
sensors

Article

Lie Group Methods in Blind Signal Processing

Dariusz Mika 1,* and Jerzy Jozwik 2,*
1 Institute of Technical Sciences and Aviation, The State School of Higher Education in Chelm,

22-100 Chelm, Poland
2 Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
* Correspondence: dmika@pwsz.chelm.pl (D.M.); j.jozwik@pollub.pl (J.J.); Tel.: +48-501-401-421 (D.M.)

Received: 31 October 2019; Accepted: 7 January 2020; Published: 13 January 2020
����������
�������

Abstract: This paper deals with the use of Lie group methods to solve optimization problems in
blind signal processing (BSP), including Independent Component Analysis (ICA) and Independent
Subspace Analysis (ISA). The paper presents the theoretical fundamentals of Lie groups and Lie
algebra, the geometry of problems in BSP as well as the basic ideas of optimization techniques based
on Lie groups. Optimization algorithms based on the properties of Lie groups are characterized
by the fact that during optimization motion, they ensure permanent bonding with a search space.
This property is extremely significant in terms of the stability and dynamics of optimization algorithms.
The specific geometry of problems such as ICA and ISA along with the search space homogeneity
enable the use of optimization techniques based on the properties of the Lie groups O(n) and SO(n).
An interesting idea is that of optimization motion in one-parameter commutative subalgebras and
toral subalgebras that ensure low computational complexity and high-speed algorithms.

Keywords: geometric optimization; Independent Component Analysis; independent subspace
analysis; Lie groups; Lie algebra; toral subalgebra; sensors

1. Introduction

Blind signal processing (BSP) is currently one of the most attractive and fast-growing signal
processing areas with solid theoretical foundations and many practical applications. BSP has become
a vital research topic in many areas of application, particularly in biomedical engineering, medical
imaging, speech and image recognition, communication systems, geophysics, economics, and data
analysis. The term “blind processing” originates from the basic feature of these processing methods,
i.e., the fact that there is no need to use any training data or a priori knowledge to obtain results.
These methods include, among others, Independent Component Analysis (ICA), independent subspace
analysis (ISA), sparse component analysis (SCA), nonnegative matrix factorization (NMF), singular
value decomposition (SVD), principal component analysis (PCA) and minor component analysis
(MCA) as well as the related eigenproblem and invariant subspace problem. Optimization problems of
this kind often occur in the context of artificial neural networks, signal processing, pattern recognition,
computer vision and numeric [1]. BSP is widely used in biomedical engineering, in technical diagnostics
as well as in energy. The work [2] presents the use of SCA to analyze biomedical EEG and fMRI signals
proving the effectiveness of this method in the detection of ocular artifacts. The use of SCA in technical
diagnostics is presented in [3]. The three-dimensional geometric features-based SCA algorithm was used
for compound faults diagnosis of roller bearing. A similar topic was discussed in [4] where NMF was
used to extract error signals. The conducted experiments confirmed the effectiveness of these methods in
extract the fault features and diagnosis for roller bearing. An interesting use of BSP techniques in energy
issues is presented in [5]. Bayesian-optimized bidirectional Long Short-Term Memory (LSTM) method
was used for energy disaggregation aiming to identify the individual contribution of appliances in the

Sensors 2020, 20, 440; doi:10.3390/s20020440 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8845-0764
http://www.mdpi.com/1424-8220/20/2/440?type=check_update&version=1
http://dx.doi.org/10.3390/s20020440
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 440 2 of 18

aggregate electricity load. The use of machine learning techniques as k-means clustering and Support
Vector Machine for low-complexity energy disaggregation is presented in [6].

This paper primarily focuses on ICA and ISA problems, which does not, however, limit the
applicability of the described methods to other types of problems. The scope of this paper is mainly
limited to presenting the geometry of ICA and ISA problems and the application of Lie groups and Lie
algebra without providing specific algorithms.

Standard Independent Component Analysis (ICA) consists of the linear transformation of
multidimensional data such that the transformed signal components are as much statistically
independent as possible. The effectiveness of ICA depends on the correct choice of a cost function and
an optimization strategy. Most numerical optimization techniques assume that the model’s parameter
space is a usual Euclidean space. In many cases, however, the parameter space has a non-linear
structure with its unique non-Euclidean geometry. From a mathematical point of view, the space of
search equipped with an inner product takes on the properties of Riemannian manifolds, often with
desired algebraic properties [7].

The authors of works in this field take advantage of the specific internal geometry and algebraic
properties of models such as the orthogonal group O(n) or the special orthogonal group SO(n).
Apart from the general group properties, these groups also have the structure of a smooth differential
manifold, and thus acquire the Lie group properties and the corresponding Lie algebra. The application
of this convenient structure to ICA algorithms is described in [8,9].

From the point of view of standard optimization techniques, in issues of this type one deals with
the so-called constrained optimization. The problem of constrained optimization occurs in many issues
related to signal processing. In the case of ICA, optimization of this kind consists of looking for extrema
of the cost function on the set of matrices satisfying the condition of orthonormal columns (WTW = I).
However, with standard constrained algorithms one operates in Euclidean space, so in each iterative
step the matrix orthogonality is lost. To restore the orthogonality condition, it is necessary to perform
orthogonalization in each iterative step (e.g., by the well-known Gram-Schmidt orthogonalization
process), which, however, reduces the convergence rate of the algorithms. Other algorithms use
the Lagrangian method of optimization by the addition to the cost function of the so-called penalty
function to prevent an orthogonality deviation. However, such algorithms are characterized by a low
convergence rate and poor quality of the achieved optimum.

If there is a limitation in the form of matrix orthogonality, one can use an alternative method
that ensures “locked” with the hyper-surface of orthogonal matrices during optimization motion.
This method uses the group structure of a set of orthogonal square matrices which, apart from the
properties of a smooth differential manifold, provides the set with the properties of a special structure
known as a Lie group.

2. Model Definition (ICA, ISA)

Standard independent components analysis (ICA) consists of estimating a sequence of p statistically
independent components (ICs) s1, . . . , sp and the mixing matrix A of dimension n × p with only a
sequence of n observed signals x1, . . . , xn. Giving the source signals and observed signals in the form of

the source vector s =
(
s1, . . . , sp

)T
and the vector of observed (mixed) signals x = (x1, . . . , xn)

T, where
T stands for transposition, the standard linear ICA model takes the form (1):

x = As (1)

This assumes that there is no additional noise signal in the observed signal (Figure 1). The ICA
model thereby formulated is characterized by a scale and permutation ambiguity, i.e., it is possible to
scale (multiply by a given constant) of any source signals si and at the same time to divide the i-th column
ai of the mixing matrix A by this constant, while the observed signal x remains unchanged. The same
phenomenon will occur at random transposition of any rows of the source vector s (permutation of the

Sensors 2020, 20, 440 3 of 18

source vector s) and the same transposition of the columns of the mixing matrix A. It is customary
to assume that the source signals have the unit variance (Cs = E

(
ssT

)
= I). In non-negative ICA, it is

additionally assumed that the source signals si satisfy the condition si ≥ 0 [10,11].

Sensors 2020, 20, x FOR PEER REVIEW 3 of 18

E(𝑠𝑠) = 𝐼). In non-negative ICA, it is additionally assumed that the source signals 𝑠 satisfy the
condition 𝑠 ≥ 0 [10,11].

Figure 1. Schematic block scheme of Independent Component Analysis.

A solution for the ICA problem when 𝑛 = 𝑝 consists of finding the demixing (filtration) matrix 𝑄 = 𝐴 , 𝑄 ∈ 𝐆𝐥(𝑛) where the filtration matrix 𝑄 belongs to a general linear group 𝐆𝐥(𝑛) of non-
singular matrices det (𝑄) ≠ 0. Source signals are obtained via (2): �̂� = 𝑄 𝑥 = 𝑄 𝐴𝑠 (2)

where �̂� is the estimator of a source vector s (it meets the statistical assumptions for a source signal).
To reduce the computation load in ICA, the pre-processing usually involves performing the

whitening of the observed signal to obtain the signal 𝑧 = 𝐵𝑥 = 𝐵𝐴𝑠 , where 𝐵 is the whitening
matrix, with unit variance and the decorrelation 𝐶 = E(𝑧𝑧) = 𝐼. Assuming that 𝐶 = 𝐼, we get (3): 𝐼 = 𝐶 = E(𝑧𝑧) = 𝐵𝐴E(𝑠𝑠)(𝐵𝐴) = 𝐵𝐴(𝐵𝐴) (3)

From this it follows that (𝐵𝐴) = (𝐵𝐴) . Hence, the transformation from 𝑠 to 𝑧 takes place
via an orthogonal matrix 𝐵𝐴. Therefore, if �̂� = 𝑊 𝑧 = 𝑊 𝐵𝐴𝑠 = 𝑈𝑠 , then the matrix 𝑈 = 𝑊 𝐵𝐴
must be an orthogonal matrix (permutation matrix), and thus a new filtering matrix 𝑊 (after
whitening) must also satisfy the orthogonality condition. The whitening of the observed signal
therefore simplifies the ICA problem from optimization on the general linear group 𝐆𝐥(𝑛) (matrices 𝑄 only satisfying the invertibility condition det (𝑄) ≠ 0) to optimization on the special orthogonal
group 𝐒𝐎(𝑛) (matrices 𝑊 satisfying the orthogonality condition 𝑊 𝑊 = 𝐼). Both groups are Lie
groups at the same time.

Standard ICA is based on the assumption that 𝑛 = 𝑝, i.e., the number of source signals 𝑠 is
known and equal to the number of observed signals 𝑥 . ICA also yields interesting results in a more
general case when the number of estimated source signals p is unknown. In this case, it can be 𝑛 ≠ 𝑝.
When 𝑛 < 𝑝, i.e., the number of observed signals is smaller than the number of source signals, the
problem is known as over complete bases ICA, whereas when 𝑛 > 𝑝 it is called under complete bases
ICA. This kind of problem can be formally considered to be unconstrained optimization on the Stiefel
manifold [12,13]. It is also possible to solve ICA problems for the case 𝑝 = 1. This type of problem is
often called Single Channel Source Separation [14,15].

