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Abstract: Recently, there has been a cloud-based Internet of Medical Things (IoMT) solution 
offering different healthcare services to wearable sensor devices for patients. These services are 
global, and can be invoked anywhere at any place. Especially, electrocardiogram (ECG) sensors, 
such as Lead I and Lead II, demands continuous cloud services for real-time execution. However, 
these services are paid and need a lower cost-efficient process for the users. In this paper, this study 
considered critical heartbeat cost-efficient task scheduling problems for healthcare applications in 
the fog cloud system. The objective was to offer omnipresent cloud services to the generated data 
with minimum cost. This study proposed a novel health care based fog cloud system (HCBFS) to 
collect, analyze, and determine the process of critical tasks of the heartbeat medical application for 
the purpose of minimizing the total cost. This study devised a health care awareness cost-efficient 
task scheduling (HCCETS) algorithm framework, which not only schedule all tasks with minimum 
cost, but also executes them on their deadlines. Performance evaluation shows that the proposed 
task scheduling algorithm framework outperformed the existing algorithm methods in terms of 
cost. 

Keywords: task scheduling; cost; ECG sensors; heartbeat; health care based fog cloud system 
(HCBFS); health care awareness cost-efficient task scheduling (HCCETS) algorithm; task 
prioritization 

 

1. Introduction 

Previous research has shown that the ratio of mortality due to heart diseases increase day by 
day. According to the American Heart Association and the World Health Organization, about 
735,000 Americans suffer from heart disease [1]. It reveals that about 230 million patients have 
cardiovascular disease (CVD), with 3 million deaths annually [2]. To spot heart irregularities, 
electrocardiography (ECG) signals are the primary source of evaluation that is widely used by 
medical specialists arround the world [3]. However, due to the sporadic nature of ECG signals, it is 
necessary to monitor patients continuously to have for accurate analysis of the heart problems [4]. 
Recently, advancements in Internet of Things (IoT) based medical sensors have grown 
progressively [5–15]; especially in heartbeat sensors that generate real-time delay-sensitive data that 
require immediate action for the results [16,17]. Generally, these sensors are integrated with limited 
constraint devices. Thus, fog computing is a promising and delay-efficient paradigm, where 
computing and capability are offered at the edge of IoT network [4,18,19]. It is noticed that each 
heartbeat-based medical application is composed of critical tasks and less delay-sensitive tasks. 



Sensors 2020, 20, 441 2 of 21 

 

Therefore, a fog paradigm is efficient for the sensor data in healthcare medical applications; 
however, different fog servers have different costs for data execution [20–23]. All medical services 
are paid in the fog cloud server networks, therefore cost-efficient task scheduling for medical IoT 
applications is a challenging task. 

In [24], the author proposed the reservoir computing-based cyclic echo state-network for 
ventricular, (critical) heartbeat classification. The proposed algorithm was specially designed for 
implementation in medical wearable wireless gadgets as it is fast, with less power consumption, and 
can be easily adaptable to small hardware devices. The main purpose was to propose a cost 
efficient-based approach for ventricular heartbeat detection in real-time scenarios. In the current 
paper, the authors extend their previous work, [24], to provide a cost-efficient solution for high 
priority (critical) heartbeat task scheduling. A novel framework named the HCCETS framework 
was proposed to minimize the cost of heart beat-based healthcare applications during task 
scheduling. Each heartbeat medical application is composed of autonomous fine-grained tasks. 
There are different types of tasks involved in the application, for instance, critical tasks that lead to 
severe heart disease or sudden cardiac death (those that required immediate action for the 
processing) and non-critical tasks (that has long deadlines and is to be processed anytime). Every 
task has an original workload for processing under a given deadline; for the considered problem, 
the different types of fog servers were taken into account for processing the requested tasks. Each 
fog server is distinct by its speed, capacity, and cost. 

Objective: The Internet of Medical Things (IoMT) application is a particular type of application 
that runs different services via sensors. For instance, heartbeat control and blood pressure tasks 
exploit various services to facilitated patients efficiently, whereas, the IoMT application consists of 
critical and non-critical tasks. Critical tasks require immediate services to run the operation and 
patients in dangerous heartbeat situations. However, these services are not free and are offered by 
the hospital to patients. Therefore, in this paper, the author only focused on a cost-efficient task 
scheduling problem to schedule all critical heartbeat tasks on servers in order to reduce maximum 
costs to meet the right situational requirements. 

In the literature, numerous studies have addressed the issue of task scheduling for healthcare 
applications in the cloud system. For example, [25–27] investigated task scheduling in the fog cloud 
system for the medical system. The objectives were either to minimize the devices' energy or 
optimize delay during task scheduling in the fog cloud system. Moreover, there are many 
challenges to be addressed on the task scheduling problem in the fog cloud system. These questions 
are as follows: (i) How to prioritize critical tasks of an application; (ii) How to find an optimal 
time-slot in the fog cloud in order to meet the QoS of tasks; (iii) How to schedule tasks onto 
different fog cloud networks in order to minimize the average cost of an application under its QoS 
requirements. 

This paper makes the following main contributions based on the questions mentioned earlier. 

• In other to solve the cost-efficient task scheduling problem for critical heartbeat conditions, we 
formulated this problem as a scheduling problem. Generally, the task scheduling problem 
requires multiple steps to address the cost-efficient assignment of tasks onto heterogeneous 
resources. To have this problem solved, we proposed a health care awareness cost-efficient 
task scheduling (HCCETS) algorithmic framework that is composed of the following phases: a 
task prioritizing phase, a resource searching phase, and a task scheduling phase. 

• Task prioritizing phase: Generally, the ECG signal is the primary source for the monitoring of 
electric cardiac activity of the heart. Every ECG cycle provides various types of information 
regarding the patient; for instance, if the patient has an arrhythmic heartbeat, a myocardial 
infarction, coronary artery disease and so on. In this phase, the author prioritized the critical 
tasks of heartbeat for an immediate process for execution, as these tasks were considered as an 
essential task. On the other hand, the delay-tolerant tasks, likewise patient report tasks, do not 
require a necessary process for execution. To handle the priority of urgent and late tasks, the 
author proposes a new task sequence rule method, which is not only used to satisfy the 
execution requirement but also to minimize the average cost of the application. 
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• Resource search phase: The author considered different fog servers with their unique 
characterizations. Every fog server offers on-demand-based cloud services, to run the IoT 
heartbeat-based healthcare application. The characterization of each server is a set of a vector, 
such as computing capability, storage, and price. Therefore, costs and deadlines are critical 
factors when the system chooses a fog server to run the tasks of the IoT application. To cope 
with this situation, the author proposes an efficient resource algorithm that is capable of 
utilizing the appropriate resource for each task to reduce the cost. 

