
 

Sensors 2020, 20, 450; doi:10.3390/s20020450 www.mdpi.com/journal/sensors 

Article 

Fiber Optic Train Monitoring with Distributed 
Acoustic Sensing: Conventional and Neural Network 
Data Analysis 
Stefan Kowarik 1, Maria-Teresa Hussels 1, Sebastian Chruscicki 1,*, Sven Münzenberger 1,  
Andy Lämmerhirt 2, Patrick Pohl 2 and Max Schubert 2 

1 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; 
stefan.kowarik@uni-graz.at (S.K.); Sven.Muenzenberger@bam.de (S.M.) 

2 DB Netz AG, Mainzer Landstr. 199, 60326 Frankfurt, Germany;  
Andy.Laemmerhirt@deutschebahn.com (A.L.); Patrick.Pa.Pohl@deutschebahn.com (P.P.); 
max.schubert@deutschebahn.com (M.S.) 

* Correspondence: Sebastian.Chruscicki@bam.de 

Received: 29 November 2019; Accepted: 24 December 2019; Published: 13 January 2020 

Abstract: Distributed acoustic sensing (DAS) over tens of kilometers of fiber optic cables is well-
suited for monitoring extended railway infrastructures. As DAS produces large, noisy datasets, it is 
important to optimize algorithms for precise tracking of train position, speed, and the number of 
train cars. The purpose of this study is to compare different data analysis strategies and the resulting 
parameter uncertainties. We present data of an ICE 4 train of the Deutsche Bahn AG, which was 
recorded with a commercial DAS system. We localize the train signal in the data either along the 
temporal or spatial direction, and a similar velocity standard deviation of less than 5 km/h for a train 
moving at 160 km/h is found for both analysis methods. The data can be further enhanced by peak 
finding as well as faster and more flexible neural network algorithms. Then, individual noise peaks 
due to bogie clusters become visible and individual train cars can be counted. From the time 
between bogie signals, the velocity can also be determined with a lower standard deviation of 0.8 
km/h. The analysis methods presented here will help to establish routines for near real-time train 
tracking and train integrity analysis. 

Keywords: distributed fiber optic sensing; distributed acoustic sensing; train tracking; artificial 
neural networks 

 

1. Introduction 

Distributed acoustic sensing (DAS) is a powerful fiber optic technique that can detect vibrations 
with a resolution of a few meters along a standard telecom glass fiber many tens of kilometers long. 
With these unique and still improving capabilities, DAS is increasingly used in applications such as 
intrusion detection along a perimeter, leak monitoring along pipelines, monitoring of sub-sea cables, 
or seismic monitoring [1–3]. In these examples, the long-range sensing capabilities with a single fiber 
are used. Similarly, extended railway infrastructure is well-suited for DAS monitoring. By detecting 
the noise and vibrations caused by the train, it is possible to locate the train position, its velocity [4,5], 
and also its length, which may be important for confirming that no train cars have been decoupled. 
Thereby DAS may help to increase railway capacity by enabling efficient train driving and 
disposition, but more importantly by enabling moving block operation, if the safety-critical 
performance of DAS can be established. Further, not only can the train position and velocity be 
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monitored, but, in principle, also faults of the train such as flat wheels, and wear in the train track 
can be detected due to their characteristic acoustic signatures [6]. 

While DAS is not yet routinely used in train monitoring, it offers several advantages over 
established techniques such as a track circuit or wheel counters. In contrast to wheel counters at a 
limited number of positions, fiber optic sensing is a truly distributed measurement and monitors the 
position of the train at all times. With its sensing range of tens or even up to 100 km [6] it eliminates 
the necessity of power and data cables because a single telecom fiber that often is already installed 
next to tracks can serve both, as sensor and data line. The DAS fiber is also immune to electromagnetic 
interference or lightning strike. In comparison to global navigation satellite systems, fiber sensing has 
the advantage of providing signals in tunnels and it does not need wireless communication between 
trains and base stations. Beyond train monitoring, events such as trespassing or cable theft can be 
detected with DAS. However, significant challenges remain before DAS can be implemented in 
routine railway operations. 

