
 Cross-validation Test Cross-validation Test Cross-validation 

Player-
independent 

RF 
99.75% 

- 
RF 

100% 
- 

RF 
100% 

Player-dependent 
RF 

99.75% 
- 

RF 
99.75% 

- 
RF 

100% 
 
With respect to C1, the classifier predicting fear level, we conclude that the highest cross-

validation accuracy (over 98%) was obtained by using either the kNN or RF algorithms, for both the 
player-independent and player-dependent modalities. The same trend occurs for C2, the classifier 
predicting the game level to be played next, where very high cross-validation accuracies were 
recorded by the RF classifier. With respect to the test (or validation) accuracy, for the 2-choice scale, 
the highest accuracy was obtained by DNN_Model_4 (79.12%) for the player-independent modality 
and SVM (89.5%) for the player-dependent modality. In the case of the 4-choice scale, the highest 
accuracies were provided by kNN (52.75%) and SVM (42.5%), respectively. We observed that SVM 
was very efficient for the player-dependent modality. For the 2-choice scale, both accuracies (79.12% 
and 89.5%) were higher than the random value of 50% when selecting either 0 or 1 by chance. The 
same happens in the case of the 4-choice scale, where the random, “by chance” accuracy is 25%. Both 
the kNN and SVM classifiers provided an accuracy higher than 25% (kNN—52.75% for the player-
independent modality—and SVM—42.5% for the player-dependent method). 

Both the player-independent and player-dependent training and testing modalities offered good 
classification results, making it difficult to determine which was best. However, we incline towards 
using the player-independent one, as we want a more general, less user-specific model. 

With respect to features importance (determined by the RF classifier), we observed that GSR, 
HR and the beta waves play a significant role in fear level prediction for C1. They are followed closely 
by the alpha and theta activations, but on a lower extent. In the case of C2, the classifier predicting 
the game level to be played next, the “target fear level” feature, the feature we computed based on 
the user’s current fear level plays a dominant role, not only because it has a high feature importance 
index determined by the RF classifier, but also because it is selected when using all three fear level 
estimation scales (2-choice, 4-choice and 11-choice), for both the player-independent and player-
dependent modalities. Our findings are in line with the state-of-the-art literature supporting the idea 
that GSR, HR and the beta waves are related to emotions classification, particularly fear assessment 
[111,112]. As there are no experiments in which the next game level is predicted based on 
physiological data, we cannot compare the results obtained by cross-validating and testing C2. 
However, it is worth pointing out that the same GSR, HR and EEG features are elicited and, in 
addition, to emphasize the important role that the “target fear level” feature plays in predicting the 
next level of in-game exposure. 

Our results are comparable to those obtained by Liu et al. [12], who used a dynamic difficulty 
adjustment of game levels based on simple “if” clauses and obtained a classification accuracy of 78%. 
Having as features both physiological data, Chanel et al. [11] reached a classification accuracy of 63% 
for the detection of 3 emotional classes in an experiment where 20 participants played a Tetris game 
with 3 levels of difficulty. Without feature selection, the best classifiers obtained an accuracy of 55% 
for peripheral features and 48% for EEG features. Feature selection increased the accuracy to 59%, 
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respectively, 56%. Our results are also comparable to those obtained by Lisetti et al. [113], who 
achieved a classification accuracy of 84% when distinguishing 6 emotional states elicited by movie 
clips. However, our modality of providing stimuli is more realistic and immersive, as we used for 
training and testing the classifiers both in vivo and 3D VR stimuli.  

9. Conclusions 

The purpose of our research was to develop a VR game with ML-based decision support in order 
to adapt the levels of exposure to the patients’ physiological characteristics. To determine the best 
ML techniques for acrophobia therapy, several classifiers have been trained: Support Vector Machine, 
Random Forest, k-Nearest Neighbors, Linear Discriminant Analysis and 4 deep neural network 
models. We proposed two classifiers: one classifier that estimates the current fear level, based on the 
user’s physiological recordings and one that predicts the next exposure scenario, i.e., the game level 
to be played next. We used 3 scales of measuring fear level, with 2, 4 and 11 possible responses (2-
choice, 4-choice and 11-choice scale). The validation accuracy is defined as the measure of similarity 
between the fear level estimated by the first classifier and the Subjective Unit of Distress reported by 
the user during gameplay. For the 2-choice scale, the highest accuracy has been obtained by 
DNN_Model_4 (79.12%) for the player-independent modality and SVM (89.5%) for the player-
dependent modality. In the case of the 4-choice scale, the highest accuracies were obtained using kNN 
(52.75%) and SVM (42.5%), respectively. The cross-validation scores are very high for both classifiers, 
with the best accuracies obtained by the kNN and RF techniques. The most important features for 
fear level classification were GSR, HR and the values of the EEG in the beta range. For next game 
level prediction, the “target fear level”, a parameter computed by taking into account the estimated 
fear level, played a dominant role in classification.  

A future study would be to implement a VR-based game for treating other types of phobias. 
Moreover, we will extend the experiments and involve more subjects, while their physiological 
responses will be collected and used for training and testing the classifiers. Another direction we will 
pursue is to perform real-world tests with the 8 acrophobic patients who participated in the current 
study, expose them to in vivo scenarios and evaluate whether their anxiety levels dropped. 
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