• Task scheduling phase: Task scheduling is a critical phase that allocates all dangerous 
heartbeat tasks into heterogeneous resources to assure work done at minimal cost accordingly. 
The author proposes a new cost-efficient task scheduling algorithm, which allocates all critical 
heartbeat tasks into appropriate resources until no tasks are left behind. To evaluate the 
effectiveness and efficiency of the proposed cost-efficient algorithm, the author compared it to 
the existing task scheduling algorithm when it was run over the heartbeat dataset of IoT 
applications. 

• The author proposes the health care based fog system (HCBFS) that processes all requested 
heartbeat critical tasks to fog cloud networks. 

The rest of the paper is organized as follows. Section 2 elaborates related works and Section 3 
explains the problem description and formalizes the problem under study. A heuristic solution is 
proposed for the considered problem in Section 4, which describes the proposed algorithm and 
sequences. Section 5 evaluates the simulation and Section 6 is about the conclusion. 

2. Related Work 

Recently, the cloud-based Internet of Things (IoT) heartbeat medical applications have grown 
progressively due to global services to heart patients. Generally, different healthcare sensors 
generate data for heart patients and offload these data to the hospital fog server for further 
processing. Therefore, the scheduling of these data with different operations is a critical question. 
Numerous task scheduling problems for healthcare applications in the cloud system have been 
investigated in the literature. For the purpose of minimizing total delay, the author has focused on 
the studies related to offload healthcare tasks. During the last era of technology, highly intensive 
research activities took place in the area of IoMT. Many studies have presented their works, based on 
portable health care devices, for instance, [3,28] proposed computational frameworks for healthcare 
monitoring systems in mobile environments [20], and presented fog-computing based heartbeat 
detection for arrhythmia classifications. Patient-centric heart monitoring systems [28] using fog 
computing were proposed, the system established a connection between patient and medical 
specialists to perform the efficient operation of detecting abnormality in the heartbeat. Generally, 
state-of-the-art approaches have mainly focused on heart arrhythmia, and heart disease prediction 
from the non-invasive attributes of the morphological structure of the beat. However, the study 
deals with minimizing the delay sensitive task, and scheduling issues in critical heartbeat detection. 

Whereas these studies [29–32] have focused on delay optimal task scheduling or task 
assignment problems in the fog cloud environment for heart-beat healthcare applications, the goal of 
the aforementioned is to minimize the total cost of and delay of each application during processing 
to the cloud system. 

Furthermore, the task assignment and task offloading problems related to the healthcare 
applications are formulated in these studies [16,18,31,33]. The prior studies have focused on how to 
offload computation tasks to the cloud system in order to improve application performance on the 
user's devices and measure the delay optimal results of healthcare data without any risk. The delay 
and cost-optimal task scheduling of heartbeat healthcare applications into cloud networks were 
investigated in [34–37]. The studies accepted the input of data from real-time sensors and provided 
the application tasks for the actions. These actions are performed by different clouds with respect to 
application requirements and their constraints. 

To the best of this author’s information, cost efficient task scheduling for healthcare 
applications in fog cloud networks has not been investigated yet. The author considered both types 
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of tasks, critical and non-critical, during scheduling in order to minimize the average cost of the 
application. Generally, the paper enhances user application and minimizes the cost in order to give 
vast benefit to the customers. 

3. Problem Description 

The author has formulated a cost-efficient task scheduling algorithm for healthcare based 
heartbeat medical application tasks in the fog cloud networks. The heterogeneous fog cloud 
networks were used, with different costs and resource specifications for this purpose. The objective 
of the scheduling problem is to minimize the total cost of each task during the process in the fog 
cloud network. The propose healthcare based fog system (HCBFS) is a combination of different 
components. These components are master node, prioritizing critical tasks, scheduler, and ECG 
sensors, as depicted in Figure 1. The master node accepts requested tasks in the system, and 
estimates the task execution time of each task. Time-critical tasks are get higher in the prioritizing 
critical tasks component. Real-time data related to the tasks are continuously generated by the ECG 
sensors, such as Lead I and Lead II. 

 
Figure 1. Healthcare Based Fog System. 

3.1. System Model 

The author has formulated scheduling problems with different fog cloud servers with 
autonomous tasks. Each task works independently and it has its own data and specification. The 
arrival of tasks to the system is followed by the Poisson process. Each fog server offers exponential 
service to the offloaded tasks. 

3.2. Application and Resource Model 

The author has assumed that the healthcare application was composed of different tasks which 
are depicted as {𝑣 , 𝑣 , 𝑣 , … . . 𝑣 }. Every task has its own workload, Wi (i = 1, …, N), and latency 
deadline, id . The healthcare based fog system (HCBFS) is made up of heterogeneous fog cloud 
servers that are denoted by {𝑉 ,𝑉 ,𝑉 , … .𝑉 }. However, the fog servers are heterogeneous, therefore, 
each fog server has different computation speed and cost, which are depicted as   (j = 1, ..., M) 
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and 𝑝  respectively. To minimize the cost of offloaded tasks, the author assigned each task to the 
low-cost fog servers that satisfy the deadline 𝑑  constraint of a task. The author denoted the binary 
variable 𝑥  ∈ {0,1} to show only if the task iυ  is assigned to the fog server jV . The cost of each 

task iυ  on fog server is determined by the  jc , as well as execution time e
iT , i.e., 

,
1

M
e i
i i j

j j

WT x
ζ=

= × . Mathematic notations are listed in Table 1. 

Table 1. Notations used for the problem. 