Hyvarinen and Hoyer introduced independent subspace analysis (ISA) [16] by omitting the
statistical independence condition between extracted source components. The source vector 𝐬 is
composed in 𝑑 -tuple (𝑘 = 1, … , 𝑟), where for a given tuple a statistical dependence between its
source signals 𝑠 is allowed, while signals belonging to different tuples are statistically independent.
When using the whitening process, the ISA problem boils down to finding orthogonal matrices 𝑊 𝑊 = 𝐼 as in standard ICA. However, due to the statistical relationship between the source signals
in the tuple, ISA problem optimization cannot be performed on an ordinary Stiefel manifold. It is
necessary to introduce a different, more universal manifold allowing for additional symmetries. This
manifold is known as a flag manifold.

Traditionally, the ICA model assumes the statistical independence of extracted source signals. It
turns out, however, that there are reasons to replace the orthonormality condition with the condition

Figure 1. Schematic block scheme of Independent Component Analysis.

A solution for the ICA problem when n = p consists of finding the demixing (filtration) matrix
QT = A−1, Q ∈ Gl(n) where the filtration matrix Q belongs to a general linear group Gl(n) of non-
singular matrices det(Q) , 0. Source signals are obtained via (2):

ŝ = QTx = QTAs (2)

where ŝ is the estimator of a source vector s (it meets the statistical assumptions for a source signal).
To reduce the computation load in ICA, the pre-processing usually involves performing the

whitening of the observed signal to obtain the signal z = Bx = BAs, where B is the whitening matrix,
with unit variance and the decorrelation Cz = E

(
zzT

)
= I. Assuming that Cs = I, we get (3):

I = Cz = E
(
zzT

)
= BAE

(
ssT

)
(BA)T = BA(BA)T (3)

From this it follows that (BA)T = (BA)−1. Hence, the transformation from s to z takes place via
an orthogonal matrix BA. Therefore, if ŝ = WTz = WTBAs = Us, then the matrix U = WTBA must be
an orthogonal matrix (permutation matrix), and thus a new filtering matrix W (after whitening) must
also satisfy the orthogonality condition. The whitening of the observed signal therefore simplifies the
ICA problem from optimization on the general linear group Gl(n) (matrices Q only satisfying the
invertibility condition det(Q) , 0) to optimization on the special orthogonal group SO(n) (matrices W
satisfying the orthogonality condition WTW = I). Both groups are Lie groups at the same time.

Standard ICA is based on the assumption that n = p, i.e., the number of source signals si is known
and equal to the number of observed signals xi. ICA also yields interesting results in a more general
case when the number of estimated source signals p is unknown. In this case, it can be n , p. When
n < p, i.e., the number of observed signals is smaller than the number of source signals, the problem
is known as over complete bases ICA, whereas when n > p it is called under complete bases ICA.
This kind of problem can be formally considered to be unconstrained optimization on the Stiefel
manifold [12,13]. It is also possible to solve ICA problems for the case p = 1. This type of problem is
often called Single Channel Source Separation [14,15].

Hyvarinen and Hoyer introduced independent subspace analysis (ISA) [16] by omitting the
statistical independence condition between extracted source components. The source vector s is
composed in dk-tuple (k = 1, . . . , r), where for a given tuple a statistical dependence between its source
signals si is allowed, while signals belonging to different tuples are statistically independent. When
using the whitening process, the ISA problem boils down to finding orthogonal matrices WTW = I as
in standard ICA. However, due to the statistical relationship between the source signals in the tuple,
ISA problem optimization cannot be performed on an ordinary Stiefel manifold. It is necessary to

Sensors 2020, 20, 440 4 of 18

introduce a different, more universal manifold allowing for additional symmetries. This manifold is
known as a flag manifold.

Traditionally, the ICA model assumes the statistical independence of extracted source signals.
It turns out, however, that there are reasons to replace the orthonormality condition with the condition
of source signal normality [17]. A precise definition of the ICA problem consists of finding a linear
non-orthogonal transformation (of the coordinate system) of multidimensional data such that the
transformed data have minimal mutual information. Hyvarinen [18] demonstrated (in an ICA problem)
the differences between the use of cost functions based on mutual information and those based
on the so-called non-Gaussianity. Achieving maximum de-correlation by maximizing the sum of
non-Gaussianity of independent components (ICs) is not necessarily related to the minimization
of mutual information (MI). In addition, the orthonormality condition leads to a smaller subset of
matrices, which simplifies the optimization process yet may reduce its quality. Orthonormality imposes
a greater limitation on the degrees of freedom than normality. In standard ICA, the orthonormality
condition of n× n filtering matrices reduces the number of the degrees of freedom to (n− 1)/2, while
the normality condition increases the number of free parameters to n(n− 1), which considerably
improves the quality of obtained results. A problem of this type can be formally considered to be the
unconstrained optimization of an oblique manifold [19,20].

3. Geometry of ICA, ISA and Other BSP Models

The manifolds frequently arise from BSP tasks for a general do not have the group properties.
Nevertheless, they are homogenous spaces of the Lie groups. A homogenous space M is a manifold on
which the Lie group G acts transitively [21]. This property is fundamental for the considered manifolds
because it enables analyzing them as quotient spaces. As mentioned in Section 2, the optimization
problem in standard ICA (ISA) boils down to optimizing on the general linear group Gl(n) (matrices
Q only satisfy the invertibility condition det (Q) , 0). The whitening of the observed signal simplifies
the ICA problem to optimization on the special orthogonal group SO(n) (matrices W satisfy the
orthogonality condition WTW = In). In the case of an under complete problem p < n, i.e., when the
number of extracted ICs is smaller than the number of observed signals, the set of filtering matrices
can be treated as an orthogonal Stiefel manifold St(n, p) defined as the set of orthonormal matrices of
dimension n× p with the form (4):

St(n, p) =
{
W =

(
w1, . . . , wp

)∣∣∣∣W ∈ Rn×p, WTW = Ip, rank(W) = p
}

(4)

which can be regarded as the quotient space arising from the orthogonal group.
Lie group G = O(n) acts transitively on the Stiefel manifold via (5):

O(n) × St(n, p) 3 (Q, W)→ QW ∈ St(n, p) (5)

where Q ∈ O(n), W ∈ St(n, p). It is possible to demonstrate that for two given points W1, W2 ∈ St(n, p)
there exists Q ∈ O(n) such that W2 = QW1. This means that starting from any point W0 ∈ St(n, p) it
is possible to reach any point W ∈ St(n, p) by the G action. Resorting to group theory terminology,
one can say that the entire manifold St(n, p) is equivalent to the single orbit G(W0) of a given point
W0 where

G(W0) =
{
W = QW0

∣∣∣Q ∈ O(n), W0 ∈ St(n, p)
}

(6)

The point W on the manifold St(n, p) can be expressed via a certain point Q on O(n). The mapping
π : Q→W is surjective, i.e., many to one (projective mapping). Redundancy of this mapping is
described by so-called the isotropy subgroup H of the point W0. It is a set of matrices that do not
change W0

H =
{
N ∈ O(n)| N W0 = W0

}
(7)

Sensors 2020, 20, 440 5 of 18

The isotropy subgroup H ∈ O(n) of the group O(n) of the point W0 ∈ St(n, p) has the form (8):

H = (W0, W0⊥)

(
Ip 0
0 O(n− p)

)
(W0, W0⊥)

T (8)

where W0⊥ ∈ St(n, n− p) is any n× (n− p) matrix that satisfies the condition (W0, W0⊥) ∈ O(n). It is
easy to check that the isotropy condition of point W0 is satisified (9):

H·W0 = (W0, W0⊥)

(
Ip 0
0 O(n− p)

)
(W0, W0⊥)

TW0 = W0 (9)

Choosing W0 =

(
Ip

0n−p,p

)
the isotropy subgroup W0 is a set H =

(
Ip 0
0 O(n− p)

)
.

In this shot two n × n orthogonal matrices represent the same point of the Stiefel manifold if their
first p columns are identical or equivalently, if they are related by right multiplication of a matrix of the

form
(

Ip 0
0 O(n− p)

)
where O(n− p) is an orthogonal matrix group of dimension (n− p)× (n− p) [1].

From a mathematical point of view, we say that such representations are in an equivalence relation.
All matrices in an equivalence relation form what is called the equivalence class [W]. Thus, the point
on the Stiefel manifold is the equivalence class [W] of n× n orthogonal matriceswith identical first p
columns, while the Stiefel manifold is a quotient space of the form (10):

St(n, p) � O(n)/O(n− p) (10)

and specifically as St(n, p) � O(n)/H where H =

(
Ip 0
0 O(n− p)

)
. However, H is isomorphic to

O(n− p), i.e., H � O(n− p), therefore St(n, p) � O(n)/O(n− p).
There are many applications for the problem formulated as the finding of (zero) extreme of a

given field defined in a non-Euclidean subspace of dimension p embedded in the Euclidean space Rn.
This non-Euclidean subspace is known as the Grassmann manifold Gr(n, p;R) [22,23]. Grassmann
manifolds can be described as an equivalence class of n× p orthogonal matrices spanning the same
p-dimensional subspace [W] =

{
WO(p)

∣∣∣W ∈ St(n, p)
}

. Therefore, from a theoretical point of view,
the Grassmann manifold can be expressed as the quotient space Gr(n, p) � St(n, p)/O(p) and given
that St(n, p) � O(n)/O(n− p), the Grassmann manifold Gr(n, p) can also be seen as the quotient space

O(n)/O(p) ×O(n− p). In this case, the equivalence class [W] = {W
(

Op 0
0 O(n− p)

)∣∣∣W ∈ O(n)
}

is a set of square n-dimensional orthogonal matrices whose first p columns span the same
p-dimensional subspace. Manifolds of this type are used, among others, in invariant subspace
analysis, application-driven dimension reduction and subspace tracking [24,25].

