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Abstract: Most path-planning algorithms can generate a reasonable path by considering the kinematic
characteristics of the vehicles and the obstacles in hydrographic survey activities. However,
few studies consider the influence of vehicle dynamics, although excluding system dynamics may
considerably damage the measurement accuracy especially when turning at high speed. In this
study, an adaptive iterative learning algorithm is proposed to optimize the turning parameters,
which accounts for the dynamic characteristics of unmanned surface vehicles (USVs). The resulting
optimal turning radius and speed are used to generate the path and speed profiles. The simulation
results show that the proposed path-smoothing and speed profile design algorithms can largely
increase the path-following performance, which potentially can help to improve the measurement
accuracy of various activities.

Keywords: USV; iterative parameter-tuning; path-smoothing; speed profile design

1. Introduction

Unmanned surface vehicles (USVs), also called autonomous surface craft (ASC), are self-driving
marine vessels widely used in environmental monitoring and hydrographic survey [1]. Path-following
performance of the USVs is one of the main factors influencing the measurement accuracy in
hydrographic survey activities [2].

A reliable autonomous navigation system with the capabilities of path-planning, obstacle
avoidance, and auto-guidance is essential for an USV to deal with various and dynamic marine
situations [3]. The most widely used obstacle avoidance and path-planning algorithms include artificial
potential fields (APF) [4], rapidly exploring random trees (RRTs) [5], greedy mechanism-based particle
swarm optimization (PSO) [6], and grid map-based path-planning algorithms (e.g., A* algorithm [7],
Field D* [8], and Theta* [9]). These algorithms focus on path-planning for obstacle avoidance
considering the kinematics of the vehicle and the obstacles.

By using the abovementioned techniques, a segmented, first-order discontinuous line-shape path
is obtained, as shown in Figure 1a. The discontinuity does not considerably affect the path-following
performance when the USV drives at a relatively low speed but can induce large differences between
the planned and achieved paths when the speed is high and the dynamics of the vehicle become
non-neglectable. The deviation causes the vehicle to fail the obstacle avoidance task when the vehicle
is required to make sharp turns for non-holonomic systems, such as USVs [10,11] and, thus, should be
diminished. Typically, there are two solutions. The first solution is to improve the mechanical and/or
control system so that the vehicle itself could be sufficiently agile to make accurate and shape turns.
The second solution is to modify the path and the speed profiles in Figure 1b so that they are more
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suitable for the USV to follow. In Figure 1b, the path is bent to arcs at the sharp corners and better fits
the dynamic characteristics of the USV.

In this study, we focus on the work of the latter solution. Specifically, by assuming that the
physical system and motion control of the USV is already provided, we study how the path and
speed profiles can be optimized so that the overall performance of path-following and obstacle
avoidance can be improved. There are usually two approaches to solve such a motion planning
problem [12]: (1) trajectory planning with a simultaneous optimization of path and speed profiles;
(2) geometric path-planning followed by velocity planning, which is also known as path-velocity
decomposition. The latter is easier to implement in real time where path-planning usually considers
geometric continuity and velocity planning addresses the kinematic constraints.
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Figure 1. Original path and smooth path profiles: (a) Original path. (b) Smooth path.

To achieve path smoothness, the Dubins curve [13] is a good choice. It is created by concatenating
line segments and arcs of circles. The Dubins curve is first-order continuous and thus smoother
than the original line-based path. In addition, it is computationally cost efficient, which makes it
suitable for real-time path-planning cases. The maximum curvature, or correspondingly, the minimum
turning radius of the system, is used as a constraint to generate the optimal Dubins curve [14,15].
To some extent, this approach considers the dynamic properties of the vehicle. However, because the
minimum turning radius is closely related to the vehicle speed, the isolation of path and speed profile
design may compromise the overall path-following performance. There are other studies that use
second-order continuous paths such as cubic spirals [16], Bezier splines [10], clothoidal spirals [17,18],
quintic polynomials [19], polar splines [20] and cardioids [21]. These approaches may further smooth
the path but also make the computation more complex and time consuming. Therefore, the decision of
whether to adopt first-order or second-order curves should be balanced by considering the mission
demands on path continuity and real-time ability.

For speed-planning strategies, researchers usually set up a time-optimal problem with constraints
from the kinematic properties of the vehicles including maximum speed, longitudinal and lateral
acceleration and jerk [22]. The kinematic model of the vehicle is established, and the key design
parameters regarding the velocity profile are specified to form a numerical optimization problem [23],
the solution of which defines the final speed profile. In some cases, the experimental choice of the
speed is used to define a speed profile when the time-optimality is not an essential requirement [24,25].
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There are also studies that take into consideration the kinematic feasibility, and model predictive
control is introduced to generate a speed profile based on the predicted performance [18].