Notation Definition 
N The set of healthcare tasks v 
M Fog cloud networks V 

jV  The jth fog cloud 

iυ  The ith healthcare task 

iW  The data of healthcare task iυ  

jζ  Computing rate of the fog server jV  

jp  Cost of each fog cloud jV  
e
iT  Calculated execution time iυ  

,i jx  Assignment of a task to a fog cloud 

iZ  The energy consumption of a task iυ  

iF  Completion of the task iυ  
TST Slack-timing of scheduling 
s
iT  lack The lateness of a task iυ  

3.3. Mathematical Model 

The considered cost optimization task scheduling problem is mathematically formulated as 
follows: 

𝑚𝑖𝑛𝑍 = … . 𝑥𝑖,𝑗 × 𝑐𝑗  × 𝑇𝑘𝑒𝑀𝑗=1𝑁𝑖=1  
(1) 

,0 0jT =  (2) 
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i iF d≤  (6) 
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⋅ =  (7) 
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x

=

⋅ =  (8) 

{ }, 0,1i jx ∈  (9) 

Equation (1) shows the objective function. Equation (2) shows the initial finish time of fog 
server, j, for task scheduling. Equation (3) shows the setup of a task on a fog server. Equation (4) 
determines the execution time of a task on all fog servers. Equations (5) and (6) show task finish 
time, which must be less than the given deadline. Equations (7)–(9) denote an assignment of a task 
only on fog servers and vice versa, with binary variable. 

4. Proposed HCCETS Framework 

The author formulated the task scheduling problem, which is a well known NP-hard problem. 
The author could not solve the task scheduling problem with one algorithm, because it required a 
multiple-step for the solution. For the considered problem, the author proposed a health care 
awareness cost-efficient task scheduling (HCCETS) framework made up of different components, as 
shown in Figure 2. The author solved the considered problem into a separate process, likewise task 
sequencing, initial task scheduling, critical task reshuffling, and cost efficient rescheduling. These 
components are illustrated in Algorithm 1. Where Qυ  is the queue of different tasks is in the 

system, dQ  is the list of task deadlines.  

Algorithm 1: HCCETS Framework 

   Input: Qυ ; dQ ; { ,1jV , …, ,j mV } 

1   begin 
2      Z ← 0; 
3      Call Task Sequencing; 
4      foreach ( iυ  ∈ Qυ ) do 

5          Zi ←   Call Initial Task Scheduling; 
6          Z ←  Z + Zi; 
7          Call Critical Task Reshuffling; 
8          Call Cost-Efficient Rescheduling; 
9          Z* ← Z + Zi; 
10     return Z*;     

4.1. Task Sequencing 

There are two types of tasks in the healthcare application, for example, time-critical tasks and 
less time-sensitive tasks. The critical tasks (e.g., emergency range of heartbeat or related operations) 
would get high priority. The normal reports related to the tasks get lower priority. Therefore, the 
author prioritized each task based on its requirements, such as deadline and workload. However, 
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because of the heterogeneity of the fog serves, e
iT , we devised the finish time of a task anticipatory 

of scheduling. The average execution time 𝑇 =  ∑∑  is estimated as  

𝑇 = 𝑑 −  𝐹  (10) 

𝐹 =  𝑇   ∑ 𝑊∑ 𝜁  (11) 

 
Figure 2. Diagram of HCCETS Framework. 

The author prioritized all tasks by the following proposed sequence. 

(1) Earliest Deadline First (EDF): The author sorted the set of tasks based on their deadline. The 
small deadline task is sorted first. If the deadline is the same, the task with the smaller size is 
ranked with a higher priority.  

(2) Smallest Slack Time First (SSF): The tasks are sort according to the task slack time. The task 
which has smallest slack time is scheduled first. If the slack time is the same as any tasks, the 
smallest total workload will be arranged first.  

(3) Smallest Workload First (SWF): The task is sequenced based on the size of the task, the smallest 
workload task is arranged first.  

The generated sequences are as followed.  

• EDF-based task sequencing: {𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 } 
• SSF-based task sequencing:  {𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 } 
• SWF-based task sequencing: {𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 , 𝑣 } 
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The authors tried all sequences during initial task scheduling until the submitted tasks were 
satisfied with their requirements.  

4.2. Task Scheduling 

The task scheduling phase schedules each offloaded task to the heterogeneous cloud based on 
their costs under the QoS requirement. The cost of each task, when it is to be assigned on any fog 
server, is denoted by, i.e., jc  and the task execution time 𝑇 . The cost of each task on fog server j  

as  

j
ij

j

c
P
ζ

=  (12) 

ijc  is the unit cost of each fog cloud server when any task is assigned. All fog servers are sorted 

according to the ijc  with the descending order and the available time ,0jT  of each fog server jV  is 

initialized to 0. If , 1
e

j i i iT T d− + < , then the fog server jV , iυ  is identified, and the available time 

,j iT  is dynamically updated. The details of the task scheduling on all fog cloud servers for all tasks 

is described in Algorithm 2.  

1. In line 2, all fog servers are sorted by calculating ijc  with the descending order and put into 

mQυ  in which the fog servers are iteratively traversed. 
2. In line 3, initially, all fog servers are null.  
3. The available time 𝑇 , of each fog server in the mQυ  is initialized to 0. 

4. Line 7 to 11, if the available time of the fog server 𝑉  plus the execution time of iυ  is less than 

the deadline 𝑑 , 𝑣  is assigned to the fog server 𝑉  , and the new available time ,j iT  of jV  is 

dynamically updated. 