When there is a need for a simultaneous (parallel) subspace extraction, as is the case in independent
subspace analysis (ISA), one resorts to the concept of generalized flag manifold, which is a manifold
consisting of orthogonal subspaces that constitutes a generalization of both Stiefel and Grassmann
manifolds [26–28]. The generalized flag manifold Fl(n, d1, . . . , dr;R) is defined as (11):

Fl(n, d1, . . . , dr;R) =
{
W

∣∣∣∣W ∈ Rn×p, WTW = Ip,
}

(11)

where the orthogonal matrix W takes the form (12):

W = [W1, . . . , Wr], Wi = [wi
1, . . . , wi

di
], (12)

Sensors 2020, 20, 440 6 of 18

where wi
k ∈ R

n, k = 1, . . . , dr for a specified i = 1, . . . , r is a set of orthogonal bases that span subspaces
Vi. The subspaces Vi are orthogonal relative to each other and satisfy the condition (13):

V = V1 ⊕V2 ⊕ . . .⊕Vr ⊂ Rn×p (13)

Points on the flag manifold are a set of vector spaces V which can be decomposed as (13).
If all di(1 ≤ i ≤ r) = 1, the manifold Fl(n, d1, . . . , dr;R) is reduced to the Stiefel manifold St(n, p).
If r = 1, it is reduced to the Grassmann manifold Gr(n, p). It is abbreviated as Fl(n, d) where
d = (d1, . . . , dr). The orthogonal group O(n) also acts transitively on the manifold Fl(n, d) via simple
matrix multiplication (14):

O(n) × Fl(n, d) 3 (Q, W)→ QW ∈ Fl(n, d) (14)

The isotropy subgroup H ∈ O(n) of the group O(n) of the point W ∈ Fl(n, d) has the form (15):

H = (W, W⊥)diag(R1, . . . , Rr, Rr+1)(W, W⊥)
T (15)

where diag(R1, . . . , Rr, Rr+1) is a block-diagonal matrix of the form

R1 0

. . .
...

... Rr

0 Rr+1

, Rk ∈

O(dk), (1 ≤ k ≤ r), Rr+1 ∈ O(n− p), W⊥ ∈ St(n, n− p) is any n × (n− p) matrix that satisfies the
condition [W, W⊥] ∈ O(n). It is easy to check that the isotropy condition of point W is satisified (16):

H·W = [W](W, W⊥)diag(R1, . . . , Rr, Rr+1)(W, W⊥)
T
·W = (WR, W⊥Rr+1)

(
WTWT

⊥

)
W

=
(
WRWT + W⊥Rr+1WT

⊥

)
W = WR = [W]

(16)

where R = diag(R1, . . . , Rr), WR = [W] = diag(WiRi), i = 1, . . . , r is an equivalence class of the point
on Fl(n, d). This means that any two matrices W1 and W2 satisfying the condition W2 = W1R =

(W1, . . . , Wr)diag(R1, . . . , Rr) = diag(W1R1, W2R2 , . . . , WrRr) are identified with the very same point
on the manifold Fl(n, d). Given the above,

Fl(n, d) � O(n)/O(d1) × . . .×O(dr) ×O(n− p) (17)

As it was already mentioned, the manifold Fl(n, d) is locally isomorphic to St(n, p) as a homogenous
space when all di(1 ≤ i ≤ r) = 1 and to the manifold Gr(n, p) when r = 1.

In terms of optimization, the homogeneity of the considered differential manifolds enables the
search (optimization motion) in the group O(n) or SO(n), and the use of optimization techniques
that are well known and adapted to these types of groups. Section 4 presents the basic ideas of
optimization methods used in SO(n) and the concept of toral subalgebra that is characteristic of
problems of this type.

4. Lie Group Optimization Methods. One-Parameter Subalgebra and Toral Subalgebra

The idea of a standard optimization procedure based on the Lie groups consists of performing
the optimization motion in the Lie algebra space and then mapping exp to find a solution in the Lie
group (manifold). The optimization motion in the group SO(n) starting from the point (matrix) W0

therefore consists of, first, the transition to the Lie algebra Ω = log W ∈ so(n) via mapping inversely to
the exponentiation log := exp−1 of motionin the Lie algebra (performing an operation of addition (of
matrices) in the abelian group) in order to obtain a new antisymmetric matrix Ω′ ∈ so(n) and, finally,
returning to the Lie group via exponential mapping W′ = exp Ω′ ∈ SO(n). A simple update method
using line search procedure relies on finding the search direction in Lie algebra so(n) calculating

Sensors 2020, 20, 440 7 of 18

the gradient of cost function J in Lie algebra space. This gradient must be skew-symmetric (see
Appendix A) so (18) [9]:

∇A J = (∇w J) WT
−W(∇w J) T (18)

Applying the steepest descent procedure with small constant update factor µ we start from
A = 0n ∈ so(n), move to B = −µ∇A J, map to R = exp(B) ∈ SO(n) and finally perform rotating
(multiplicative) update Wk+1 = exp(−µ∇A J)Wk. This kind of optimization method is called a geodesic
flow method [9].

At this point it is necessary to comment on motion in the Lie algebra. In our context, the addition
of vectors in the Lie algebra so(n) can only be useful if it is matched by multiplication in the Lie group
SO(n). Then one can write (19):

exp(A) exp(B) = exp(B) exp(A) = exp(A + B) (19)

As was already mentioned, this equation holds true only when the matrices A and B commutate
[A, B] = 0. This condition is satisfied for all matrices with so(2). When n ≥ 3, this condition is not
satisfied for all matrices in the algebra. When the matrices not commutate (non-abelian Lie algebra),
Equation (19) is not satisfied and optimization motion in the Lie algebra (sum A+B) in a direction
of e.g., the cost function gradient will not be reflected in the Lie group exp(A + B) , exp(A) exp(B).
However, taking exp(A) = In, which is tantamount to selecting an initial matrix A0 = 0n, this condition
will always be satisfied. In this case, [A0, B] = 0, and Equation (19) is satisfied too. This is tantamount
to motion in the one-parameter Lie algebra. By selecting A = tΩ for a random antisymmetric matrix
Ω ∈ so(n) and a scalar ∈ R, all matrices of this form commutate with each other (A = t1Ω, B = t2Ω :
[A, B] = t1Ωt2Ω − t2Ωt1Ω = 0). A set of such matrices soΩ(n) =

{
tΩ

∣∣∣Ω ∈ so(n), t ∈ R
}

is in itself a
Lie algebra known as a one-parameter subalgebra of the Lie algebra so(n). The subalgebra soΩ(n) is an
abelian (commutative) algebra related to the one-parameter subgroup R(t) = exp(tΩ). Optimization
motion in the subalgebra soΩ(n) is therefore an equivalent (generalization) to the idea of linear motion
in Euclidean space. In this case, the optimization procedure consists of searching for a minimum of the
cost function along the subalgebra soΩ1(n) (for a chosen search direction Ω1), which corresponds to
the search along the subgroup R(t).

Having found the cost function minimum (R(t)W0), where W0 is a starting point, a new direction
of linear searches Ω2 is selected, and the procedure is repeated until the desired convergence is achieved.
Plumblay [8] proposed a modification of the standard procedure described above. This modification
consists of moving the point of “origin” of the Lie algebra from a neutral element of the group to point
W. Due to the group properties SO(n), it can be written that W′ = RW for some matrix R ∈ SO(n).
Moving from the matrix W = InW to W′ = RW is therefore equivalent to moving from the identity
matrix In to the matrix R. This procedure consists of moving from the matrix 0n = log In ∈ so(n)
to Ω = log R ∈ so(n) in the Lie algebra and then returning to the group SO(n) via the exponential
mapping R = exp Ω and, finally, determining W′ = RW = (exp Ω)W ∈ SO(n). This is equivalent to
the concept of optimization motion in the one-parameter abelian subalgebra described above.

The above optimization procedures are computationally expensive due to the necessity of
performing (computationally expensive) matrix exponentiation in every iterative step. The representation
of antisymmetric matrices in the Jordan canonical form enables the decomposition of optimization
movement in the group SO(n) to commutative rotations in orthogonal planes. Every antisymmetric
matrix Ω can be presented in a block-diagonal form (for 2 m ≤ n) (20):

Ω = Qdiag(Φ1, . . . , Φm, 0, . . . , 0)Qt (20)

Sensors 2020, 20, 440 8 of 18

where diag(Φ1, . . . , Φm, 0, . . . , 0) is a block-diagonal matrix of the form

Φ1 . . . 0
. . .

Φm
...

... 0
. . .

0 0

,

Q ∈ SO(n), Φi =

(
0 ϕi
−ϕi 0

)
denotes the 2× 2 dimensional antisymmetric matrices [29]. This form is

known as the Jordan canonical form. Since the relationship exp
(
QTΩQ

)
= QT exp(Ω)Q holds true,

the matrix Ω can be decomposed into a sum of the form Ω = Ω1 + . . .+ Ωm where Ωi is the matrix
only containing the i-th Jordan matrix Φi and zeros beyond it (21):

Ω = Qdiag(Φ1, 0, . . . , 0)Qt + . . .+ Qdiag(0, . . . , Φm, 0, . . . , 0)Qt (21)

The exponentiation of thereby presented matrix Ω yields an orthogonal matrix W of the form (22):

W = exp Ω = Qdiag(R1, . . . , Rm, 1, . . . , 1)Qt (22)

where Ri =

(
cosϕi sinϕi
−sinϕi cosϕi

)
are the 2 × 2 dimensional rotation matrices. The matrix W can be

decomposed into a product of the matrix W = W1 . . .Wm where Wi has the form (23):

Wi = exp Ωi = Qdiag(1, . . . , 1, Ri, 1, . . . , 1)Qt (23)

One can notice that the exponentiation of the matrix Ω in the Jordan form is reduced to a simple
and inexpensive calculation of the functions sinϕi and cosϕi, which significantly increases the speed
of optimization algorithms. The Jordan canonical form of antisymmetric matrix can be obtained
via symmetric eigenvalue decomposition [29]. It can be observed that the antisymmetric matrix Ω
commutates with the symmetric matrix Ω2 = −ΩTΩ, which means that Ω and ΩTΩ have the same
eigenvectors and eigenvalues. The eigenvalues ΩTΩ occur in pairs corresponding to individual Jordan
matrices Φi.

This form can be visualized as compounding rotations (represented by Wi) in mutually orthogonal
planes. In addition, the rotation matrices Wi commutate [Wi, W j] = 0. The commutation property of
the rotation matrix Wi provides the possibility of using the optimization procedure on SO(n), moving
in the Lie algebra so(n).