However, few studies mention the consideration of vehicle dynamics for either path-planning
or speed-planning though the exclusion of the dynamics of the system may largely compromise the
path tracking performance especially at high speed turning. There are mainly two reasons for this.
First, the use of a dynamic model may increase the complexity in the formulation and computation of
the optimization problem. Second, in most cases, an accurate dynamical model is not easy to obtain.
Therefore, this study realizes a practical and real-time solution for the path and speed profile generation
by considering the influence of vehicle dynamics on path-following performance. To achieve this goal,
the schematic of the path and speed planner is shown in Figure 2. The offline learning block uses
experimental data to obtain an optimal turning radius and speed pair for the vehicle, which provides
design constraints for the smooth path-following and speed profile optimization. Thus, the generated
path and speed profile are customized for the specific vehicle according to its dynamical properties.

Offline iterative 
turning parameter 

learning
Path smoothing Speed planner

Turning
radius

Original 
path points

Line-arc
path

Turning speed

Online planning

Path and
speed
profile

Figure 2. Path and speed-planning scheme

In summary, previous studies usually emphasized the use of methods that generate smooth and
optimal path or/and speed profiles according to their geometric or kinematic properties. However,
this study provides a practical and experiment-based approach that takes the USV dynamics into
consideration by:

1. Determining an optimal arc radius and the corresponding turning speed using an offline iteratively
tuning method.

2. Generating a smooth trajectory with a provided arc radius and ensuring small path deviation
from the original line segments.

3. Planning optimal speed profile on the line-arc combined trajectory using step response curves of
the USV.

The remainder of the paper is structured as follows. Section 2 presents the iterative tuning method
and its application in determining an optimal arc radius and corresponding turning speed. Then,
the method of path-smoothing with fixed turning radius is introduced in Section 3, followed by an
optimal speed-planning strategy in Section 4. Section 5 shows the simulation verification. Finally,
Section 6 presents concluding remarks.

2. Iterative Learning Method for Path Parameter-Tuning

2.1. Problem Setup

Iterative learning is broadly used to deal with repetitive tasks by updating control signals or
system parameters. It learns the system behavior via repeated tests which is possible to achieve
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optimal performance without providing an explicit system model [24]. Iterative learning sometimes
is called a data-driven approach [26]. When the control signals are updated iteration by iteration,
it is called iterative learning control (ILC) [27]; if the parameters in the systems are updated during
the process, it is called iterative parameter-tuning (IPT) [28]. In this paper, IPT is used to obtain a
suitable combination of the references of the turning radius and speed for a specific USV to decrease
the path-following error with limited sacrifice of turning speed and turning radius. Generally speaking,
small turning radius and large turning speed induce large path deviation. With proper selection on
the weight factors for the three aforementioned terms, IPT can provide an optimized solution with
balanced path-following performance.

The parameter vector used for tuning is x = (rr, vr), where rr is the reference of the turning radius
and vr is the reference of the forwarding speed at the turning corner. The cost function is defined as

J(x) = λ1(rr − rmin)
2 + λ2(vr − vd)

2 + λ3
1
n

n

∑
i=1
‖ p̄i − pi‖ (1)

where rmin is the empirical value that defines the minimum turning radius of USV when it is within its
normal speed range; vd is also provided by the user and specifies the desired speed that the USV will
drive at, which is generally chosen as a relatively high speed value to speed up the turning action; pi is
the reference trajectory vector generated by rr and vr ; p̄i is the actual trajectory vector; and λ1, λ2 and
λ3 are the weight factors. The first term in J represents the difference between the reference radius
with the minimum turning radius; the second term evaluates the difference between the reference
speed with the desired speed; and the last terms show the tracking error under the current setup of rr

and vr. By choosing different λ1, λ2 and λ3, the user can specify the respective emphasis on the three
abovementioned aspects.

2.2. Two-Point Step-Size Adaptation (TPA)-IPT Algorithm

The goal of IPT is to obtain the smallest J by iteratively tuning the parameter of rr and vr, which
can be treated as a constrained optimization problem below. Similar to rmin, rmax, vmin and vmax are
also user-specified parameters based on the USV system capabilities.

min J (rr, vr)

rmin < rr < rmax

vmin < vr < vmax

(2)

In this study, the line search method schematic [29] is adopted to identify an optimal J.
The updating law of the path parameter is written as

xk+1 = xk + αkpk (3)

where αk is the step length, and pk is the search direction. In general, pk is a descent direction and
frequently has the form of

pk = −B−1
k ∇Jk (4)

where B−1
k is the symmetric and nonsingular matrix, and ∇Jk is the gradient. When Bk

−1=I, where I
is the identity matrix, it is the fastest descent direction. The selection of the step length αk is highly
related to the gradient ∇Jk, and these parameters must satisfy |1− αk∇JT

k | ≤ ρ < 1 to guarantee
stability, where ρ is a positive scaler. If ∇Jk is known, the updating gains can be chosen as pk = −∇Jk
and αk = ∇Jk

−1. In reality, J is an unknown nonlinear function of x. Therefore, an additional algorithm
needs to be developed to identify steady descent directions and step length, which is not a trivial task.