A range of fiber optic DAS systems have been described in recent literature and significant 
progress has been made with respect to signal quality and sensing range. Fiber optic sensing 
techniques such strain sensors based on Brillouin scattering [7,8], fiber Bragg gratings and fiber 
interferometers [9,10] have been demonstrated in railway applications. However, most activities in 
the field of DAS have centered on Raleigh backscatter based (C-OTDR) systems [6,7,11,12]. Two main 
DAS techniques can be distinguished. On the one hand, there are simpler systems which only detect 
the vibration frequency but not the true signal amplitude or phase of the acoustic signal. On the other 
hand, there exist ‘true-phase’ DAS systems that enable quantitative measurement of the vibration 
and strain amplitude of the sensor fiber. Simpler DAS systems have been successfully used in a range 
of publications [4,5,7] and are also used in this work. Recent true-phase systems have shown 
significantly better signal-to-noise ratios as well as a long sensing range beyond 80 km [6]. A common 
problem of both DAS and true-phase DAS systems is the large amount of raw data that is acquired 
and must be processed precisely and quickly enough to extract the features of interest from the noisy 
data. Due to the random arrangement of Rayleigh scattering centers in the fiber, there is significant 
variability in signal strength and even partial fading of the signal for certain ranges. There is also 
significant temporal drift in the DAS data even though novel setups can produce stable signals at the 
cost of sampling frequency and range [13]. 

Significant filtering and data processing must be performed to extract the train position, velocity, 
and axle or bogie count from DAS data. A range of algorithms has been used in literature, such as 
high pass filtering, to remove slower signal drift; wavelet transforms to get cleaner train signals; or 
Canny and sliding variance edge detection to determine the leading and trailing edge of the train 
[14,15]. To successfully operate real-time monitoring systems in the future, the processing must be 
fast enough and capable of handling variable conditions of the signal, e.g., due to temperature 
fluctuations, changing permanent strain on the fiber, or interfering background traffic noise. Apart 
from conventional deterministic algorithms, a promising route to enable fast analysis of DAS signals 
are artificial neural networks (ANN). ANN have been applied for pattern recognition and 
classification of events such as pedestrians or construction work next to tracks [16,17] but can also 
speed up the processing of DAS raw data treatment [18].  

In this work, we present optimized conventional and artificial neural network algorithms and 
quantify the precision that can be achieved in train monitoring.  

2. Methods 

The measurements were performed on a 35 km stretch of the ICE fast train track (see Figure 1a) 
between Erfurt and Halle (Verkehrsprojekt Deutsche Einheit Nr. 8.2 (VDE 8.2)). This railway line is 
newly built and therefore sensing conditions are homogeneous along this track. A standard 
telecommunication single-mode fiber lying in a trough next to the rail tracks (see Figure 1b) was used 
as the sensor element. The DAS signals of such a fiber are not as strong as for fibers affixed to the rail 
directly [19], but our sensing setup has the advantage that existing signal cables containing an unused 
optical fiber can be re-purposed for sensing at no additional cost or installation effort. The 
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measurement stretch is a ballastless track leading to good acoustic coupling between rail and concrete 
slabs [20]. However, the cable tunnel is not part of this concrete slab structure but lies decoupled from 
this within soil. There are stretches along the railway where the fiber optic cable is, for example, 
crossing beneath the tracks or has coils of extra fiber length in certain positions that affect the DAS 
sensing signal as discussed below.  

We used the commercial Helios DAS system from Fotech Solutions in our experiment. We found 
a sample rate of 2.5 kHz with pulse widths of 100 ns and a sampling interval of 0.68 m per bin to 
provide an observable signal. To reduce noise in the data and to make the large datasets of ~10 GB 
per minute more manageable, we averaged 16 temporal samples for an effective sample time of 6.4 
ms or a sampling rate of 156 Hz. After this averaging, typically the signal-to-noise ratio was above 10 
over the first 20 km, except for certain faded fiber sections with a lower signal-to-noise ratio. We 
analyzed only the first 20 km of the 35 km stretch due to the stronger signal levels for shorter 
distances. However, with different smoothing and thresholding settings, the farther distances can 
also be analyzed, albeit with increased analysis error. 