The fog servers are sorted in Algorithm 2, the fog servers are swapped at least M × log(M) times. 
Besides, the traverse of the sorted fog servers consumes M times, therefore, the time complexity of 
Algorithm 2 is O(M × log(M)). The most cost-efficient unoccupied fog server is acquired in mQυ  

while satisfying the deadline id  of the task iυ . The task scheduling rule is compared to obtain the 

fog server with minimum cost for the task iυ . This mechanism guarantees that the finish time iF  

of task iυ  is equal with or smaller than the deadline id . For tasks with smaller iF  than id , in 

most circumstances, generally, the result of the TST, ( )iTST υ , is the difference between iF  and 

id . Figure 3 illustrates an example of the task 5υ  with ( )5 12TST υ = . To fully exploit TST, next 

task starts to execute as the first finish method is proposed to reclaim the TST. Supposedly, the study 
has many tasks which are indifferent workloads and deadlines. Every task has a different slack time. 
So the study has proposed an algorithm like that, when a task is finished in execution then server 
starts to execute the next task. The selection of a right fog server to execute tasks while minimizing 
cost optimization is very critical. If we do not find the right fog server for an assigned task then it 
would consume more cost and resources. Hence, the study needs to schedule all tasks on a variety of 
fog servers in a cost-efficient way. Figure 4 shows the difference between random fog server 
searching and cost-efficient fog server searching. The author could see the difference between both 
methods—which is more cost-efficient and meets the user-defined deadline. In this example of the 
figure, the study has six tasks that have different workloads ready for execution over four fog 
servers. All the fog servers are heterogeneous and have different processing capacities. So these six 
tasks are going to be scheduled over these four fog servers with the lowest cost. First, in the random 
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fog server searching method, the author could see the six tasks take all four fog servers for their 
execution. In addition, some tasks have finish times exceeding the defined deadline and some 
resources are wasted. But in the second energy efficient fog server searching method, the author 
could see it took just three fog servers to execute all the tasks and all the tasks were finished within 
their deadlines while minimizing energy consumption. This means that the right fog server for 
scheduling a task is very helpful in reducing computation resource costs. 

Algorithm 2: Initial Task Scheduling 
   Input: vi:task to schedule 
1  PList[vi ∈ N, j ∈ M]; 
2  begin 
3     Qvm ←Sort the fog serves by the cij with the descending order; 
4     V ← NULL; 
5      foreach Vj ∈ Qvm do 
6         Tj,0  ←  0; 
7      foreach Vj ∈ Qvm do 
8         Calculate the Tie of Vj by the Equation (4); 

9         if Tj,i -1 + e
iT  < di then 

10          Calculate the Tj,i of Vj by the Equation (3);     
11          Z ← Vj; 
12          break; 
13      Calculate cost of Z by the Equation (1); 
14      PList[vi ∈ N, j ∈ M] ← Z; 
15      return Z, V; 

4.3. Critical and Non-Critical Tasks 

PList[vi ∈ N, j ∈ M] is the preference list, in which this study stores the cost of the model for all 
tasks on each cloud during initial scheduling. As this study suggests, some normal tasks can be 
changed into critical tasks. For instance, if the normal heartbeat task range increases from low range 
to a higher range, the patient heart health would become critical. Algorithm 3 handles this situation: 
if the task changes their initial running status (e.g., normal task to critical), Algorithm 3 implicitly 
changes their priority and the new critical task would get high priority. The study swapped the 
time-slot of each task during the run-time of the task in order to handle any sensitive condition. 

Algorithm 3: Critical Task Reshuffling 
   Input: Z, PList[vi ∈ N, j ∈ M]; 

1  begin 
2     foreach (vi as N) do 
3         foreach (j = 1 as M) do 
4            if ( e

iT .vi > e
iT .N) then 

5               Swap: v1 ← v2; 
6               Calculate the Tj,i of Vj by the Equation (3); 
7                V ← Vj; 
8                Z* ← V; break; 
9           PList[vi ∈ N, j ∈ M]   ← Z*; 
10          return Z*, PList[vi ∈ N, j ∈ M];     

4.4. Cost-Efficient Rescheduling 
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The study rescheduled all tasks on different fog servers with respect to their deadlines and cost, 
as shown in Algorithm 4. The output of Algorithm 4 is shown in Figure 3. All scheduled tasks are 
rescheduled in a way that all critical tasks with respective deadlines and cost are to be obtained with 
high priority, and are to be scheduled first. The less delay-sensitive tasks, with respect to their 
deadlines and cost, are scheduled later. 

Algorithm 4: Cost-Efficient Rescheduling 
   Input: Z, PList[vi ∈ N, j ∈ M]; 

1  begin 
2     foreach (vi as N) do 

3         Calculate the e
iT  of Vj by the Equation (4); 

4         if Tj,i -1  + e
iT  < di then 

5            Calculate the Tj,i of Vj by the Equation (3); 
6            V ← Vj; 
7            break; 
8      Calculate cost of Z by the Equation (1); 
9      PList[vi ∈ N, j ∈ M]   ← Z* ; 
10     return Z*;    

 
Figure 3. The task v5 with TST (v5 = 12) sequence adjustment. 

4.5. Time Complexity 

The proposed algorithm exploits O(n|log|m) time complexity, where n is the number of 
iterations for all tasks when they are assigning to the numbers of m fog cloud servers. 
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Figure 4. Random and cost-efficient fog servers searching. 

5. Performance Evaluation 

5.1. Practical Implementation of (HCBFS)  

This study developed the health-care based fog cloud system using different sensors such as 
Arduino and DFR heartbeat sensors. These sensors are connected to the fog system via the HCBSF 
system which is developed in the JAVA language, as shown in Figure 5. Both sensors generate 
real-time data for different tasks. Some of them are critical tasks; for instance, patient has observed 
abnormal rhythm of the heart. These types of critical tasks are required to perform their actions into 
the fog cloud based on the provided information by the sensors. These practical setups are 
implemented at the University of Malaya advance robotics lab (Table 2). Initially, this study 
generated the data from sensors which were synchronously exchanged between fog servers and 
HCBFS, while performing healthcare application tasks. This study developed a healthcare mobile 
application, based on JAVA and perform its actions based on sensor data. Furthermore, the same 
experiments were conducted on three public datasets, namely AHA [38], MIT-BIH-SVDM, and 
MIT-BIH-AR [39].  
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Table 2. Simulation parameters. 

Simulation Parameters Values 
Languages Python, JAVA, CSharp 

Simulation time 24 h 
Experiment repetition 30 times 

Program implementation Eclipse 
Lead I DFR0027 
Lead II Arduino 

N 2000 
M 3 

5.2. Resources Specifications 

This study considered the heterogeneous fog servers refer to systems that use more than one 
kind of processor or core. These systems gain performance or cost efficiency not just by adding the 
same type of processors, but by adding dissimilar coprocessors, usually incorporating specialized 
processing capabilities based on on-demand services. This study shows the characterization of each 
cloud fog cloud server in Table 3. 