Particularly for the tuning task in this study, the dimension of the variable space is as low as 2,
which make it possible to estimate a descent direction with a limited number of tests. Taking the kth
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iteration as an example, the procedure starts at a given point x. Four trials provide an estimation of the
gradient direction at x by

ykj = xk + ∆kj (5)

where j is the trial index number with ∆k1 = (+µαk, 0), ∆k2 = (−µαk, 0), ∆k3 = (0,+αk), ∆k4 =

(0,−αk). Where µ = rmax−rmin
vmax−vmin

is the normalized coefficient. αk represents the step size of the (k−1)th

parameter update, and it is the step length of the previous iterations for the purpose of saving
parameter-tuning trials. The calculation of an adaptive step length will be further explained later.
Based on the test results, the cost function values can be obtained, and the unit gradient vector ek is
numerically estimated from the previous two iterations by using Equations (6) and (7).

Dk =
4

∑
j=1

∣∣J(yj)− J(xk)
∣∣ J(yj)− J(xk)

yj − xk
(6)

ek =
Dk
‖Dk‖

(7)

The second step to update x is to determine the line search step length. Considering the cost
of conducting many tests, it is essential for the tuning process to converge as fast as possible to be
applicable to real systems. Therefore, a large step size is preferred for the IPT algorithm to speed up
the convergence and reduce the needed number of trials. However, convergence occurs only if the
step length is sufficiently small [30]. Therefore, a rule that can dynamically adapt the step size among
iterations needs to be developed.

Self-adaptive algorithms for the step length are not a new concept in numerical optimization.
A typical method is called Two-Point Step-Size Adaptation (TPA), where only two trial points are
needed to determine the change of the step length between iterations. This method works well
with the general optimization setups such as the steepest descent method [30] and the evolutionary
gradient search [31]. Another method combines the adjustment strategy of the step length with the
evolution optimization method [32], where the step length is calculated by the weighted distance
sum of randomly generated offspring with descending costs. To make the algorithm robust enough,
a sufficient number of offspring is required. A cumulative step-size adaptation (CSA) method is further
developed to better remove the randomness of evolution strategies [33]. The step length is determined
by historical records and is optimized accordingly. However, the authors admit its sensitivity to the
sampling procedure and replace it with TPA in their future work [34].

Based on the short review of the abovementioned self-adaptive step length strategies, it is clear
that TPA stands out for its simplicity and widely proven robustness. TPA is suitable for the IPT
framework because only two trials are required for the step length adaptation in each iteration.
Therefore, in this study, we propose to merge the TPA method with the tuning framework to obtain the
TPA-IPT algorithm, as shown in Algorithm 1. In addition, the tuned step-size updates the parameters
and functions as the off-distance of the next trial points, which is similar to [32].

For each iteration, extra two trials are proceeded by two different step lengths, αkζ and αk/ζ,
where ζ ∈ (0, 1) is a user-tuned number. The comparison of the two trials in terms of their cost function
values provides a superior choice between the two for the step-size update, as shown in (8).

αk+1 =

{
αkζ, J(xk − αkζek) ≤ J(xk − αk

/
ζek)

αk

/
ζ, J(xk − αkζek) ≥ J(xk − αk

/
ζek)

(8)

Thus, the updating rule of the path parameters is obtained as

xk+1 = xk − αk+1ek (9)
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When the cost function value starts to increase as J(xk+1) ≥ J(xk), the variables are close to the
minimum point. Then, the abovementioned TPA rule can induce vibrations around the minimum
and slow down the convergence. Therefore, the dichotomy is adopted to quickly decrease the step
size by imposing α∗k+1 = 1

2n αk, where n is the smallest positive integer that satisfies this condition
J(x∗k+1) < J(xk).

The abovementioned optimization process is terminated when |x∗k+1 − xk| ≤ ψ, where ψ is a
user-specified positive value.

Algorithm 1: TPA-IPT.
Given λ1, λ2, λ3, rmin, vmin, vd, ζ, ψ, n ∈ N+, k ∈ N+

Initialize x0, α0,
Calculate cost function J(x0)

while 1 do
Flag=0
Estimated gradient ek
if J(xk − αkζek) ≤ J(xk − αk

/
ζek) then

αk+1 = αkζ

else
αk+1 = αk

/
ζ

end
Update xk+1, J(xk+1)

while J(xk+1) ≥ J(xk) do
α∗k+1 = 1

2n αk
x∗k+1 = xk − α∗k+1ek
Update J(x∗k+1)

J(xk+1) = J(x∗k+1)

Flag=1
n = n + 1

end
if Flag=1 and |x∗k+1 − xk| ≤ ψ then

return x∗k+1
break

end
k = k + 1

end

3. Path-Smoothing Algorithm

The paths generated by the path-planning algorithm usually consist of line sets connected by
first-order discontinuous corners. In general, due to their dynamics at high speed, the USV systems
cannot follow the path accurately at the corners, and the offset of the real trajectory from the planned
one sometimes causes problems such as obstacle collision or undesirable path-following performance.
To modify the original non-smooth path to be more suitable for a USV to follow, the optimized tuning
radius determined by the IPT algorithm in Section 2 is used for path-smoothing in this section.

The path-smoothing problem is set up as follows. Given the start point w1 and the target point
w3, the path-smoothing problem is defined to find a path w such that:

1. w is based on the original line-segment path and satisfies the dynamic characteristics and security
requirements such as the curvature (turning radius) limitation.