 
Figure 1. (a) Schematic of ICE train on ballastless track emitting noises that are picked up by a fiber 
optic distributed acoustic sensing (DAS) interrogator. (b) Standard telecom signal cables lying within 
cable tunnels are used for sensing. 

3. Results 

3.1. Temporal ‘Train-View’ Analysis 

A natural way to analyze the time and position-dependent DAS signal f(x,t) is to determine the 
position xcenter(t) of the train for each point in time, as shown in Figure 2a. Once the train position 
xcenter(t) is known, the velocity at each moment in time can be calculated as a numerical derivative 
(Figure 2b). The determination of the train position requires significant data treatment because the 
raw DAS data is subject to drifts and measurement noise despite the binning of spatial and temporal 
samples. We have heuristically arrived at the following data processing steps for an optimized 
determination of the train position. Firstly, we use a 20 Hz high pass filter to remove slower drifts of 
the data and to normalize the data, so the signals from short and long measurement distances have 
similar amplitudes. We note that this of course increases the noise floor for measurements at larger 
distances. Secondly, we take the absolute value and use a top-hat filter with a width of 50 temporal 
samples (0.32 s in total) to smooth in the temporal direction and a further top-hat filter with a width 
of 200 bins (136 m) to smooth the spatial direction. In the third step, a threshold of three times the 
standard deviation of the data was used to create a binary image distinguishing the train and the 
background. From this band of high signal, the center position xcenter(t) of the train was determined 
using a triangular filter and maximum search. Note that the raw data contain two trains, but the 
analysis of only one is shown in the following.  



Sensors 2020, 20, 450 4 of 12 

 

 
Figure 2. (a) The train position xcenter(t) as a function of time is determined by applying the shown 
filtering. (b) From this position, the train velocity of the ICE 4 train can be calculated at each given 
moment in time. (c) Using the previously determined position of the train, a section of DAS data with 
the train in the center can be cut and arranged to arrive at the ‘train-view’ representation of the data 
in (d). 

The train velocity calculated from the xcenter(t) data is shown in Figure 2b with different temporal 
averaging applied. The train moves at a constant velocity at first and then accelerates as is already 
evident from the bent line in the data of Figure 2a. For a 2 s smoothing interval, there is significant 
noise in the velocity values with a standard deviation of 24 km/h and maximum deviations up to 
several 100 km/h. Using longer moving average intervals of, e.g., 15 s, the measurement noise is 
reduced to a standard deviation of 4.5 km/h. Note, that there are several steps in the velocity graph 
which are caused by the fiber arrangements, such as a fiber crossing beneath the tracks or a coil of 
extra fiber. All these different fiber geometries result in anomalies in the velocity graph of Figure 2b. 
For example, a long extra coil of fiber which is passed nearly instantly is registered as a section with 
unrealistically high velocity. These velocity steps in the signal also cause errors in a moving average 
and therefore the smoothing of train-view signals in real applications needs to exclude problematic 
fiber sections.  
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Beyond determining the train position and velocity, counting the axles is possible with the DAS 
data by counting peaks in the signal corresponding to an axle. In our case, due to the spatial resolution 
limitations in our DAS technique, we performed a measurement where not axles but bogie clusters 
of the train were counted. While there are individual time samples where the correct number of 
bogies are visible in the measured intensity along the fiber, in general, the signal is too noisy to 
determine the correct number from a single sample. Therefore, we use the train position as obtained 
in the previous step to shift all DAS time samples by xcenter(t) to create a ‘train-view’ diagram [6] in 
which the train and bogie peaks are always localized at the same position (see Figure 2c,d). The train-
view diagram corresponds to the DAS signal after transformation into a reference frame moving with 
the train, and one can directly see the train length of ca. 200 m over time in the diagram. The ‘train-
view’ may potentially be useful for detecting train defects via train signals that change over time. 
After shifting the data, we found that DAS peaks from bogies still do not necessarily lie directly on 
top of each other. Consequently, we used a second peak finder algorithm looking for peaks in an 
interval of -10 to 10 m around the center of the train where we expect one bogie cluster to establish 
the exact position in each time sample. Once these small corrective shifts are applied to the ‘train-
view’ image, faint vertical stripes become visible (Figure 2d) corresponding to bogies or bogie 
clusters. Note that, in principle, the axle/bogie cluster count can be obtained in short time intervals 
from a train-view representation of the data if only a few samples of sufficient signal quality are 
averaged. However, lower noise in the data would be desirable and therefore true-phase DAS 
systems should be used for such an application. 