Table 3. Heterogeneous fog server resource specification. 

Resource Type Storage (GB) Core Speed (MIPS) Cost-M 
Fog Server 1 20,000 1 10,000 100 $ 
Fog Server 2 50,000 1 5000 200 $ 
Fog Server 3 100 1 1000 500 $ 

5.3. Heartbeat Datasets 

This study used three different public benchmark datasets for the efficiency and effectiveness 
of the proposed algorithm, namely, the MIT-BIH Supraventricular Arrhythmia database 
(MIT-BIH-SVDM), the MIT-BIH-Arrhythmia database (MIT-BIH-AR) [39] and the American Heart 
Association database (AHA) [1]. The overall description of abovementioned datasets is defined in 
Table 4. MIT-BIH-SVDM includes 78 half-hour ECG recordings; the AHA dataset represents 
information that is directly provided by nearly 6300 hospitals and more than 400 health care 
systems, whereas the MIT-BIH-AR dataset contains 44 ECG subjects with five major classes of 
arrhythmia, namely, non-ectopic beat (N), supraventricular ectopic beat (S), ventricular ectopic beat 
(V), fusion beat (F), and unclassified and paced beat (Q). According to ANSI/AAMI standards, four 
recordings (102, 104, 107, and 217) containing paced beats; due to that, the signals did not retain 
sufficient signal quality for signal processing. This study evaluated the efficiency and effectiveness 
of existing cost-efficient task scheduling algorithms and proposed an algorithm based on the given 
heart beat datasets. For the existing algorithms, annotated as Baseline1 and Baseline 2, [40,41] have 
conducted their experimental results by exploiting datasets, as discussed above. However, it is 
convenient to evaluate the performance of all algorithms based on similar dataset functions when 
the algorithms run on the system for experiment purposes. 

Table 4. The overall description of the heartbeat datasets. 

Datasets ECG Subjects Patients Critical Heartbeat Non-Critical Heartbeat 
MIT-BIH-SVDB 78 - 9953 174,317 
MIT-BIH-ARR 48 47 7803 92,754 

AHA 155 - 32,403 317,612 

We ran all benchmark datasets, as defined in Table 5, on all existing task scheduling methods 
and the proposed method to evaluate the efficiency and effectiveness of all processes. We explain 
the detail of all datasets as follows. There are four columns in benchmarks datasets, such as the 
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workload name, the data size of all tasks inside in the dataset, required CPU instruction (CIns) to 
run all assignments, and several tasks to be executed. 

Table 5. Heartbeat datasets workload. 

Workload Data Size (MB) C.Ins. (MI) No. of Tasks 
MIT-BIH-SVDM 500 5.8 825 

MIT-BIH-AR 800 6.8 750 
AHA 900 7.8 1000 

5.4. Component Calibration of Proposed Algorithm 

The HCCETS has three components for calibration, such as task prioritizing, task scheduling 
and fuzzy based cost-efficient rescheduling. The study exploited RPD (relative percentage 
deviation) to evaluate the performance of the algorithm; the calculation of RPD is defined as follows:  

% 100%Z ZRPD
Z

∗

∗

−= ×  (13) 

Z  is the initial task scheduling solution to the assigned task on the fog server j . On the 

contrary, *Z  is the optimal solution among all solutions while any task has already been assigned 
to the fog server.  

5.5. Performance Metrics 

There are many metrics to be taken into consideration for the experiment. Those are the error rate 
of tasks, deadlines, execution costs, bandwidth utilization costs, and QoS requirements of a task 
based on its deadline and cost constraints. 

 
Figure 5. Health care based fog cloud system. 
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5.6. Baseline Approaches and System 

This study compared the proposed system and algorithm with the following baseline 
approaches. 

• Baseline 1: This study implement the heterogeneous earliest finish time [40] method to 
schedule autonomous healthcare application tasks to the heterogeneous clouds. This study 
processed all tasks through its different phases until completion.  

• Baseline 2: This approach makes a topological order of processors such as fog cloud and by 
handing over their various priorities. This process is continuous in anticipation of a suitable 
schedule being gained [41].  

• Base-Frame 1: This study implements existing healthcare [18] for IoMT applications that 
provide resources based on the heterogeneous cloud without any prioritizing tasks during 
scheduling.  

• Base-Frame 2: This study implements the existing healthcare mobile cloud system [42], 
which offers services to the IoT application without a guaranteed deadline constraint.  

5.7. Algorithm and System Comparison 

The healthcare based fog cloud system (HCBFS) is a cost-efficient system that ensures the task 
quality of experiment (QoE) of different tasks during assigning and processing in the heterogeneous 
fog server environment. The management of real-time generated data by different sensors and the 
stochastical arrival of tasks to the system is not easy. Therefore, the study estimated each task 
execution time, then prioritized them and performed initial scheduling without any delay. After 
that, the fuzzy-based efficient algorithm reschedules all tasks with minimum cost under their 
deadline requirements. Figure 6 illustrates that the HCBFS has a lower error rate (i.e., failure ratio of 
tasks) during offloading and scheduling on different heterogeneous fog servers. The current study 
did not focus on error ratea and the QoE of tasks, it only considered the scheduling situation without 
any deadline constraint. The study’s proposed framework adopts any environmental changes 
during the schedule, and reduces the applications and improves the overall performance as 
compared to the current static fog cloud architectures. 

 
Figure 6. Error rate of task. 
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5.8. Task Scheduling 

The proposed HCCETS is composed of different phases such as task prioritization, task 
scheduling, and a fuzzy-based cost-efficient rescheduling phase. It is similar to HEFT heuristics; 
however, HEFT did not directly apply to the cost-efficient task scheduling problem without any 
further improvement. 