2. w begins at the starting point w1 and ends at the target point w3.
3. w does not collide with the obstacles.
4. The path deviation De between the smoothed path and the original path should be small.
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The Dubins curves are adopted to smooth the path with slight improvement compared to the
previously used approaches since they require a low computation cost and are easy to apply. In a
previous study, typically one arc or two arcs are used to smooth the corners [14,15,35], as shown
in Figure 3. The black solid lines represent the original path, and the red solid lines represent the
smoothed path. Break points usually imply nearby obstacles, and the deviation from the original path
increases the risk of collisions between obstacles and the smoothed path.
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Figure 3. Smoothed paths: (a) Created by using one Dubins curve. (b) Created by using two
Dubins curves.

In this study, to decrease the path deviation and alleviate the collision risk, we propose to use
three Dubins curves for every break point, which is named the L-3C-L method, as shown in Figure 4.
w1, w2 and w3 are the path points on the original path, and w1, p1, p2, p3, p4 and w3 are the path points
on the smoothed path. O2 is in the angle bisector of the path angle.



w1

w2

w3

O1

O2
O3r r

P1

P2 P3

P4

Obstacle

Original path 
Smoothed path

Waypoint

Figure 4. Smoothed path created using the L-3C-L method.

To compare the path deviation using the methods shown in Figure 3 and the L-3C-L method,
their theoretical formulas are provided below.
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The path deviation [13] of the method in Figure 3a is:

Dea = r

(
1

sin θ
2

− 1

)
(10)

where r is the turning radius obtained by the IPT algorithm, and θ is the corner angle of the
original path.

The path deviation [35] of the method in Figure 3b is:

Deb = r (1+ cos θ) (11)

The path deviation of the L-3C-L method is:

DeL3CL = r
(

1− sin
θ

2

)
(12)

Figure 5 shows the deviation comparison of the three smoothing methods: one arc, two arcs,
and L-3C-L methods, where De is the largest path deviation, and r is the radius of the corner. The path
deviation of the L-3C-L algorithm is the smallest of the three smoothing algorithms, even at very
sharp corners.

0 20 40 60 80 100 120 140 160 180

Angle (degree)

1

2

3

D
e/

r

One arc method 
Two arcs method
L-3C-L method

Figure 5. Path deviation comparison of the three smoothing methods.

There is a special case when two corners are very close to each other, as shown in Figure 6. w1,
w2, w3 and w4 represent the original path, and w1, p1, p2, p3, p4, p5, p6 and w4 represent the smoothed
path using our method. p3 p4 is the common tangent of the circle O2 and O3. In this case, two L-3C-L
corners are merged to be two L-2C-L corners. The corresponding two deviations are:{

De1 = r(1− sin θ1
2 )

De2 = r(1− sin θ2
2 )

(13)
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Figure 6. Adaptation to the special case with two close corners.

4. Optimal Speed Profile Design

Using the path-planning algorithm proposed in Section 3, any path can be decomposed into
a succession of turns composed of circular arcs and straight lines. This is very useful in finding
closed-form optimal speed profiles because both straight-line segments and circle arcs can be associated
with constant speeds. The IPT algorithm in Section 2 provides an optimized turning speed, which
differs from the desired USV speed when it follows straight lines. Therefore, when a turn is initiated
and terminated, the velocity of the system should be regulated so that it can smoothly switch the
motion status between the two modes.

Therefore, in this study, a method is proposed to plan the velocity. The work is simplified to plan
the process of accelerations and decelerations between the two turns because the turning speed and
the line-following speed have both been fixed. Thus, the overall speed profile will consist of three
families of curves.

1. Constant speed curves at a minimum value vr when the curvature profile is a circular arc. vr is
obtained from Section 2.

2. Constant cruising speed at the straight line with a cruising speed of the USV denoted as vc.
3. Changing speed profile between vr and vc when the USV switches between the turning mode

and the line-following mode. For these stages, there are two conditions to consider.

Condition 1: If the straight-line segment is sufficiently long, the USV will perform a full
acceleration and deceleration at the two ends of the line, as shown in Figure 7a. The corresponding
minimum length of the line segment is denoted as dmin.

Condition 2: If the straight-line segment between two turns is not sufficiently long, d < dmin,
the USV will not be able to accelerate to vc. Instead, it decelerates to some middle point to make sure
that the velocity is vr at the next turn, as shown in Figure 7b.

To determine whether the straight-line segment between two turns is sufficiently long for a specific
USV, a test is needed to estimate the minimum length of the line segment. The path length of the
acceleration section da and of the deceleration section dd are recorded when the USV follows the given
command. For a USV without a closed-loop velocity control, a full-power acceleration/deceleration
test is required. When the USV has a velocity control unit, the command is usually given as an expected
velocity as vc when accelerating and vr when decelerating, as shown in Figure 8a. The minimum
length of the line segment for condition 1 is dmin = da + dd, as shown in Figure 8b.
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Figure 7. Speed design diagram: (a) The straight-line segment is sufficiently long. (b) The straight-line
segment is not sufficiently long.

For the first condition d ≥ dmin in Figure 7a, the USV can perform a full acceleration and
deceleration at the two ends of the line. The acceleration and deceleration positions in Figure 7a are
chosen to make P1P2 = da and P3P4 = dd.