3.2. Spatial ‘Rail-View’ Analysis 

A second and different possibility to analyze the DAS data is the determination of the arrival 
time tarrival(x) of the train at a given fiber/rail position x. This is different from the above analysis of 
xcenter(t) because it avoids the problem of fading, that is the low signal strength for certain positions in 
x along the fiber. This randomness of the DAS signal from different positions is modulating the train 
signal and makes finding the train center as performed above difficult. However, the random fading 
signal in our measurement signal at a given position is varying smoothly during the passage time of 
the train so that no significant fluctuation obscures the train signal. Consequently, determining the 
time tarrival(x) when the train center passes a certain position x is making use of a cleaner signal. 
Obviously, one needs to wait until the whole train has passed a certain position and therefore the 
algorithm can only give updates after the time it takes the train to pass a certain position. As a 
consequence, there is a trade-off between updates after very short intervals possible with the train-
view analysis above and the slower ‘rail-view’ analysis with better signal-to-noise ratio as shown in 
Figure 3. 

The data treatment is similar to the one from Figure 2, which is a 20 Hz high pass filter, top-hat 
filters in the temporal and spatial direction followed by thresholding for selecting the train. Finally, 
the arrival time tarrival(x) of the train at each position is calculated using center detection via a triangular 
filter and finding its maximum. Again, the train velocity can be calculated from the time and position 
pairs, and the result is shown in Figure 3b for different spatial averaging. For a moving average of 
341 m and approximately 5 km distance from the DAS instrument, the standard deviation of the 
velocity values is 4.8 km/h when the train is moving at 160 km/h. This standard deviation does not 
include sections with up to 70 km/h deviations, which are due to extra fiber length next to the track. 
As discussed above, the coils found in regular intervals next to the track result in false velocity 
estimates. The noise and therefore velocity uncertainty increase with distance from the measurement 
unit, but also with train speed toward the right in our example. For an estimate of the velocity-
dependent standard deviation of train velocities, different trains moving constantly at 160 km/h and 
250 km/h (not shown) were analyzed in the same fiber interval and the standard deviations were 4.8 
and 7.2 km/h, respectively. 
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Figure 3. ‘Rail-view’ analysis of the DAS data at fixed positions as a function of time. (a) Filtering and 
center detection are similar to Figure 2a, however, the train arrival time tarrival(x) is determined here. 
(b) From the rail-view data, the train speed is calculated and shown for different averaging lengths. 
Peaks in the velocity are due to fiber loops. (c,d) Arranging the 20 Hz filtered data in (c) such that the 
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arrival times are aligned results in a ‘rail-view’ plot (d). From the distance of the bogie cluster stripes 
in (d), the bogie cluster velocity is determined (e). 