5.8.1. Deadline Quality Aware Satisfaction 

As the study suggests, the system schedules N numbers with deadlines into heterogeneous fog 
servers. It is significant to allocate critical healthcare tasks in a certain way that must execute in their 
deadlines. In this system, we have abandon computing resources to schedule requested under their 
deadlines. Generally, tasks miss their deadlines due to resource-constrained issues in the servers. 
Therefore, the author takes different fog servers with distinctive capacities to avoid any failure of 
job. This study sets the sum of deadlines for completing tasks under 2.5 points. Figure 7 shows the 
relative percentage ratio of the objective function while considering that the deadline metric lower 
while exploiting the proposed HCCETS framework. The main reason behind this is that Baseline 1 
and baseline operated homogeneous fog cloud servers with limited resource capabilities often 
suffer from many failures of tasks during scheduling. Figure 7a,b proves that the RPD% of the 
objective is improved by exploiting HCCETS as compared to the existing baseline approaches. The 
main cause is that the existing baseline heuristics approach do not considered the rescheduling 
situations when they make task assignments to the heterogeneous clouds, whereas Figures 8–11 
show that HCCETS also reduces the cost of bandwidth utilization cost, CPU utilization cost, and 
task scheduling for all requested tasks. 

  
(a) (b) 

Figure 7. Objective function With deadline constraint. (a,b) the relative percentage ratio of the 
objective function. 

5.8.2. Bandwidth Utilization during Scheduling and Feedback Results 

In the proposed HCBFS system, the placement distributed fog servers are very resilient in 
running IoT healthcare applications in an efficient manner. The bandwidth utilization of user 
devices when submitting tasks to the fog servers and getting back their feeds consume less 
bandwidth as compared to the existing scheduling methods. The principle behind that is that the 
scheduler chooses the nearest fog server for task execution to minimize bandwidth utilization cost. 
Figure 8a shows that the relative percentage deviation of the HCCETS while using bandwidth cost 
incurs lower utilization of metric bandwidth during scheduling as compared to the edge of 
computing existing methods. As Baseline 1 and Baseline 2 exploited sco-operative edge cloud and 
public clouds for bandwidth utilization, it requires a lot of bandwidth to send and receive tasks in 
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the system. As it is similar to feedback result, Figure 8b illuminates HCCETS placed flexible and 
proximal to the user application and incurs lower feedback download cost as compared to the 
centric cloud. 

5.8.3. CPU Utilization Cost 

IoMT applications consist of different kinds of tasks such as critical tasks and non-critical tasks. 
Risky jobs require immediate resources for execution. Generally, this process is costly and incurs 
extra cost during scheduling in the system. However, non-critical tasks may be scheduled into a 
tawdry fog cloud server because they have deadlines for their executions. The proposed HCCETS 
schedules critical functions to the high-performance fog servers (expensive cost), and non-critical 
tasks to the cheap fog servers; in this way, the author can maintain the overall cost of the 
applications. Figure 9a demonstrates that the HCCETS incurs lower RPD% in terms of CPU 
utilization as compared to the existing Baseline 1 and Baseline 2. Where existing studies exploited 
homogeneous fog cloud systems with steep costs, and scheduled all tasks on the same type of 
servers, it incurred unreasonable costs during scheduling. We considered the dynamic environment 
of network contents to the recognized problem, and it can be seen that Figure 9b HCCETS is an 
adaptive method during runtime changes in the system that doesn't affect application performance. 

5.8.4. Initial Task Scheduling 

Initially, this study scheduled all tasks based on available resources in the fog server 
environment under their deadline requirements. There is no wait time for each job in the system, 
because all tasks are scheduled immediately into heterogeneous fog clouds while satisfying their 
deadlines. As the author assumed to abandon resources regardless of servers, Figure 10a shows that 
HCCETS improved system utilization cost as compared to the homogeneous system based Baseline 
1 and Baseline 2. The main limitation of the [40,41] homogenous system is that they have resource 
constraints and non-allocated tasks must wait until resources become free after some time. The 
swapping between high-cost fog server1 to low fog server 2 is quite useful once the scheduler does 
the initial schedule. HCCETS reshuffled tasks placement between fog servers to minimize the 
system cost, as shown in Figure 10b. 

5.8.5. Cost Efficient Rescheduling for All Tasks 

This study rescheduled all tasks in a cost-efficient manner to improve the overall system costs 
as well as the bandwidth utilization cost of the IoMT applications. Similarly, existing Baseline 1 and 
Baseline 2 studies have only focused on the computational cost of servers regardless of the 
bandwidth utilization cost. Hence, Figure 11a proves that processing cost of fog server2 after 
swapping from fog server 1 incurs lower RPD% by the HCCETS as compared to existing studies. It 
is because rescheduling all pre-scheduled tasks from higher-cost fog server 1 to lower-cost fog 
server 2 reduces the system cost of applications. The placement of fog server 2 is flexible to users, 
and it gained lower feedback (e.g., download) results from price while exploited HCCETS 
framework. Figure 11b proved that HCCETS outperforms existing baseline approaches that did not 
focus the placement of their servers during the task scheduling problem. 
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(a) (b) 

Figure 8. Utilization cost of fog servers. (a,b) shows that the relative percentage deviation of the 
HCCETS incurs lower utilization of metric bandwidth. 

  
(a) (b) 

Figure 9. CPU utilization of fog servers. (a,b) the HCCETS incurs lower RPD% in terms of CPU 
utilization as compared to the existing Baseline 1 and Baseline 2. 
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(a) (b) 

Figure 10. Scheduling of tasks to fog servers. (a,b) HCCETS improved system utilization cost as 
compared to the homogeneous system based Baseline 1 and Baseline 2. 

  
(a) (b) 

Figure 11. Rescheduling of tasks to fog servers. (a,b) the HCCETS incurs lower RPD% as compared 
to existing studies by rescheduling all pre-scheduled tasks to improve the efficacy of system 
utilization. 

6. Conclusions 

In this paper, the author considered the cost-efficient task scheduling problem for 
healthcare-based heartbeat medical applications in fog cloud systems. The objective was to offer 
omnipresent cloud services to the generated data with minimum cost. For minimizing the total cost, 
the author proposed a novel health care based fog cloud system (HCBFS) which determines the 
processing of submitted tasks of the application. This study devised a health care awareness 
cost-efficient task scheduling (HCCETS) algorithm framework, which is not only schedules all tasks 
with minimum cost but executes them under their deadlines. Performance evaluation shows that the 
proposed task scheduling algorithm framework outperforms the existing algorithm methods in 
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terms of cost. Fault tolerance is one of the major concerns to ensure the availability and reliability of 
services, as well as to perform the tasks. In order to minimize the impact of failure on the system and 
to ensure correct task execution, the system must be anticipated and be managed. Future work shall 
consider the fault tolerance, with security constraints on the fog cloud Internet of Thing medical 
applications. The HCCETS has some limitations, such as it does not support awareness mobility 
services, fault-tolerant cost, and energy cost of the system. The HCCETS does not focus on security 
costs. However, future work will focus on these aspects for further improvements. 