For the second condition d < dmin in Figure 7b, we need further treatment to find the switch point
P2 from acceleration to deceleration. The functions for the acceleration and deceleration curves are
denoted as f1(t) and f2(t), respectively. Assuming that the USV requires tx1 to accelerate and tx2 to
decelerate so that it has speed vr at p3, the equations in Equation (14) should be satisfied. tx1 and tx2

can be solved, and the switching point p2 is chosen to make P1P2 =
∫ tx1

0 f1(t)dt.{ ∫ tx1
0 f1(t)dt +

∫ td
td−tx2

f2(t)dt = d
f1(tx1) = f2(td−tx2)

(14)

0
dt
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Figure 8. Acceleration and deceleration test: (a) Speed curves. (b) Displacement curves.

5. Simulation Results and Discussion

Since most ships do not have actuators in all degrees of freedom, the reduced-order model is
often used. The 3 DOF horizontal plane model (surge, sway, yaw) is widely used in trajectory tracking
control systems [36] with the assumption of planar motion. A classic 3 DOF USV model, the accuracy
of which is verified in [37], is adopted in the following simulation work. The parameters of the
vessel system are shown in Tables 1 and 2. Additional details on the dynamic model are presented in
Appendix A, and the readers are referred to [37] for further information.
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Table 1. Vessel properties and controller parameters.

Vessel Properties Value Controller Parameters Value

Long 8.5 m Kp,u 0.1 1/s
Width 3.0 m Kp,ψ 5.0 1/s
Mass 3980 kg Kd,ψ 1.0 s

Inertia 19,703 kg/m2

Table 2. Vessel Model Parameters.

Parameters Value Parameters Value

Xu −50 X|u|u −135
Yv −200 Y|v|v −2000
Yr 0 N|r|r 0
Nv 0 Xuuu 0
Nr −3224 Yvvv 0

Fx,min −6550 N Nrrr −3224
Fx,max 13,100 N Xu‘ 0
Fy,min −645 N Yv‘ 0
Fy,max 645 N Yr‘ 0

lr 4.0 m Nv‘ 0
Nr‘ 0

5.1. IPT Results

According to the literature [37], the maximum speed vmax of the USV is 18 kn. By using empirically
determined values, the minimum turning radius, minimum speed and desired turning velocity are
set as rmin = 20 m, vmin = 1 kn and vd = vmax = 18 kn. In the cost function, λ1, λ2 and λ3 emphasize
the turning radius, turning speed and path deviation, respectively. Users can tune the parameters
accordingly to specific task demands. The weights of the cost function in this paper are chosen as
(λ1, λ2, λ3) = (1, 3.05, 278) to emphasize on decreasing path deviations at turning corners rather
than the needs to obtain small turning radius and high turning speed. The initial step size and
step-size adjustment coefficient are set to α0 = 0.5, ξ = 1.1. The optimization process is terminated
when the updated value of the path parameter is smaller than the user-specified positive value
|x∗k+1 − xk| ≤ 0.65.

To verify the convergence of the algorithm, three different groups of the path parameters
(r0= 49 m, v0= 16 kn), (r0= 39 m, v0= 12 kn), and (r0= 28 m, v0= 10 kn), are chosen as the initial
values for the IPT simulations. To compare the performance of the TPA-IPT method proposed in this
study with the fixed step-size version in [28], simulations using both methods are conducted for each
group, and the results are shown in Figure 9 and Table 3. Figure 9a,c,e show the convergence of the cost
function value and the two path parameters for each initial value set using TPA-IPT, and Figure 9b,d,f
are their counterparts for the fixed step IPT. It is observed that both algorithms can achieve a similar
minimum point with small variance (Table 3) regardless of how the initial value changes. However,
the convergence speed of the TPA-IPT is much faster than that of the fixed step IPT.
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Figure 9. Optimization result graphs: (a,c,e) are the convergence curves of the cost function value and
the two path parameters for each initial value set using TPA-IPT; (b,d,f) are their counterparts for the
fixed step IPT.
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Table 3. Comparison of results with and without an adaptive step length.

Radius (m) Speed (kn) Average Tracking Error (m) Number of Iterations

Initial value 49 16 4.33
Normal IPT 29.00 7.00 3.84 59

TPA-IPT 29.58 7.10 3.82 19

Initial value 39 12 4.21
Normal IPT 29.00 7.00 3.84 31

TPA-IPT 29.60 7.05 3.81 13

Initial value 28 10 4.66
Normal IPT 29.00 7.00 3.84 9

TPA-IPT 29.31 7.21 3.87 7

To perform a better comparison, the descent processes of the cost function value are drawn in
Figure 10 for the first group of the initial value by using both a contour graph and in a 3D cost function
surface. The sharp slope of the function indicates that TPA-IPT speeds up and arrives at the minimum
point with only 19 iterations, which is approximately one third of the number of iterations needed
using fixed step IPT. For each iteration, TPA-IPT needs 2 more trials to adjust the step length. Therefore,
the total number of trials needed by TPA-IPT is 114, which is less than half of the trial numbers for the
fixed step strategy. This difference helps decrease the working load of the IPT tests when it is applied
in real vessel tests.
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Figure 10. Diagram of descending processes with the first group initial values: (a,c) are the iterative
processes of TPA-IPT, and (b,d) are the corresponding results of the normal IPT.
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A similar result is obtained for other initial value setups. The variance of the step length using
TPA-IPT is shown in Figure 11, and a drop in the step size at the last several iterations is observed.
This result is very reasonable considering the need for the fine tuning of the parameters when they are
close to the minimum point.
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Figure 11. Step-size variations of the optimization process.