The case of SO(4) is interesting from a geometrical point of view. The Jordan canonical form of
the antisymmetric matrix Ω contains two blocks (matrices) Φi:

Ω = Q

0 ϕ1

−ϕ1 0
0 0
0 0

0 0
0 0

0 ϕ2

−ϕ2 0

Qt (24)

Here, the orthogonal matrix W takes the form (25):

W = exp Ω = Q

cosϕ1 sinϕ1

−sinϕ1 cosϕ1

0 0
0 0

0 0
0 0

cosϕ2 sinϕ2

−sinϕ2 cosϕ2

Qt (25)

Sensors 2020, 20, 440 9 of 18

A visual representation of this case shows rotations in two mutually orthogonal planes, which
corresponds to toral geometry (Figure 2).

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

where 𝑅 = 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 are the 2 × 2 dimensional rotation matrices. The matrix 𝑊 can be

decomposed into a product of the matrix 𝑊 = 𝑊 … 𝑊 where 𝑊 has the form (23):

𝑊 = expΩ = 𝑄𝑑𝑖𝑎𝑔(1, … ,1, 𝑅 , 1, … ,1)𝑄 (23)

One can notice that the exponentiation of the matrix Ω in the Jordan form is reduced to a simple
and inexpensive calculation of the functions 𝑠𝑖𝑛𝜑 and 𝑐𝑜𝑠𝜑 , which significantly increases the
speed of optimization algorithms. The Jordan canonical form of antisymmetric matrix can be
obtained via symmetric eigenvalue decomposition [29]. It can be observed that the antisymmetric
matrix Ω commutates with the symmetric matrix Ω = −Ω Ω , which means that Ω and Ω Ω
have the same eigenvectors and eigenvalues. The eigenvalues Ω Ω occur in pairs corresponding to
individual Jordan matrices 𝛷 .

This form can be visualized as compounding rotations (represented by 𝑊) in mutually
orthogonal planes. In addition, the rotation matrices 𝑊 commutate [𝑊 , 𝑊] = 0. The commutation
property of the rotation matrix 𝑊 provides the possibility of using the optimization procedure on 𝐒𝐎(𝑛), moving in the Lie algebra 𝖘𝖔(𝑛).

The case of 𝐒𝐎(4) is interesting from a geometrical point of view. The Jordan canonical form of
the antisymmetric matrix Ω contains two blocks (matrices) 𝛷 :

Ω = 𝑄 0 𝜑−𝜑 0 0 00 00 00 0 0 𝜑−𝜑 0 𝑄 (24)

Here, the orthogonal matrix 𝑊 takes the form (25):

𝑊 = expΩ = 𝑄 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0 00 00 00 0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑄 (25)

A visual representation of this case shows rotations in two mutually orthogonal planes, which
corresponds to toral geometry (Figure 2).

Figure 2. Visual representation of the toral subalgebra 𝖙(𝑝) for 𝑝 = 2. The angles 𝜑 , 𝜑
and the matrices 𝑊 and 𝑊 are as in Equation (23). The broken line marks the search
curve for the case = 3.

From the point of view of optimization procedures, the rotation angles 𝜑 and 𝜑 should not
be free parameters (independent of each other). For the procedure to make sense, the curve over
which the search is carried out after a complete rotation (or its multiple) relative to one of the planes
of rotation should return to the starting point on the toral surface (Figure 2). This is possible when
for some 𝑡, the relationships 𝑡𝜑 = 2𝑘 𝜋 and 𝑡𝜑 = 2𝑘 𝜋 are satisfied for the integers 𝑘 and 𝑘 .

Figure 2. Visual representation of the toral subalgebra t(p) for p = 2. The angles ϕ1, ϕ2 and the matrices
W1 and W2 are as in Equation (23). The broken line marks the search curve for the case k1

k2
= 3.

From the point of view of optimization procedures, the rotation angles ϕ1 and ϕ2 should not be
free parameters (independent of each other). For the procedure to make sense, the curve over which the
search is carried out after a complete rotation (or its multiple) relative to one of the planes of rotation
should return to the starting point on the toral surface (Figure 2). This is possible when for some t,
the relationships tϕ1 = 2k1π and tϕ2 = 2k2π are satisfied for the integers k1 and k2. Therefore, the angle
of rotation should be described by the relationship ϕ1

ϕ2
= k1/k2 orϕ1 = aϕ2, where a = k1/k2 is a rational

number. This concept is naturally transferred to a general case of SO(n) for n > 4. The Jordan canonical
form represents optimization motion in one-parameter Lie subalgebra R(t) = exp(tΩ) ∈ soΩ(n) as
a rotation in p mutually orthogonal planes, and these rotations are commutative. The geometry of
2-dimensional torus for SO(4) can also be generalized to the geometry of the p-dimensional torus in
SO(n) where n = 2p for even n or n = 2p + 1 for odd n. This perception of motion in SO(n) leads to
the concept of toral subalgebra t(p) ⊂ so(n). If we consider a general case of motion on the surface of
a p-dimensional torus where the angles of rotation ϕi are not interrelated by the above relationship,
and individual independent planes of rotation are represented by a set p of commuting matrices Ωi

(Ω =
∑
i

Ωi). The motion (or rather rotation) on each of the independent planes of rotation can be

expressed in the form of a parameterized curve Bi = tiΩi, or actually via its simple exponentiation
Wi = exp(tiΩi). The set of independent parameters ti that can be identified with the angles of rotation
ϕi forms a coordinate system on the toral subalgebra t(p). Compared to the original n–dimensional
search space SO(n), the toral subalgebra t(p) is, however, an abelian algebra, which means that
motion in this search space is commutative. This ensures the possibility of motion in all directions
specified by the coordinates ti and their sum in the form B = t1Ω1 + . . .+ tpΩp will be reflected in the
composition of rotations W = exp B = exp(t1Ω1)· . . . · exp

(
tpΩp

)
. The optimization procedure based

on such a concept consists of decomposing to canonical form a specific antisymmetric matrix B ∈ so(n)
(this can be, for example, a cost function gradient as in the method of steepest descent), and thereby
formulating a toral subalgebra. Since the orthogonal matrix Q in the Jordan decomposition (24) is
constant, the transition to a new point W in the search space is done by determining p values of the sin
and cos functions corresponding to p planes of rotation. After finding in the subalgebra the point that
minimizes the cost function, a new antisymmetric matrix B′ ∈ so(n) is calculated and again presented
in the Jordan canonical form, which establishes a new toral subalgebra. The procedure is repeated
until the set minimum cost function is reached. A different problem concerns the determination of
the direction of search B ∈ so(n) and the manner of search along the subalgebra. The selection of
directions and the manner of searches depend on the adopted optimization procedure. It can be the
steepest descent (SD) method and, in general, geodesic flow, Newton’s method or conjugate gradients.
This problem has been extensively studied in [12,22,30].

Sensors 2020, 20, 440 10 of 18

5. Experimental Results

To illustrate the presented optimization methods on Lie groups, we will first present a rather
simply simulation experiment. The purpose of this example is to show how different algorithms
work on optimization problems with unitarity constraint. To this end, let us consider the Lie group of
complex numbers with the unit module U(1), which is isomorphic with the SO(2) group. The unitarity
constraint of elements of this group is a unit circle on the complex plane. The cost function we will
minimize will be J(z) = |z + 0.3|2 with constraint zz∗ = 1. For optimization, we will use five types of
steepest descent (SD) algorithms:

(1) algorithm SD unconstrained on the Euclidean space,
(2) algorithm SD on the Euclidean space with constraint restoration,
(3) algorithm SD on the Euclidean space with penalty function,
(4) non-geodesic algorithm SD on Riemannian space,
(5) geodesic algorithm SD on Riemannian space.

In Algorithm (1) update rule has the form zk+1 = zk − µ(zk + 0.3) where µ is the step size.
The quantity ∂J

∂z∗ = (zk + 0.3) is the gradient (The gradient of the function defined in the complex space

has the form [31]: ∂J
∂z∗ =

1
2

(
∂J

∂Re(z) +
∂J

∂Im(z)

)
where Re(z) and Im(z) is respectively the real and imaginary

part of a complex number z.) of the cost function J on the Euclidean space. Algorithm (2) uses the
same update rule, but after each iteration the unitarity condition is restored in the form zk+1 =

zk+1

|zk+1|
.

In Algorithm (3) we used the Lagrange multiplier method. The penalty function of the form (|zk|
2
− 1)

2

weighted by a Lagrange parameter λ has been added to the initial cost function in order to penalize

deviations from unitarity. In this case, update rule is zk+1 = zk − µ[(zk + 0.3) + λzk(|zk|
2
− 1)

2
]. In the

case of (4), the algorithm works in the Riemannian space (unit circle) determined by the condition
zz∗ = 1. At each point of zk the algorithm determines the search direction tangent to the unit circle and
after each iteration the obtained point is projected back to the unit circle. In this case, update rule has the
form zk+1 = π

(
zk − µ

(
∂J
∂z∗ − 〈z, ∂J

∂z∗ 〉z
))

= π(zk − µ[zk(1− |zk|
2) − 0.3(z2

k − 1)]) where π is the projection
operator on the unit circle. In Algorithm (5) we used a multiplicative optimization algorithm on the
Lie group described in Section 4. In this case, the update rule has the form zk+1 = exp(0.6 µiIm(zk))zk
where Im(zk) is imaginary part of zk. The starting point of each algorithm is z0 = exp(iπ/4). Figure 3
shows the results of the simulation.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18

𝑧 = . In Algorithm (3) we used the Lagrange multiplier method. The penalty function of the
form (|𝑧 | − 1) weighted by a Lagrange parameter 𝜆 has been added to the initial cost function in
order to penalize deviations from unitarity. In this case, update rule is 𝑧 = 𝑧 − 𝜇[(𝑧 + 0.3) +𝜆𝑧 (|𝑧 | − 1)] . In the case of (4), the algorithm works in the Riemannian space (unit circle)
determined by the condition 𝑧𝑧∗ = 1 . At each point of 𝑧 the algorithm determines the search
direction tangent to the unit circle and after each iteration the obtained point is projected back to the

unit circle. In this case, update rule has the form 𝑧 = 𝜋 𝑧 − 𝜇 ∗ − 〈𝑧, ∗〉 𝑧 = 𝜋(𝑧 − 𝜇[𝑧 (1 −|𝑧 |) − 0.3(𝑧 − 1)]) where 𝜋 is the projection operator on the unit circle. In Algorithm (5) we used
a multiplicative optimization algorithm on the Lie group described in Section 4. In this case, the
update rule has the form 𝑧 = exp (0.6 𝜇𝑖Im(𝑧))𝑧 where Im(𝑧) is imaginary part of 𝑧 . The
starting point of each algorithm is 𝑧 = exp (𝑖𝜋/4). Figure 3 shows the results of the simulation.