Author Contributions: Conceptualization, A.L.; Formal analysis, T.Y.W. and A.L.; Funding acquisition, R.G.R.; 
Investigation, Q.-u.a.M.; Methodology, Q.-u.a.M.; Project administration, Q.-u.a.M.; Resources, R.G.R.; 
Software, R.G.R.; Supervision, T.Y.W. and R.G.R.; Writing—review & editing, Q.-u.a.M. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This work was supported in part by Acknowledged IIRG012C-2019 and MRUN2019-3F. 

Conflicts of Interest: The authors declare that they have no conflict of interest. 

References 

1. Writing, G.M.; Mozaffarian, D.; Benjamin, E.; Go, A.; Arnett, D.; Blaha, M.; Cushman, M.; Das, S.; de 
Ferranti, S.; Després, J. Heart disease and stroke statistics-2016 update: A report from the american heart 
association. Circulation 2016, 133, e38.  

2. Li, H.; Ge, J.J.I.H. Cardiovascular diseases in china: Current status and future perspectives. IJC Heart Vasc. 
2015, 6, 25–31. 

3. Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J.J.S. An iot-based computational framework for 
healthcare monitoring in mobile environments. Sensors 2017, 17, 2302. 

4. Scirè, A.; Tropeano, F.; Anagnostopoulos, A.; Chatzigiannakis, I.J.A. Fog-computing-based heartbeat 
detection and arrhythmia classification using machine learning. Algorithms 2019, 12, 32. 

5. Wu, W.; Pirbhulal, S.; Sangaiah, A.K.; Mukhopadhyay, S.C.; Li, G.J.F.G.C.S. Optimization of signal quality 
over comfortability of textile electrodes for ecg monitoring in fog computing based medical applications. 
Future Gener. Comput. Syst. 2018, 86, 515–526. 

6. Hayek, A.; Telawi, S.; Börcsök, J.; Daou, R.A.Z.; Halabi, N.J.H. Smart wearable system for safety-related 
medical iot application: Case of epileptic patient working in industrial environment. Health Technol. 2019, 
doi:10.1007/s12553-019-00335-2. 

7. Depari, A.; Fernandes Carvalho, D.; Bellagente, P.; Ferrari, P.; Sisinni, E.; Flammini, A.; Padovani, A.J.S. 
An iot based architecture for enhancing the effectiveness of prototype medical instruments applied to 
neurodegenerative disease diagnosis. Sensors 2019, 19, 1564. 

8. Sodhro, A.; Sangaiah, A.; Sodhro, G.; Lohano, S.; Pirbhulal, S.J.S. An energy-efficient algorithm for 
wearable electrocardiogram signal processing in ubiquitous healthcare applications. Sensors 2018, 18, 923. 

9. Sodhro, A.H.; Pirbhulal, S.; Qaraqe, M.; Lohano, S.; Sodhro, G.H.; Junejo, N.U.R.; Luo, Z.J.I.A. Power 
control algorithms for media transmission in remote healthcare systems. IEEE Access 2018, 6, 42384–42393. 

10. Sodhro, A.H.; Pirbhulal, S.; Sodhro, G.H.; Gurtov, A.; Muzammal, M.; Luo, Z.J.I. A joint transmission 
power control and duty-cycle approach for smart healthcare system. IEEE Sens. J. 2018, 19, 8479–8486. 

11. Muzammal, M.; Talat, R.; Sodhro, A.H.; Pirbhulal, S.J.I.F. A multi-sensor data fusion enabled ensemble 
approach for medical data from body sensor networks. Inf. Fusion 2020, 53, 155–164. 

12. Sodhro, A.H.; Li, Y.; Shah, M.A.J.I.C. Energy-efficient adaptive transmission power control for wireless 
body area networks. IET Commun. 2016, 10, 81–90. 

13. Pirbhulal, S.; Zhang, H.; E Alahi, M.; Ghayvat, H.; Mukhopadhyay, S.; Zhang, Y.-T.; Wu, W.J.S. A novel 
secure iot-based smart home automation system using a wireless sensor network. Sensors 2017, 17, 69. 

14. Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R.J.F.G.C.S. Healthfog: An 
ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in 
integrated iot and fog computing environments. Future Gener. Comput. Syst. 2020, 104, 187–200. 

15. Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.-T.J.I.T.O.B.E. Heartbeats based 
biometric random binary sequences generation to secure wireless body sensor networks. IEEE Trans. 
Biomed. Eng. 2018, 65, 2751–2759. 



Sensors 2020, 20, 441 20 of 21 

 

16. Petrakis, E.G.; Sotiriadis, S.; Soultanopoulos, T.; Renta, P.T.; Buyya, R.; Bessis, N.J.I.O.T. Internet of things 
as a service (itaas): Challenges and solutions for management of sensor data on the cloud and the fog. 
Internet Things 2018, 3, 156–174. 

17. Balas, V.E.; Solanki, V.K.; Kumar, R.; Ahad, M.A.R. A Handbook of Internet of Things in Biomedical and Cyber 
Physical System; Springer: Berlin/Heidelberg, Germany, 2019. 

18. Mahmud, R.; Koch, F.L.; Buyya, R. Cloud-fog interoperability in iot-enabled healthcare solutions. In 
Proceedings of the 19th International Conference on Distributed Computing and Networking, Varanasi, 
India, 4–7 January 2018; p. 32. 

19. Bhatia, M.; Sood, S.K.J.M.N. Exploring temporal analytics in fog-cloud architecture for smart office 
healthcare. Mob. Netw. Appl. 2019, 24, 1392–1410. 