5.2. Path-Smoothing and Speed-Planning Simulations

Section 5.1 shows three sets of the initial path parameter values that are tested using the TPA-IPT
method; these values provide close to optimal solutions for the turning radius and turning speed.
The optimized tuning parameters rr = 29.60 m, vr = 7.05 kn will be used in the following work
on the path-smoothing and speed profile-planning. To verify the effect of the path-smoothing and
speed-planning algorithm, various turning conditions are designed. Four tested scenes, including a
path with a large turning angle, a path with a small turning angle, a path for water sampling, and a
path for bathymetric measurement, are designed to verify the performance of the proposed algorithm
in this paper. The code was run on a computer with an Intel i5 2.30 GHz processor and 4.00 GB
of RAM. To verify the real-time performance of the proposed algorithms, each test scene was run
10 times. As shown in Table 4, the average time used for the path and speed profile calculation in
the four test scenes are 0.044 s/km, 0.072 s/km, 0.016 s/km and 0.079 s/km respectively. In addition,
the path-following performances are listed in Table 5 with a comparison between the original and
optimized path and speed profiles. As expected, the path-following accuracy and the drive safety are
considerably improved when the method described in this study is used. The details on the results
will be further discussed for individual cases in the following paragraphs.

Table 4. Average runtime of algorithm.

Large Angle Small Angle Water Sampling Bathymetry

Average runtime (s/km) 0.044 0.072 0.016 0.079

Table 5. Tracking parameters of USV with and without route optimization.

Tracking Parameters Large Angle Small Angle Water Sampling Bathymetry

Original displacement (m) 2931.05 2728.44 23,265.18 6975.18
Optimized displacement (m) 2881.94 2693.33 23,123.05 6563.18
Original travelling time (s) 512.92 479.54 3811.95 1156.29

Optimized travelling time (s) 580.45 553.85 3987.13 1543.95
Original maximum path error (m) 35.87 19.47 34.96 30.40

Optimized maximum path error (m) 5.34 5.06 5.53 5.78
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Figure 12 shows the simulation results for the large-angle turning scene. Black curves are the
planned path, blue curves are the high-speed USV trajectories, red curves are the low-speed trajectories,
the purple curve is the acceleration trajectory, and the green curve is the deceleration trajectory.
The corresponding speed change for Figure 12b,d are shown in Figure 13. When the USV makes a
large-angle turn at a speed of 12 kn, due to the limitation of dynamics, a large tracking error will be
produced; this error will oscillate when returning to track the straight line, as shown in Figure 12a,c.
The maximum path error is 35.87 m, as shown in Table 5. After applying the path-smoothing and
speed-planning work proposed in this paper, it was found that the USV slows down near the turning
corner and follows the curve at a speed of 7.05 kn. This algorithm agrees with the dynamics of
USVs; therefore, the tracking error is small, and the oscillation is considerably reduced, as show
in Figure 12b,d. The maximum path error is 5.34 m, and the error value is insensitive to the path
conditions. The maximum path error is reduced by 85%, and the driving of the USV is considerably
stabilized with a small increase (13%) in the travelling time.
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Figure 12. Simulation of large-angle turning tracking scene: (a) Original path-tracing results.
(b) Optimized path-tracing results. (c,d) Enlarged partial views of the paths for the turns in (a,b).

For tasks with less demands on small path deviation and turning safety but more on small
travelling time, the weight factors in (1) should be readjust to have large λ2 and small λ1. In this case,
the resulted turning radius would be small, and the turning speed would be large using the IPT method.
However, the authors do not recommend high-speed turning considering the risk of capsizing.
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Figure 13. Speed curve of the large-angle turning tracking scene.

When the USV turns at small angles, the path-following performances of the USV without
and with using the method described in this paper are compared. The influence of its dynamic
constraints will decrease, as shown in Figure 14a. Therefore, the maximum path deviation is originally
19.47 m, which is smaller than that for the large-angle case. By applying the path-smoothing and
speed-planning algorithm, the maximum path deviation is decreased to 5.06 m, as shown in Figure 14b.
The displacement of the optimized path is 1.3% less than that of the original path, and the time used
is 15.5% more than that of the original path. With a slight sacrifice of travelling speed, the method
described in this paper shortens the travelling distance and, more importantly, considerably decreases
the path-following error.

The decreased path deviation sometimes is vital for driving safety. As shown in Figure 14a,
the USV crashed onto an obstacle using the original path and speed profiles when it is turning into a
narrow passage. The optimized path and speed design largely decreased the path deviation, and the
USV successfully passed through the cluttered area, as shown in Figure 14b.