Similar to the ‘train-view’ image above, we can construct a ‘rail-view’ image by shifting the train 
signal in time such that the arrival time of the train center is displayed at a fixed time point (see Figure 
3d). The points tarrival(x) are not precise enough to resolve a stripe pattern of the bogie cluster passing 
by within the train signal. Therefore, we again used peak detection within an interval corresponding 
to the passage time of one car and perform a fine shift in the temporal direction to align the train 
arrival times. The result of this procedure is shown in Figure 3d; clearly, red and blue horizontal 
stripes can be seen. Each of the red stripes corresponds to a maximum intensity due to a bogie/bogie 
cluster of the train. The 13 bogie clusters of the ICE 4 train can be discerned in most sections of the 
fiber apart from a few sections affected by fading or low signal due to bad acoustic coupling. In 
contrast to the train-view, which always displays the complete length of the train, the time interval 
of the rail-view representation depends on the velocity of the train and the stripe pattern is wider for 
the lower velocity on the left and narrower for higher velocities where the passage time is reduced. 
In conclusion, the rail-view of Figure 3d is more adequate for counting bogie clusters than the train-
view graph of Figure 2d because the bogie signals can be aligned more precisely, are more 
prominently visible, and therefore can be averaged to obtain reliable counts of bogie clusters. From 
the rail-view signal in Figure 3d, the number of bogie clusters can be counted as 13.0 ± 0.4 for an 
averaging interval of 1.36 km, which is roughly every one to two km the train integrity can be 
established by the Fotech DAS system. 

3.3. Artificial Neural Network (ANN) Analysis 

We have tested a range of algorithms to align the DAS signals and ANN have been found to 
work reliably and quickly on the large datasets. Both the ANN and the peak finder have been applied 
not to the complete dataset but to the data after the above rough train localization procedure. The 
additional alignment after a more precise determination of the time tarrival(x) makes the stripe pattern 
due to bogies visible in a train-view graph. The ANN consisted of an input layer where the signal of 
3000 temporal samples containing the train signal at a fixed spatial position x is handed to the dense 
network. This is followed by seven hidden layers of 4096, 2048, 256, 128, 32, 8, and 2 neurons with 
relu activation functions apart from the last layer with linear activation functions. The single output 
variable corresponds to tarrival(x), which is the time shift necessary to align the bogies at precisely the 
same time (see Figure 4a). The overall network architecture is not critical and a different number of 
neurons or shallower networks trained and performed similarly. The ANN was presented with DAS 
data normalized at every position as training data. To get a larger training dataset, we also created 
synthetic DAS data where we computationally shifted the train signal in time to get more examples 
at different known temporal shifts. Using this training dataset of in total 96,000 examples, we 
performed an optimization of the weights connecting neurons in the Keras and TensorFlow 
framework for 20 iterations (epochs). 
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Figure 4. (a) Artificial neural networks (ANN) can successfully predict the precise arrival times of a 
bogie cluster so that a well aligned rail-view graph (b) can be generated. (c) Taking the spatial average 
of the rail-view graph, all bogie clusters can clearly be resolved as 13 peaks. A peak finder algorithm 
performs similarly to the ANN in aligning the bins for a rail-view graph (d) and again 13 peaks can 
be found as well but the peak height is more uneven (e). 

The results of the position determination and alignment with the ANN model in Figure 4a are 
shown in Figure 4b,c and compared with the peak finder algorithm in (Figure 4d,e). The data shown 
is not the ICE 4 train signal used for training but data from a similar ICE 4 train passing two hours 
later. The rail-view stripe pattern in the DAS data is clearly visible for both algorithms. Figure 4c,e 
show line graphs that result from spatially averaging the entire rail-view plots. The first and last 
bogie are more clearly visible in the ANN data (Figure 4c), while the peaks are more pronounced in 
the data output of the peak finder Figure 4e. Note that the high middle peak followed by a lower 
peak to the right is an artifact of the peak finder algorithm. These higher and lower peaks are visible 
also in the ANN analysis, because data aligned with the peak finder has been used as training data. 
Despite this use of the peak finder algorithm to train the ANN, the ANN generalizes the training data 
so that their results are non-identical and the ANN output is more suitable for counting all bogie 
clusters. The peak finder results in narrower peaks where even some sub-structure, potentially due 
to individual axes, is visible.  