Figure 3. Comparison of SD algorithms for minimizing the cost function on group 𝐔(1). Methods in
the Euclidean versus Riemannian space (Lie group methods). * algorithm SD unconstrained on the
Euclidean space (1). algorithm SD on the Euclidean space with constraint restoration (2). +
algorithm SD on the Euclidean space with penalty function (3). o non-geodesic algorithm SD on
Riemannian space (4). geodesic algorithm SD on Riemannian space (5).

In the point 𝑧() = −0.3 the cost function reaches its minimum 𝐽 𝑧() = 0. However, this is the
undesirable minimum determined in the Euclidean space by Algorithm (1) not taking into account
the unitarity constraint (Figure 3). The minimum considering this constraint is at the point 𝑧 = −1
and the value of the cost function reaches its minimum over the Riemannian space, i.e., on the unit
circle 𝐽(𝑧) = 0.49 . Unconstrained SD Algorithm (1) and with penalty function (3) achieve
undesirable minimums in points respectively from 𝑧() = −0.3 and from 𝑧() = −0.5 while
Algorithms (2) (4) and (5) minimum appropriate 𝑧 = −1. In the case of Algorithms (2) and (4), a
characteristic “zig-zag” is associated with lowering the constraint surface and undesirable from the
point of view of optimizing properties. Algorithm (4) determines the SD direction tangent to the
constraint condition, thus leaving the unit circle in the optimization motion. The resulting point is
again projected into a unit circle. Algorithm (5) using the multiplicative update rule on the Lie group
(phase rotation) described in this article naturally ensures the condition of unitarity at each step. The
optimization movement takes place at each step along the geodesic line. This simple one-dimensional
example is only intended to present the idea of algorithms on Lie groups. The following is an example

Figure 3. Comparison of SD algorithms for minimizing the cost function on group U(1). Methods
in the Euclidean versus Riemannian space (Lie group methods). * algorithm SD unconstrained on
the Euclidean space (1).

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18

𝑧 = . In Algorithm (3) we used the Lagrange multiplier method. The penalty function of the
form (|𝑧 | − 1) weighted by a Lagrange parameter 𝜆 has been added to the initial cost function in
order to penalize deviations from unitarity. In this case, update rule is 𝑧 = 𝑧 − 𝜇[(𝑧 + 0.3) +𝜆𝑧 (|𝑧 | − 1)] . In the case of (4), the algorithm works in the Riemannian space (unit circle)
determined by the condition 𝑧𝑧∗ = 1 . At each point of 𝑧 the algorithm determines the search
direction tangent to the unit circle and after each iteration the obtained point is projected back to the

unit circle. In this case, update rule has the form 𝑧 = 𝜋 𝑧 − 𝜇 ∗ − 〈𝑧, ∗〉 𝑧 = 𝜋(𝑧 − 𝜇[𝑧 (1 −|𝑧 |) − 0.3(𝑧 − 1)]) where 𝜋 is the projection operator on the unit circle. In Algorithm (5) we used
a multiplicative optimization algorithm on the Lie group described in Section 4. In this case, the
update rule has the form 𝑧 = exp (0.6 𝜇𝑖Im(𝑧))𝑧 where Im(𝑧) is imaginary part of 𝑧 . The
starting point of each algorithm is 𝑧 = exp (𝑖𝜋/4). Figure 3 shows the results of the simulation.

Figure 3. Comparison of SD algorithms for minimizing the cost function on group 𝐔(1). Methods in
the Euclidean versus Riemannian space (Lie group methods). * algorithm SD unconstrained on the
Euclidean space (1). algorithm SD on the Euclidean space with constraint restoration (2). +
algorithm SD on the Euclidean space with penalty function (3). o non-geodesic algorithm SD on
Riemannian space (4). geodesic algorithm SD on Riemannian space (5).

In the point 𝑧() = −0.3 the cost function reaches its minimum 𝐽 𝑧() = 0. However, this is the
undesirable minimum determined in the Euclidean space by Algorithm (1) not taking into account
the unitarity constraint (Figure 3). The minimum considering this constraint is at the point 𝑧 = −1
and the value of the cost function reaches its minimum over the Riemannian space, i.e., on the unit
circle 𝐽(𝑧) = 0.49 . Unconstrained SD Algorithm (1) and with penalty function (3) achieve
undesirable minimums in points respectively from 𝑧() = −0.3 and from 𝑧() = −0.5 while
Algorithms (2) (4) and (5) minimum appropriate 𝑧 = −1. In the case of Algorithms (2) and (4), a
characteristic “zig-zag” is associated with lowering the constraint surface and undesirable from the
point of view of optimizing properties. Algorithm (4) determines the SD direction tangent to the
constraint condition, thus leaving the unit circle in the optimization motion. The resulting point is
again projected into a unit circle. Algorithm (5) using the multiplicative update rule on the Lie group
(phase rotation) described in this article naturally ensures the condition of unitarity at each step. The
optimization movement takes place at each step along the geodesic line. This simple one-dimensional
example is only intended to present the idea of algorithms on Lie groups. The following is an example

algorithm SD on the Euclidean space with constraint restoration (2).
+ algorithm SD on the Euclidean space with penalty function (3). o non-geodesic algorithm SD on

Riemannian space (4).

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18

𝑧 = . In Algorithm (3) we used the Lagrange multiplier method. The penalty function of the
form (|𝑧 | − 1) weighted by a Lagrange parameter 𝜆 has been added to the initial cost function in
order to penalize deviations from unitarity. In this case, update rule is 𝑧 = 𝑧 − 𝜇[(𝑧 + 0.3) +𝜆𝑧 (|𝑧 | − 1)] . In the case of (4), the algorithm works in the Riemannian space (unit circle)
determined by the condition 𝑧𝑧∗ = 1 . At each point of 𝑧 the algorithm determines the search
direction tangent to the unit circle and after each iteration the obtained point is projected back to the

unit circle. In this case, update rule has the form 𝑧 = 𝜋 𝑧 − 𝜇 ∗ − 〈𝑧, ∗〉 𝑧 = 𝜋(𝑧 − 𝜇[𝑧 (1 −|𝑧 |) − 0.3(𝑧 − 1)]) where 𝜋 is the projection operator on the unit circle. In Algorithm (5) we used
a multiplicative optimization algorithm on the Lie group described in Section 4. In this case, the
update rule has the form 𝑧 = exp (0.6 𝜇𝑖Im(𝑧))𝑧 where Im(𝑧) is imaginary part of 𝑧 . The
starting point of each algorithm is 𝑧 = exp (𝑖𝜋/4). Figure 3 shows the results of the simulation.

Figure 3. Comparison of SD algorithms for minimizing the cost function on group 𝐔(1). Methods in
the Euclidean versus Riemannian space (Lie group methods). * algorithm SD unconstrained on the
Euclidean space (1). algorithm SD on the Euclidean space with constraint restoration (2). +
algorithm SD on the Euclidean space with penalty function (3). o non-geodesic algorithm SD on
Riemannian space (4). geodesic algorithm SD on Riemannian space (5).

In the point 𝑧() = −0.3 the cost function reaches its minimum 𝐽 𝑧() = 0. However, this is the
undesirable minimum determined in the Euclidean space by Algorithm (1) not taking into account
the unitarity constraint (Figure 3). The minimum considering this constraint is at the point 𝑧 = −1
and the value of the cost function reaches its minimum over the Riemannian space, i.e., on the unit
circle 𝐽(𝑧) = 0.49 . Unconstrained SD Algorithm (1) and with penalty function (3) achieve
undesirable minimums in points respectively from 𝑧() = −0.3 and from 𝑧() = −0.5 while
Algorithms (2) (4) and (5) minimum appropriate 𝑧 = −1. In the case of Algorithms (2) and (4), a
characteristic “zig-zag” is associated with lowering the constraint surface and undesirable from the
point of view of optimizing properties. Algorithm (4) determines the SD direction tangent to the
constraint condition, thus leaving the unit circle in the optimization motion. The resulting point is
again projected into a unit circle. Algorithm (5) using the multiplicative update rule on the Lie group
(phase rotation) described in this article naturally ensures the condition of unitarity at each step. The
optimization movement takes place at each step along the geodesic line. This simple one-dimensional
example is only intended to present the idea of algorithms on Lie groups. The following is an example

geodesic algorithm SD on Riemannian space (5).

Sensors 2020, 20, 440 11 of 18

In the point z(1) = −0.3 the cost function reaches its minimum J
(
z(1)

)
= 0. However, this is the

undesirable minimum determined in the Euclidean space by Algorithm (1) not taking into account the
unitarity constraint (Figure 3). The minimum considering this constraint is at the point zmin = −1 and
the value of the cost function reaches its minimum over the Riemannian space, i.e., on the unit circle
J(zmin) = 0.49. Unconstrained SD Algorithm (1) and with penalty function (3) achieve undesirable
minimums in points respectively from z(1) = −0.3 and from z(3) = −0.5 while Algorithms (2) (4) and
(5) minimum appropriate zmin = −1. In the case of Algorithms (2) and (4), a characteristic “zig-zag” is
associated with lowering the constraint surface and undesirable from the point of view of optimizing
properties. Algorithm (4) determines the SD direction tangent to the constraint condition, thus leaving
the unit circle in the optimization motion. The resulting point is again projected into a unit circle.
Algorithm (5) using the multiplicative update rule on the Lie group (phase rotation) described in this
article naturally ensures the condition of unitarity at each step. The optimization movement takes
place at each step along the geodesic line. This simple one-dimensional example is only intended to
present the idea of algorithms on Lie groups. The following is an example of using these methods on a
real signal. As an example of the practical application of optimization methods on Lie groups, we will
present a solution to the ICA problem. As the source signals, three speech recordings and a quasi-noisy
signal (harmonic signal with high noise content) (Figure 4) with a length of 5000 samples (1.25 s) were
used. The source signals were mixed using a four-by-four random mixing matrix. The four observed
signals are shown in Figure 4. A SO(4) group optimization algorithm was used to implement ICA.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18

of using these methods on a real signal. As an example of the practical application of optimization
methods on Lie groups, we will present a solution to the ICA problem. As the source signals, three
speech recordings and a quasi-noisy signal (harmonic signal with high noise content) (Figure 4) with
a length of 5000 samples (1.25 s) were used. The source signals were mixed using a four-by-four
random mixing matrix. The four observed signals are shown in Figure 4. A 𝐒𝐎(4) group
optimization algorithm was used to implement ICA.