Various situations for speed profile-planning are also designed to verify the algorithm in Section 4.
As shown in Figure 14, the line segment between the triangular obstacle and the rectangular obstacle
is too short to achieve full acceleration, which corresponds to the condition 2 in Section 4 for the
speed profile-planning. With the acceleration and deceleration tests in Figure 15a, the corresponding
displacement curves are calculated and shown in Figure 15b. Thus, da = 172.04 m, dd = 138.62 m,
dmin = 310.66 m. The length of the second line segment in Figure 14 d = 198.97 m < 310.66 m. Thus,
(14) is used to plan the speed profile for the segment. The acceleration and deceleration distances
in the straight-line segment can be obtained as d1 = 73.5 m, d2 = 125.47 m. As shown in Figure 16,
the USV can reduce the speed to the optimal value before turning at the next corner.
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Figure 14. Simulation of the small-angle turning tracking scene: (a) Original path-tracing results.
(b) Optimized path-tracing results.
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Figure 15. Acceleration and deceleration tests: (a) Speed test curves. (b) Displacement test curves.
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Figure 16. Speed curve of the small-angle turning tracking scene.

A similar result is obtained for the water sampling task around an island. A map of Mount Putuo,
which is one of the 1390 islands in Zhoushan Archipelago, China, is drawn in Figure 17. The sampling
points scatter around the island and the USV needs to visit these points accurately to retrieve the
water samples.

During the mission, the USV encountered two small-angle turns and six large-angle turns.
As shown in Figure 17a, the maximum path error at the corners by the original path and speed
setup is 34.96 m, so the USV largely deviates from the desired sampling locations. By smoothing
the path and planning the speed, the maximum tracking error can be reduced to 5.53 m, as shown
in Figure 17b. The motion stability of the USV is considerably improved, and the water samples are
retrieved close to the desired locations.
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Figure 17. Simulation of water sampling: (a) Original path-tracing results. (b) Optimized
path-tracing results.

The bathymetric measurement is another example to show the benefits of the IPT method.
As shown in Figure 18, the USV needs to traverse an area to obtain the water depth data following a
pre-defined path. This task requires the USV to have higher path-following accuracy and lower cruise
speed [2]. The new weights of the cost function and the minimum turning radius in the IPT algorithm
are reset as (λ1, λ2, λ3) = (5, 4, 278) and rmin = 14 m. The remaining parameters remain unchanged.
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The original parameters r0 = 39 m, v0 = 12 kn were optimized by IPT to be rr = 16.66 m, vr = 4.96 kn.
According to the line spacing in Reference [38] and the property of the USV model, the line spacing is
selected as 40 m.
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Figure 18. Simulation of bathymetric measurement: (a) Original path-tracing results. (b) Optimized
path-tracing results.

As shown in Figure 18, the maximum path deviation generated by the USV using the original
cruise speed is 30.40 m, which is larger than the line spacing and causes intersections between the
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paths at the corners. This could leave some places uncovered at the corner areas. The path-following
performance is greatly improved after path-smoothing and speed-planning, and its maximum path
deviation is 5.78 m. In addition, the smooth actions at the corners can also help to reduce the
measurement noises caused by highly dynamical turning behaviors of the USVs.

6. Conclusions

This study proposes a practical and real-time solution for the path and speed profile generation
by considering the influence of vehicle dynamics on hydrographic survey tasks. The offline
learning method uses experimental data to obtain optimal turning radius and speed for the vehicle,
which provides design constraints for the path and speed profile optimization. The improved IPT
method is proven to be effective in obtaining satisfactory turning parameters within a limited number of
trials, which balances the demands of small turning radius, fast turning speed and small path-following
error. The resulting radius is used to smooth the sharp corners with the L-3C-L /L-2C-L path-smoothing
method, which guarantees relatively small path deviations from the original path. The resulting turning
speed is used to plan the speed trajectory and shape smooth transients between the fast-straight-line
following mode and the relatively slow turning mode.

The simulation results show that the proposed path-speed profile optimization approach produces
smaller path deviations and is more suitable for hydrographic survey activities. The relatively slow
turning speed and smoothed path largely improves the path-following performance. Compared to
the case using original path and speed profiles, the maximum path deviations decreased by 81.07%
on average at a very small cost of time increase by 16.70%. The smoothness of the trajectory and
the driving safeness are largely improved as well, and the calculation cost is low, which makes it
potentially beneficial for real-time tasks in complex marine environments.

In addition, the algorithm proposed in this paper can be extended to unmanned systems with
similar dynamical properties and demands on trajectories. For example, it can be used to optimize the
path and speed profiles for an UAV system to have smoothed turning behaviors and more accurate
path-following performance.
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The following abbreviations are used in this manuscript:

USVs Unmanned surface vehicles
ASC Autonomous surface craft
APF Artificial potential fields
RRTs Rapidly exploring random trees
PSO Particle Swarm Optimization
ILC Iterative learning control
IPT Iterative parameter-tuning
TPA Two-point step-size adaptation
CSA Cumulative step-size adaptation
3D Three dimensions
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Appendix A. Theoretical Background

Appendix A.1. Reference Frame

The North-East Down (NED) coordinate system (xn, yn, zn) is defined by the moving tangent
plane of the earth’s surface. x-axis , y-axis and z-axis point to north, east and downwards respectively,
as shown in Figure A1.