The use of the ANN offers advantages in processing speed as well as flexibility to process 
different datasets. The filtering and localization of the train DAS data with the subsequent alignment 
of bogie clusters by the peak finder algorithms in the dataset take 300 s. In contrast, coarser DAS data 
filtering and train localization together with bogie cluster alignment by an ANN takes only 22 s, 
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which is the filtering and ANN processing is more than ten times faster. The speed gain results from 
the fact that an ANN can align the bogie clusters even if the localization of the train center has 
deviations of up to ±1 train car, while the peak finder needs the correct, center bogie cluster within 
its search range of ±0.5 a train car. As a result, the coarser filtering algorithm for the ANN can work 
on fewer samples and is significantly faster than the filtering for the peak finder algorithm. The peak 
finder was also optimized to the given train velocity and more complicated filter banks are necessary 
for processing data from trains at different speeds. Again, the ANN has advantages as it is more 
flexible when trained with data of trains with changing speed. Further improvements to the ANN 
model would be possible through training the network with ground truth data about the actual train 
position for example via global navigation satellite systems instead of data from the peak finding 
algorithm.  

4. Discussion 

In the above examples, we have demonstrated how a commercial DAS instrument can be used 
to detect the positions of the whole train as well as bogie clusters. From these results, the train velocity 
can be determined in three distinct ways using train-view, rail-view, and bogie cluster data analysis 
(Figures 2b and 3b,e). In Table 1, we summarize the standard deviation in the velocity determination 
for our case study. The results show that the bogie cluster velocity has the lowest standard deviation 
followed by rail-view and lastly train-view velocities. The slight improvement for rail-view in 
comparison with train-view can be explained by the position-dependent fading, which introduces 
fluctuations in signal strength and affects the train localization in the spatial direction. For the rail-
view analysis at a fixed position of the fiber, fading effects are mostly constant and do not affect the 
train localization in the time direction. The bogie cluster velocity, which uses the sub-structure in the 
train noises, improves on the train-view or rail-view velocity precision by more than a factor of four 
and, in contrast to the other velocities, is not affected by spurious jumps in velocity due to extra fiber 
length or details of the fiber-track distance and geometry. Note that the erroneous velocity jumps 
have been removed for the calculation of the standard deviation from train- and rail-view. But, even 
with these corrections to train-view and rail-view, the bogie cluster velocity is more precise. In the 
future, also combinations of the three analysis methods are possible for more reliable determination 
of the velocity.  

The standard deviations given in Table 1 have been determined for a train moving at 160 km/h 
and depend on the train velocity. According to error propagation, the standard deviation of the 

velocity is 𝛿𝑣 = 𝑣 ∙ ට𝛿𝑡 𝑡⁄ ଶ + 𝛿𝑥 𝑥⁄ ଶ and therefore increases linearly with velocity if the position or 

time errors remain constant. This naïve linear relation will not be strictly fulfilled as the errors in the 
DAS position/time determination will increase at low velocities where the train generates lower 
noises and therefore lower DAS signal. At elevated train speeds, we find an increase in the velocity 
error that is roughly proportional to the velocity. For example, we observe for rail-view velocities a 
standard deviation of ±4.8 km/h at 160 km/h and 7.2 km/h at 250 km/h (data not shown, both averaged 
for 340 m).  

It is important to note that all the standard deviations given have been averaged either in time 
or in space. In time, 7.5 s corresponds to the time it takes a train to pass a certain position at 160 km/h. 
In space, the train length over all the bogies is 340 m so that 7.5 s or 340 m averaging is comparable. 
While all velocity measurements can be updated in 6.8 ms intervals, this velocity update does not 
correspond to the real-time velocity but a previous train velocity, and different analysis and 
averaging schemes have different delays. In train-view, the velocity calculated for example with 15 s 
moving average corresponds to the train velocity 15 s prior in the center of the averaging window. In 
rail-view or bogie cluster velocities, the spatial averaging similarly introduces a delay in the velocity 
determination. For example, 680 m averaging introduces a 15 s delay at 160 km/h. Importantly, 
another 7.5 s must be added to this value because, at each position, one must wait for the train to pass 
for a total delay of 22.5 s. Therefore, both rail-view and bogie cluster velocity have larger delays. Their 
minimum delay is limited by the train passage time and depends on the train speed. In conclusion, 
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train-view has an advantage for fast real-time monitoring down to a theoretical limit of 6.4 ms but 
accepting some delay in rail-view and bogie cluster velocities are useful and more precise.  