(a)

(b)

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

s1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

s2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

s3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

s4

Samples No.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

x1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-50

0

50

x2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-50

0

50

x3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-50

0

50

x4

Samples No.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

y1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

y2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y4

Samples No.

Figure 4. Cont.

Sensors 2020, 20, 440 12 of 18
Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

(d)

Figure 4. Comparison of ICA results using INFOMAX algorithm and optimization on the 𝐒𝐎(4)
group, (a) source signals, (b) observed signals (mixed), (c) ICA results for the INFOMAX algorithm,
(d) ICA results for the algorithm on the group 𝐒𝐎(4).

For comparison, the INFOMAX algorithm in its original form was also used [32]. Based on visual
inspection and listening to the separated components, it can be concluded that ICA results using the
INFOMAX algorithm and optimization on the 𝐒𝐎(4) group are good with scale and permutation
accuracy. The INFOMAX algorithm with the assumed convergence criterion converges after about
30–40 steps, while the algorithm on the 𝐒𝐎(4) group after about 20 steps. Figure 5 shows the sum of
entropy values of separated components depending on the iteration number.

(a) (b)

Figure 5. Comparison of entropy sum value of received components, (a) INFOMAX algorithm, (b)
optimization algorithm on a group 𝐒𝐎(4).
The optimization algorithm on the 𝐒𝐎(4) group converges to 𝐸(𝑌) = 0.11 (The entropy value

was determined according to an approximate relationship [32]: 𝐸(𝑌) = − ∑ 𝐸{∑ tanh (𝑦)} +log(det(𝑊))) while the INFOMAX algorithm to 𝐸(𝑌) = 0.084 . Listening to the results and
comparison with the sources confirms the better ICA separation results obtained by the 𝐒𝐎(4) group
optimization algorithm.

6. Conclusions

This paper described the application of the Lie group methods for blind signal processing,
including ICA and ISA. Theoretical fundamentals of the Lie groups and the Lie algebra as well as the

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

y2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y3
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-10

0

10

y4

Samples No.

Figure 4. Comparison of ICA results using INFOMAX algorithm and optimization on the SO(4) group,
(a) source signals, (b) observed signals (mixed), (c) ICA results for the INFOMAX algorithm, (d) ICA
results for the algorithm on the group SO(4).

For comparison, the INFOMAX algorithm in its original form was also used [32]. Based on visual
inspection and listening to the separated components, it can be concluded that ICA results using the
INFOMAX algorithm and optimization on the SO(4) group are good with scale and permutation
accuracy. The INFOMAX algorithm with the assumed convergence criterion converges after about
30–40 steps, while the algorithm on the SO(4) group after about 20 steps. Figure 5 shows the sum of
entropy values of separated components depending on the iteration number.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

(d)

Figure 4. Comparison of ICA results using INFOMAX algorithm and optimization on the 𝐒𝐎(4)
group, (a) source signals, (b) observed signals (mixed), (c) ICA results for the INFOMAX algorithm,
(d) ICA results for the algorithm on the group 𝐒𝐎(4).

For comparison, the INFOMAX algorithm in its original form was also used [32]. Based on visual
inspection and listening to the separated components, it can be concluded that ICA results using the
INFOMAX algorithm and optimization on the 𝐒𝐎(4) group are good with scale and permutation
accuracy. The INFOMAX algorithm with the assumed convergence criterion converges after about
30–40 steps, while the algorithm on the 𝐒𝐎(4) group after about 20 steps. Figure 5 shows the sum of
entropy values of separated components depending on the iteration number.

(a) (b)

Figure 5. Comparison of entropy sum value of received components, (a) INFOMAX algorithm, (b)
optimization algorithm on a group 𝐒𝐎(4).
The optimization algorithm on the 𝐒𝐎(4) group converges to 𝐸(𝑌) = 0.11 (The entropy value

was determined according to an approximate relationship [32]: 𝐸(𝑌) = − ∑ 𝐸{∑ tanh (𝑦)} +log(det(𝑊))) while the INFOMAX algorithm to 𝐸(𝑌) = 0.084 . Listening to the results and
comparison with the sources confirms the better ICA separation results obtained by the 𝐒𝐎(4) group
optimization algorithm.

6. Conclusions

This paper described the application of the Lie group methods for blind signal processing,
including ICA and ISA. Theoretical fundamentals of the Lie groups and the Lie algebra as well as the

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

y2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

0

10

y4

Samples No.

Figure 5. Comparison of entropy sum value of received components, (a) INFOMAX algorithm,
(b) optimization algorithm on a group SO(4).

The optimization algorithm on the SO(4) group converges to E(Y) = 0.11 (The entropy value was
determined according to an approximate relationship [32]: E(Y) = −

∑
i

E{
∑
n

tan h(yi)}+ log(det(W)))

while the INFOMAX algorithm to E(Y) = 0.084. Listening to the results and comparison with the
sources confirms the better ICA separation results obtained by the SO(4) group optimization algorithm.

6. Conclusions

This paper described the application of the Lie group methods for blind signal processing,
including ICA and ISA. Theoretical fundamentals of the Lie groups and the Lie algebra as well as the
geometry of problems occurring in BSP and basic optimization techniques based on the use of Lie groups
are presented. Owing to the specific geometry and algebraic properties of BSP problems, it is possible
to use Lie group methods to solve these problems. The homogeneity of search space (parameters)
in BSP problems enables the use of optimization techniques based on the Lie group methods for
the groups O(n) and SO(n). It has been demonstrated that the one-parameter subalgebra soΩ(n)

Sensors 2020, 20, 440 13 of 18

ensures the convenient property of commutating search directions. In addition, the presentation of an
antisymmetric matrix (search direction) in the Jordan canonical form establishes the toral subalgebra
t(p) ⊂ so(n), which—in terms of optimization algorithms—ensures low computational complexity
and high process dynamics.

Author Contributions: Conceptualization, J.J., D.M.; Methodology, D.M.; Software, D.M., Validation, J.J.,
Preparation, D.M.; Writing-Review and Editing, J.J., Visualization, D.M.; Supervision, J.J.; Funding Acquisition, J.J.;
Formal Analysis, J.J.; Investigation, J.J.; Resources, D.M. All authors provided critical feedback and collaborated in
the research. All authors have read and agreed to the published version of the manuscript.

Funding: The project/research was financed in the framework of the project Lublin University of Technology—
Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no.
030/RID/2018/19).

Conflicts of Interest: The authors declare no conflict of interest

Appendix A Lie Group and Lie Algebra

A characteristic of Lie groups is optimization motion that always leaves the orthogonality condition
intact (the system constantly remains on the constraint surface). Before providing a formal definition of
Lie groups, we will give an example to illustrate this concept. Let us consider a set of complex numbers
of modulus 1 in r −ϕ notation: G =

{
z ∈ C

∣∣∣|z| = ∣∣∣eiϕ
∣∣∣ = 1, ϕ ∈ R

}
. If one of these numbers a = eiϕ is

multiplied by a number b = eiω, we get ab = ei(ϕ+ω), which is also several modulus 1, i.e., it belongs to
a set Z (Figure A1). On the other hand, if we want to reach any number c = eiτ of modulus 1 starting
from the number a = eiϕ, it is enough to multiply a by b = eiω such that ω = τ−ϕ.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

geometry of problems occurring in BSP and basic optimization techniques based on the use of Lie
groups are presented. Owing to the specific geometry and algebraic properties of BSP problems, it is
possible to use Lie group methods to solve these problems. The homogeneity of search space
(parameters) in BSP problems enables the use of optimization techniques based on the Lie group
methods for the groups 𝐎(𝑛) and 𝐒𝐎(𝑛) . It has been demonstrated that the one-parameter
subalgebra 𝖘𝖔Ω(𝑛) ensures the convenient property of commutating search directions. In addition,
the presentation of an antisymmetric matrix (search direction) in the Jordan canonical form
establishes the toral subalgebra 𝖙(𝑝) ⊂ 𝖘𝖔(𝑛), which—in terms of optimization algorithms—ensures
low computational complexity and high process dynamics.

Author Contributions: Conceptualization, J.J., D.M; Methodology, D.M.; Software, D.M., Validation, J.J.,
Preparation, D.M.; Writing-Review and Editing, J.J., Visualization, D.M.; Supervision, J.J.; Funding Acquisition,
J.J.; Formal Analysis, J.J.; Investigation, J.J.; Resources, D.M. All authors provided critical feedback and
collaborated in the research. All authors have read and agreed to the published version of the manuscript.

Funding: The project/research was financed in the framework of the project Lublin University of Technology -
Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no.
030/RID/2018/19).

Conflicts of Interest: The authors declare no conflict of interest

Appendix A. Lie Group and Lie Algebra

A characteristic of Lie groups is optimization motion that always leaves the orthogonality
condition intact (the system constantly remains on the constraint surface). Before providing a formal
definition of Lie groups, we will give an example to illustrate this concept. Let us consider a set of
complex numbers of modulus 1 in 𝑟 − 𝜑 notation: 𝐺 = {𝑧 ∈ ℂ |𝑧| = 𝑒 = 1, 𝜑 ∈ ℝ}. If one of these
numbers 𝑎 = 𝑒 is multiplied by a number 𝑏 = 𝑒 , we get 𝑎𝑏 = 𝑒 () , which is also several
modulus 1, i.e., it belongs to a set 𝑍 (Figure A1). On the other hand, if we want to reach any number 𝑐 = 𝑒 of modulus 1 starting from the number 𝑎 = 𝑒 , it is enough to multiply 𝑎 by 𝑏 = 𝑒 such
that 𝜔 = 𝜏 − 𝜑.