20. Mehdipour, F.; Javadi, B.; Mahanti, A.; Ramirez-Prado, G.J.F.; Principles, E.C. Fog computing realization 
for big data analytics. Fog Edge Comput.: Princ. Paradig. 2019, doi:10.1002/9781119525080.ch11. 

21. Takiddeen, N.; Zualkernan, I. Smartwatches as iot edge devices: A framework and survey. In Proceedings 
of the IEEE 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, 
Italy, 10–13 June 2019; pp. 216–222. 

22. Jagadeeswari, V.; Subramaniyaswamy, V.; Logesh, R.; Vijayakumar, V.J.H.I.S. A study on medical internet 
of things and big data in personalized healthcare system. Health Inf. Sci. Syst. 2018, 6, 14. 

23. Gu, F.; Niu, J.; Jin, X.; Yu, S. Fdfa: A fog computing assisted distributed analytics and detecting system for 
family activities. Peer-to-Peer Netw. Appl. 2019, 1–15. doi:10.1007/s12083-018-0714-5. 

24. Wah, T.Y.; Gopal Raj, R.J.A.S. Reservoir computing based echo state networks for ventricular heart beat 
classification. Appl. Sci. 2019, 9, 702. 

25. Lakhan, A.; Xiaoping, L. Energy aware dynamic workflow application partitioning and task scheduling in 
heterogeneous mobile cloud network. In Proceedings of the IEEE 2018 International Conference on Cloud 
Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, 15–17 November 2018; pp. 1–8. 

26. Monteiro, K.; Rocha, É.; Silva, É.; Santos, G.L.; Santos, W.; Endo, P.T. Developing an e-health system based 
on iot, fog and cloud computing. In Proceedings of the 2018 IEEE/ACM International Conference on 
Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; 
pp. 17–18. 

27. Ding, R.; Li, X.; Liu, X.; Xu, J. A cost-effective time-constrained multi-workflow scheduling strategy in fog 
computing. In Proceedings of the International Conference on Service-Oriented Computing; Springer: 
Berlin/Heidelberg, Germany, 2018; pp. 194–207. 

28. Akrivopoulos, O.; Amaxilatis, D.; Mavrommati, I.; Chatzigiannakis, I.J.J.O.A.I.; Environments, S. Utilising 
fog computing for developing a person-centric heart monitoring system. J. Ambient Intell. Smart Environ. 
2019, 11, 237–259. 

29. Li, C.; Bai, J.; Tang, J.J.J.O.P.; Computing, D. Joint optimization of data placement and scheduling for 
improving user experience in edge computing. J. Parallel Distrib. Comput. 2019, 125, 93–105. 

30. Li, C.; Zhang, J.; Tang, H.J.T.J.O.S. Replica-aware task scheduling and load balanced cache placement for 
delay reduction in multi-cloud environment. J. Supercomput. 2019, 75, 2805–2836. 

31. Abdelmoneem, R.M.; Benslimane, A.; Shaaban, E.; Abdelhamid, S.; Ghoneim, S. A cloud-fog based 
architecture for iot applications dedicated to healthcare. In Proceedings of the ICC 2019-2019 IEEE 
International Conference on Communications (ICC), Dublin, Ireland, 20–24 May 2019; pp. 1–6. 

32. Tang, H.; Li, C.; Bai, J.; Tang, J.; Luo, Y.J.C.C. Dynamic resource allocation strategy for latency-critical and 
computation-intensive applications in cloud—Edge environment. Comput. Commun. 2019, 134, 70–82. 

33. Karthick, T.; Manikandan, M.J.C.; Practice, C.; Experience. Fog assisted iot based medical cyber system for 
cardiovascular diseases affected patients. Concurr. Comput.: Pract. Exp. 2019, doi:10.1002/cpe.4861. 

34. Luthra, M.; Koldehofe, B.; Steinmetz, R.J.K.-F.F.C. Adaptive complex event processing over fog-cloud 
infrastructure supporting transitions. KuVS-Fachgespräch Fog Comput. 2018, 2018, 17. 

35. Lin, S.-S.; Lin, J.-J.J.S. Development of a novel health promotion system based on wireless sensor network 
and cloud computing. Sens. Mater. 2019, 31, 939–952. 

36. Poongodi, T.; Krishnamurthi, R.; Indrakumari, R.; Suresh, P.; Balusamy, B. Wearable devices and iot. In A 
Handbook of Internet of Things in Biomedical and Cyber Physical System; Springer: Berlin/Heidelberg, Germany, 
2020; pp. 245–273. 



Sensors 2020, 20, 441 21 of 21 

 

37. Sanakkayala, S.; Joseph, S.C.; Venkatesha, A.; Polimera, R.; Pawar, R.S.; Dornemann, H.W. Heartbeat 
Monitoring of Virtual Machines for Initiating Failover Operations in A Data Storage Management System, 
Using Ping Monitoring of Target Virtual Machines. Google Patents 15/716,386, 5 April 2018. 

38. Boris, J.R. Data standards of the american college of cardiology foundation (accf) and the american heart 
association (aha) and the universal pediatric cardiac dataset. In Pediatric and Congenital Cardiac Care; 
Springer: Berlin/Heidelberg, Germany, 2015; pp. 287–294. 

39. Moody, G.B.; Mark, R. Mit-Bih Arrhythmia Database Directory; Harvard University-MIT Division of Health 
Sciences and Technology: Cambridge, MA, USA, 1992. 

40. Zhou, X.; Zhang, G.; Sun, J.; Zhou, J.; Wei, T.; Hu, S.J.F.G.C.S. Minimizing cost and makespan for 
workflow scheduling in cloud using fuzzy dominance sort based heft. Future Gener. Comput. Syst. 2019, 93, 
278–289. 

41. Wu, Q.; Zhou, M.; Zhu, Q.; Xia, Y.; Wen, J. Moels: Multiobjective evolutionary list scheduling for cloud 
workflows. IEEE Trans. Autom. Sci. Eng. 2019, 1–11. doi:10.1109/TASE.2019.2918691. 

42. Zhang, C.; Cho, H.-H.; Chen, C.-Y. Emergency-level-based healthcare information offloading over fog 
network. Peer-to-Peer Netw. Appl. 2019, 1–11. doi:10.1007/s12083-018-0715-4.  

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