The body-fixed (BODY) coordinate system (xb, yb, zb) is a frame fixed to the body of an USV
and therefore moves together with the body. The origin and axis are selected according to the
natural behavior of USV. In which roll, pitch and yaw is rotation around the x-axis, y-axis and z-axis,
respectively. When calculating the position and direction of USV in NED, the origin of the BODY
is used to replace the USV, as shown in Figure A1. In this study, the origin of the BODY coordinate
system is located at the USV’s center of gravity.

nx

ny

nz

NED
no

bx

by

bz

BODY

bo

Figure A1. Coordinate frames.

Appendix A.2. Mathematical Model

A commonly used ship three-degree-of-freedom model is based on the assumption that heave,
roll and pitch are small. It’s a very reasonable assumption for most traditional ships and underwater
vehicles. In the 3 DOF model, the effect of heave, roll and pitch is ignored and only the effect of surge,
sway and yaw is analyzed. The 3 DOF kinematic equations can be expressed in vector form as:

.
η =J(ψ)υ (A1)

M
.
υ+C(υ)υ + D(υ)υ = τ + τwind + τwave (A2)

where
η = [N, E, ψ]T (A3)

υ = [u, v, r]T (A4)

τ = [X, Y, N]T (A5)

where η represents position and orientation vector. The position is the distance between NED and
BODY under NED coordinate, and the orientation is a Euler angle vector. The vector υ includes
the linear velocity vector v and angular velocity vector ω under the BODY coordinate. The vector
τ contains the forces f and moments m in the BODY coordinate. Matrices J, M, D and C is the
transformation, inertia, damping and Coriolis matrix, respectively. The vectors τwind and τwave are
environmental forces. Table A1 shows the motions and rotations of the 3 DOF that USV can operate,
which is represented by the SNAME (1950) notation.
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Table A1. The notation of SNAME (1950) for marine vessels.

Forces Linear and Positions and
and Moments Angular Velocities Euler Angles

Motions in the x-direction (surge) X u x
Motions in the y-direction (sway) Y v y
Rotation about the z-axis (yaw) N r ψ

The transformation matrix J(ψ) which equals the rotation matrix Rz,ψ is:

J(ψ) = Rz,ψ =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (A6)

The inertia matrix and Coriolis-centripetal matrix are obtained by adding the additional mass
matrix and the rigid-body matrix. The inertia matrix is calculated as follows:

M = MRB + MA (A7)

with

MRB =

 m 0 0
0 m 0
0 0 Iz

 MA = −

 X .
u 0 0

0 Y .
v Y.

r
0 N .

v N .
r

 (A8)

where Iz is the moment of inertia and m is the mass of the USV. N .
v, N .

r, X .
u, Y .

v and Y.
r are added mass

terms.
The Coriolis-centripetal matrix is calculated as:

C(υ) = CRB(υ) + CA(υ) (A9)

with

CRB =

 0 0 −mv
0 0 mu

mv −mu 0

 (A10)

CA =

 0 0 −Y .
vv +

Y.
r+N .

v
2 r

0 0 X .
uu

Y .
vv +

Y.
r+N .

v
2 r −X .

uu 0

 (A11)

where v and u are the linear velocities and r is the angular velocity, as shown in Table A1.
Adding the linear damping part and the nonlinear damping part to obtain a total hydrodynamic

damping matrix:
D(υ) = DL + DNL(υ) (A12)

with

DL = −

 Xu 0 0
0 Yv Yr

0 Nv Nr

 (A13)

DNL(υ) = −

 X|u|u|u|+ Xuuuu2 0 0
0 Y|v|v|u|+ Yvvvv2 0
0 0 N|r|r|r|+ Nrrrr2

 (A14)

where X|u|u, Y|v|v, N|r|r, Xuuu, Yvvv, Nrrr are nonlinear damping terms and Xu, Yv, Yr, Nr, Nv are linear
damping terms.
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Appendix A.3. Actuator Forces and Low-level Controller

The USV has only two actuators: a propeller and a rudder. The control input which are rudder
angle and propeller force is less than the number of degrees of freedom. Therefore, the USV is
underactuated. The control input vector is :

τ =

 X
Y
N

 =

 Fx

Fy

lrFy

 (A15)

where Fx and Fy are proportional to n cos θ and n sin θ respectively. where n and θ are the propeller
shaft speed and rudder deflection angle, respectively. lr is the rudder length.

The low-level controller consists of a speed controller and a heading controller, which are used to
control the speed and heading, respectively.

Velocity controller:

Fx = −Xuu− X|u|u |u| u− Xuuuu3 −mrv + Kp,um(ud − u) (A16)

Heading controller:
lrFy = Kp,ψ Iz(Γ(ψd − ψ) + Kd,ψ(rd − r)) (A17)

where Kp,u and Kp,ψ are proportional gains. Kd,ψ is derivative time.
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