Figure A1. Complex value (a) a in 𝑟 − 𝜑 notation, and (b) product of a and b.

Thus, it can be observed that a group is formed by the set of complex numbers 𝑍 of modulus 1
combined with a multiplication operation. As a reminder, the group 𝐺 is formed by a set of elements
and a group operation (∙) (colloquially known as multiplication) with the following properties:

1. Closure under group operation: if 𝑎, 𝑏 ∈ 𝐺 then 𝑎 ∙ 𝑏 ∈ 𝐺
2. Associativity: 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐
3. There exists a neutral element 𝐼 and an inverse element 𝑧 ∈ 𝐺 for every element of the group,

such that: 𝐼 ∙ 𝑧 = 𝑧 ∙ 𝐼 = 𝑧. 𝑧 ∙ 𝑧 = 𝑧 ∙ 𝑧 = 𝐼

Figure A1. Complex value (a) a in r−ϕ notation, and (b) product of a and b.

Thus, it can be observed that a group is formed by the set of complex numbers Z of modulus 1
combined with a multiplication operation. As a reminder, the group G is formed by a set of elements
and a group operation (·) (colloquially known as multiplication) with the following properties:

1. Closure under group operation: if a, b ∈ G then a·b ∈ G
2. Associativity: a·(b·c) = (a·b)·c
3. There exists a neutral element I and an inverse element z−1

∈ G for every element of the group,
such that: I·z = z·I = z. z·z−1 = z−1

·z = I

It can easily be verified that the set Z satisfies these conditions with a group operation in the form
of multiplication of complex numbers, the neutral element I = 1 = ei0 and the inverse z−1 = e−iϕ of any
element of z = eiϕ. Moreover, since the multiplication operation in the set G is commutative, this set
forms a commutative group, also known as an abelian group. In addition, the group G is smooth,
i.e., differentiable. We can perform an infinitesimally small movement in the group by going from one
number to another, these numbers differing from each other by an infinitesimally low value. In fact,
the group G locally “looks” like a section of the real line R. This means that the motion in the group G

Sensors 2020, 20, 440 14 of 18

can be described with one parameter, e.g., the angle ϕ, and thus this group with the coordinate system
of ϕ creates a differential manifold. The group which is a smooth differential manifold is called the
Lie group. The Lie group combines algebraic properties of the groups possessing the properties of a
smooth differential manifold. As a result, we can, for example, consider a tangent space TxG of the
Lie group G at point x. In a special case when x = I, the tangent space in an identity element of the
group TIG additionally provided with an elementary operation known as the Lie bracket is called the
Lie algebra g. The group operation (multiplication) by a constant element of the group Q creates a
differentiable mapping of the group G to itself, i.e., a diffeomorphism known as left translation (A1):

LQ : G→ G : W → QW; Q, W ∈ G (A1)

and right translation (A2):
RQ : G→ G : W →WQ; Q, W ∈ G (A2)

and tangential mappings induced by them (A3) and (A4):

dLQ : TWG→ TQWG : Z→ QZ; Z ∈ TWG, Q ∈ G (A3)

dRQ : TWG→ TWQG : Z→ ZQ; Z ∈ TWG, Q ∈ G (A4)

A characteristic of the Lie group is that each of its elements W can be “moved” by left or right
translation to a “convenient” neighborhood of the identity element, and the same applies to every
tangent space TWG:

LW−1(W) = W−1W = I : RW−1(W) = WW−1 = I (A5)

dLW−1(TWG) =
{
W−1Z = X ∈ TIG = g

}
: dRW−1(TWG) =

{
ZW−1 = X ∈ TIG = g

}
(A6)

Equation (A6) can also be written in a reversed form (A7):

TWG = dLW(TIG) = {WX; X ∈ TIG = g} : TWG = dRW(TIG) = {WX; X ∈ TIG = g} (A7)

From the above it can be seen that the tangent space TWG via the tangent mapping dLW−1 or dRW−1

is transferred to the Lie algebra g.
From the above one can draw an important conclusion. If the structure of a Lie algebra g is known,

it can be used to conveniently parameterize the neighbourhood of an identity element of the group
G via the application of a suitable homeomorphism. Such homeomorphism is widely known as the
exponential map or, in short, exponentiation, and is denoted as exp : g→ G . It should be noted
that “exp” is here only a symbolic denotation and even in the case of Lie matrix groups it does not
necessarily mean a matrix exponentiation operation.

A set of 2-dimensional orthogonal matrices WTW = I2 forms a Lie group as is done by the set of
complex numbers of modulus 1. It is also an abelian (commutative) group and has the same algebraic
properties as the set of complex numbers of modulus 1. In general, square n-dimensional orthogonal
matrices forming the group O(n) can be presented in a block-diagonal form with diagonal elements as
2× 2 orthogonal matrices. This form is known as the Jordan canonical form of orthogonal matrix [23].
Understanding the “behaviour” of the Lie groups over the complex numbers of modulus 1 and thus
2× 2 orthogonal matrices is therefore crucial for analysis of a general case. The group O(n) is also a
Lie group composed of two disjoint parts (subsets): the orthogonal matrices with determinant 1 and
the matrices with determinant −1. For example, for the group O(2), these two components can be
shown in the form (A8):

W =

(
cosϕ sinϕ
−sinϕ cosϕ

)
W′ =

(
cosϕ −sinϕ
−sinϕ −cosϕ

)
(A8)

detW = 1 detW′ = −1

Sensors 2020, 20, 440 15 of 18

for any real number ϕ that can be a Cartesian coordinate system identified with the angle of rotation.
As one cannotice, both in the first and the second part, the transition from one element to another takes
place (smoothly) by changing the parameter ϕ. The transition between the matrices of both parts is
only possible via multiplying the matrices belonging to both parts, which is tantamount to permutation
of the matrices. The transposition of the matrix columns or rows in any part will lead to a change in the
sign of the determinant. This occurs as a transition between the parts. However, a smooth transition
between the parts is not possible. Hence, these components (parts) are called disjoint. The subset of
matrices with determinant 1 is called a special orthogonal group SO(n). It is a subgroup O(n) and
constitutes an associative Lie group (it is possible to move between elements of the subgroup smoothly
by performing multiplication in the subgroup).

In ICA problems, due to permutation ambiguity (Section 2), optima of the cost function must
be present in both subgroups O(n). We will therefore limit our considerations to the (associative)
subgroup SO(n) considerations, which will not diminish the general nature of the considerations.
The multiplication of the matrices belonging to SO(2):

WV =

(
cosϕ sinϕ
−sinϕ cosϕ

)(
cosθ sinθ
−sinθ cosθ

)
=

(
cos(ϕ+ θ) sin(ϕ+ θ)

−sin(ϕ+ θ) cos(ϕ+ θ)

)
(A9)

This involves, as one can observe, adding the angles ϕ and θ. The above also demonstrates that
the multiplication operation in the group SO(2) is commutative. The group SO(2) is also known as the
rotation group because its operation over any vector can be associated with a rotation on the plane R2.
Moreover, the group SO(2)—like the group of complex numbers of modulus 1 can be parameterized by
means of one parameter—the angle 0 ≤ ϕ < 2π. Groups that “operate” in the same way (have the same
algebraic properties) are called isomorphic. From the point of view of optimization techniques, the key
question is how to determine a derivative in the Lie group G. Basing on the previously considered
Lie group of complex numbers of modulus 1, let us consider the curve z(t) = eiϕ(t) in the group G
parameterized by t (the t parameter can be identified as time). Assuming that ϕ(t) = ωt, the derivative
of the curve z(t) with respect to t has the form (A10):

dz
dt

=
d
dt

(
eiϕ(t)

)
= i

(
dϕ
dt

)
eiϕ(t) = iωeiϕ(t) = iωz (A10)

As one can observe, the derivative z(t) is proportional to iz = ei π2 z = ei(ϕ(t)+ π
2), which means

that it is perpendicular to z. This result is analogous to the relationship between the vector of
velocity and the radiusin circular motion. Assuming that ω is an angular velocity and z is a radius,
the circular motion can be described in an identical manner. The velocity vector of length ωz is
tangent to the trajectory, i.e., it is perpendicular to the radius of the circle. A similar relationship can
be obtained by differentiating the group SO(2). Likewise, assuming that ϕ = ωt and differentiating

W =

(
cosϕ sinϕ
−sinϕ cosϕ

)
relative to t, we get (A11):

dW
dt

=
d
dt

(
cosϕ sinϕ
−sinϕ cosϕ

)
=

(
−sinϕ cosϕ
−cosϕ −sinϕ

)
ω =

(
0 ω
−ω 0

)
W = XW (A11)

One can notice that similarly to the group of complex numbers of modulus 1, the derivative
in the group SO(2) is proportional to an element of the group where the derivative dW/dt ∼ W is
determined. It is easy to check that this derivative is tangent at point W to the constraint surface

tr
((

dW
dt

)T
W

)
= trX = 0. This pattern is also true for the general case SO(n). Differential equations

with the structure dA
dt = B(t)A(t), where A(t) ∈ G belongs to the Lie group and B(t) ∈ g belongs to

the Lie algebra, are known as differential equations of the Lie groups. As with the solution of the
scalar differential equation dz

dt = az =⇒ z(t) = eat , the solution of the differential Equation (A11) is

Sensors 2020, 20, 440 16 of 18

a matrix W(t) = exp(tX), where exp(.) is a matrix exponentiation operation given by the general
formula (Maclaurin series) (A12):

exp(tX) = I + tX +
t2X2

2!
+ . . .+

tkXk

k!
+ . . . , (A12)

It can easily be verified that W(t) satisfies Equation (A11):

dW
dt

=
d
dt

exp(tX) = X exp(tX) = XW

The space tangent to SO(2) at point W is given by the matrices, where X = −XT =

(
0 ω
−ω 0

)
is

an antisymmetric matrix. As one can observe, with any antisymmetric matrix X , 0, every element of
the group SO(2) can be made precise by defining a single parameter t as (A13):

W(t) = exp(tX) = exp
(

0 tω
−tω 0

)
= exp(Ω) (A13)

where Ω = −ΩT =

(
0 tω
−tω 0

)
is an antisymmetric matrix.