Table 1. Standard deviation of the velocity for train tracking of an ICE 4 train moving at 160 km/h 
using different signal processing and averaging intervals. 𝜹𝒗𝒕𝒓𝒂𝒊𝒏ି𝒗𝒊𝒆𝒘 𝜹𝒗𝒓𝒂𝒊𝒍ି𝒗𝒊𝒆𝒘 𝜹𝒗𝒃𝒐𝒈𝒊𝒆ି𝒄𝒍𝒖𝒔𝒕𝒆𝒓 

±24 km/h (avg. 2 s) - - 
±5.1 km/h (avg. 7.5 s) ±4.8 km/h (avg. 341 m)  ±1.2 km/h (avg. 341 m) 
±4.5 km/h (avg. 15 s) ±3.5 km/h (avg. 681 m) ±0.8 km/h (avg. 681 m) 

The data analysis, filtering, and neural network techniques are a field of active development 
with a range of algorithms such as edge detection by sliding variance, principal component analysis 
of the train frequency spectrum, or wavelet transformation and are discussed in the literature [11,14]. 
In real-time monitoring, the computer processing time of the big datasets is a concern so that time-
optimized algorithms have been presented, e.g., in reference [15], where wavelet analysis has been 
replaced by faster smoothing and Canny edge detection filters. ANN processing time is promising in 
this regard. The ANN is currently only used to locate the train in a short 12 s time interval pre-
determined by using a conventional filter algorithm, but the slow pre-processing can potentially be 
integrated in a much faster ANN data analysis. In conclusion, further optimization of the speed and 
quality of the raw data processing remains an important task, both for DAS and true-phase DAS 
systems. 

Newer generations of DAS systems, in particular true-phase coherent optical time-domain 
reflectivity (COTDR) systems, as well as true-phase and low drift wavelength scanning COTDR 
systems, yield better data quality compared to the one used in this study. Therefore, we expect that 
the precision demonstrated above can be achieved with less averaging and therefore shorter update 
intervals and higher spatial resolution even at the meter level for axle counting. A higher signal-to-
noise ratio of the data will make it possible to measure at larger distances from the interrogator unit. 
The bogie cluster velocity will profit from the higher data quality that enables one to resolve each 
axle and not just bogie clusters as shown here. However, the above observations of analysis strategies 
using train-view and rail-view representations as well as the possibilities of ANNs for axle/bogie 
cluster detection with the associated velocity determination remain valid and important also for these 
better data qualities. 

5. Conclusions 

We have demonstrated that distributed fiber optic sensing with standard telecom fibers can 
determine current position, velocity, and bogie cluster count during the movement of ICE 4 trains of 
DB AG. We have shown that a first train-view analysis method is suited for the determination of train 
position and velocity. A second, slightly slower rail-view analysis is less susceptible to fluctuations 
of the fiber scattering and results in lower velocity uncertainty. Importantly, this rail-view analysis 
together with peak finder or artificial neural network algorithms makes it possible to resolve 
individual bogies or bogie clusters in the signal so that the train cars can be counted and train integrity 
can be monitored. From the bogie signal and the time between the bogie passage, a velocity can be 
calculated with an uncertainty of down to ±0.8 km/h depending on averaging length and time. Our 
work further demonstrates that training artificial neural networks with past train data can be used to 
analyze future train movements and is more than ten times faster and can handle more varied input 
better than our conventional algorithm. In the future, work is needed to investigate the velocity 
uncertainties of slower-moving trains on older rail infrastructure. While initial tests validate the 
analysis approach, the data quality is significantly lower and true-phase DAS systems may be 
required to achieve higher signal-to-noise ratios in the data. In conclusion, this quantitative study 
opens ways for train monitoring as well as more intricate analysis for example of train or rail defects 
via DAS.  
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