From the point of view of the optimization process, it is a very convenient property. Instead of
searching in the space of orthogonal matrices, it is enough to search in the space of the angles ϕ or,
alternatively, in the space of antisymmetric matrices Ω. The space tangent to SO(n) in the identity
(neutral) element In is therefore determined by the set of antisymmetric matrices Ω = −ΩT. According
to previous general considerations, this space is called a Lie algebra so(n) of the Lie group SO(n).
Homeomorphism is determined by the matrix exponential operation, Ω ∈ so(n)→ exp(Ω) ∈ SO(n)
(or exp : so(n)→ SO(n)). As mentioned above, from the point of view of the optimization process,
it is convenient to navigate in the Lie algebra because it is a vector space, so the addition of elements
and multiplication by scalars are allowed. The result of such operations will still belong to the Lie
algebra. The idea presented above for the group SO(2) is generalized to SO(n). However, for n ≥ 3,
the matrix multiplication is not commutative: exp(A) exp(B) , exp(B) exp(A). From the general
dependence (A14):

exp(εA) exp(εB) − exp(εB) exp(εA) = ε2[A, B] + O
(
ε3

)
(A14)

where [·, ·] is the matrix commutator or the Lie bracket defined as [A, B] = AB− BA, O
(
ε3

)
is a lower

order ε3 and ε� 1 is a scalar, it follows that the “non-commutativeness” of matrix multiplication in the
group SO(n) is expressed with the commutator [·, ·] of the matrices belonging to the Lie algebra so(n).
The commutator of antisymmetric matrices is also an antisymmetric matrix [A, B]T = (AB− BA)T =

BTAT
−ATBT = BA−AB = −[A, B], which means that [A, B] ∈ so(n). The Lie algebra of antisymmetric

matrices is therefore closed under addition, multiplication by scalars and the Lie bracket. In addition
to this, the Lie bracket has the following properties (A15)–(A17):

[A, A] = 0 (A15)

[A + B, C] = [A, C] + [B, C] (A16)

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (A17)

The first two properties result from the antisymmetric nature of the commutator, while the third
property is called the Jacobi identity and is widely known in differential geometry. The multiplication
of 2 × 2 antisymmetric matrices A, B ∈ so(2) is commutative, therefore [A, B] = 0, and hence SO(2)
is an abelian group. Elements of the group SO(3) can be equated with the rotations relative to the

Sensors 2020, 20, 440 17 of 18

coordinate system origin of the space R3. As we know, such rotations are not commutative. Therefore,
the group SO(3) is non-abelian (non-commutative).

References

1. Fiori, S. Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial. J. Mach. Learn.
Res. 2005, 6, 743–781.

2. Georgiev, P.; Theis, F.; Cichocki, A.; Bakardjian, H. Sparse component analysis: A new tool for data mining.
In Data Mining in Biomedicine; Springer: Boston, MA, USA, 2007; pp. 91–116.

3. Hao, Y.; Song, L.; Cui, L.; Wang, H. A three-dimensional geometric features-based SCA algorithm for
compound faults diagnosis. Measurement 2019, 134, 480–491. [CrossRef]

4. Hao, Y.; Song, L.; Cui, L.; Wang, H. Underdetermined source separation of bearing faults based on optimized
intrinsic characteristic-scale decomposition and local non-negative matrix factorization. IEEE Access 2019, 7,
11427–11435. [CrossRef]

5. Kaselimi, M.; Doulamis, N.; Doulamis, A.; Voulodimos, A.; Protopapadakis, E. Bayesian-optimized
Bidirectional LSTM Regression Model for Non-Intrusive Load Monitoring. In Proceedings of the ICASSP
2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
UK, 12–17 May 2019; pp. 2747–2751.

6. Altrabalsi, H.; Stankovic, V.; Liao, J.; Stankovic, L. Low-complexity energy disaggregation using appliance
load modelling. Aims Energy 2016, 4, 884–905. [CrossRef]

7. Smith, S.T. Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 1994, 3, 113–135.
8. Plumbley, M.D. Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras.

Neurocomputing 2005, 67, 161–197. [CrossRef]
9. Plumbley, M.D. Lie group methods for optimization with orthogonality constraints. In Proceedings of the

International Conference on Independent Component Analysis and Signal Separation, Granada, Spain, 22–24
September 2004; pp. 1245–1252.

10. Plumbley, M.D. Algorithms for nonnegative independent component analysis. IEEE Trans. Neural Netw.
2003, 14, 534–543. [CrossRef] [PubMed]

11. Plumbley, M.D. Optimization using Fourier expansion over a geodesic for non-negative ICA. In Proceedings
of the International Conference on Independent Component Analysis and Signal Separation, Granada, Spain,
22–24 September 2004; pp. 49–56.

12. Edelman, A.; Arias, T.A.; Smith, S.T. The geometry of algorithms with orthogonality constraints. Siam J.
Matrix Anal. Appl. 1998, 20, 303–353. [CrossRef]

13. Birtea, P.; Casu, I.; Comanescu, D. Steepest descent algorithm on orthogonal Stiefel manifolds. arXiv 2017,
arXiv:1709.06295.

14. Mika, D.; Kleczkowski, P. ICA-based single channel audio separation: New bases and measures of distance.
Arch. Acoust. 2011, 36, 311–331. [CrossRef]

15. Mika, D.; Kleczkowski, P. Automatic clustering of components for single channel ICA-based signal demixing.
In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Lisbon,
Portugal, 13–16 June 2010; pp. 5350–5359.

16. Hyvärinen, A.; Hoyer, P. Emergence of phase-and shift-invariant features by decomposition of natural images
into independent feature subspaces. Neural Comput. 2000, 12, 1705–1720. [CrossRef] [PubMed]

17. Selvana, S.E.; Amatob, U.; Qic, C.; Gallivanc, K.A.; Carforab, M.F.; Larobinad, M.; Alfanod, B. Unconstrained
Optimizers for ICA Learning on Oblique Manifold Using Parzen Density Estimation; Tech. Rep. FSU11-05; Florida
State University Department of Mathematics: Tallahassee, FL, USA, 2011.

18. Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; John Wiley & Sons: New York, NY, USA, 2001.
19. Absil, P.-A.; Gallivan, K.A. Joint Diagonalization on the Oblique Manifold for Independent Component

Analysis. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal
Processing Proceedings, Toulouse, France, 14–19 May 2006.

20. Selvan, S.E.; Amato, U.; Gallivan, K.A.; Qi, C.; Carfora, M.F.; Larobina, M.; Alfano, B. Descent algorithms on
oblique manifold for source-adaptive ICA contrast. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1930–1947.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.measurement.2018.10.098
http://dx.doi.org/10.1109/ACCESS.2019.2892559
http://dx.doi.org/10.3934/energy.2016.1.1
http://dx.doi.org/10.1016/j.neucom.2004.11.040
http://dx.doi.org/10.1109/TNN.2003.810616
http://www.ncbi.nlm.nih.gov/pubmed/18238037
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.2478/v10168-011-0024-x
http://dx.doi.org/10.1162/089976600300015312
http://www.ncbi.nlm.nih.gov/pubmed/10935923
http://dx.doi.org/10.1109/TNNLS.2012.2218060
http://www.ncbi.nlm.nih.gov/pubmed/24808148

Sensors 2020, 20, 440 18 of 18

21. Nishimori, Y.; Akaho, S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold.
Neurocomputing 2005, 67, 106–135. [CrossRef]

22. Absil, P.-A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University
Press: Princeton, NJ, USA, 2009.

23. Absil, P.-A.; Mahony, R.; Sepulchre, R. Riemannian geometry of Grassmann manifolds with a view on
algorithmic computation. Acta Appl. Math. 2004, 80, 199–220. [CrossRef]

24. Comon, P.; Golub, G.H. Tracking a few extreme singular values and vectors in signal processing. Proc. IEEE
1990, 78, 1327–1343. [CrossRef]

25. Demmel, J.W. Three methods for refining estimates of invariant subspaces. Computing 1987, 38, 43–57. [CrossRef]
26. Nishimori, Y.; Akaho, S.; Abdallah, S.; Plumbley, M.D. Flag manifolds for subspace ICA problems.

In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—
ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; pp. 1417–1420.

27. Nishimori, Y.; Akaho, S.; Plumbley, M.D. Riemannian optimization method on the flag manifold for
independent subspace analysis. In Proceedings of the International Conference on Independent Component
Analysis and Signal Separation, Charleston, SC, USA, 5–8 March 2006; Springer: Berlin/Heidelberg, Germany,
2006; pp. 295–302.

28. Nishimori, Y.; Akaho, S.; Plumbley, M.D. Natural conjugate gradient on complex flag manifolds for complex
independent subspace analysis. In Proceedings of the International Conference on Artificial Neural Networks,
Prague, Czech Republic, 3–6 September 2008; pp. 165–174.

29. Gallier, J.; Xu, D. Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices.
Int. J. Robot. Autom. 2003, 18, 10–20.

30. Pecora, A.; Maiolo, L.; Minotti, A.; De Francesco, R.; De Francesco, E.; Leccese, F.; Cagnetti, M.; Ferrone, A. Strain
gauge sensors based on thermoplastic nanocomposite for monitoring inflatable structures. In Proceedings of the
2014 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 29–30 May 2014; pp. 84–88.

31. Krantz, S.G. Function Theory of Several Complex Variables; American Mathematical Soc.: Providence, RI, USA, 2011.
32. Cichocki, A.; Amari, S. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications;

John Wiley & Sons: New York, NY, USA, 2002.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2004.11.035
http://dx.doi.org/10.1023/B:ACAP.0000013855.14971.91
http://dx.doi.org/10.1109/5.58320
http://dx.doi.org/10.1007/BF02253743
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Definition (ICA, ISA)
	Geometry of ICA, ISA and Other BSP Models
	Lie Group Optimization Methods. One-Parameter Subalgebra and Toral Subalgebra
	Experimental Results
	Conclusions
	Lie Group and Lie Algebra
	References

