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Abstract: The preliminary design and validation of a novel, high accuracy horizon-sensor for
small satellites is presented, which is based on the theory of attitude determination from ellipsoid
observations. The concept consists of a multi-head infrared sensor capturing images of the Earth
limb. By fitting an ellipse to the imaged limb arcs, and exploiting some analytical results available
from projective geometry, a closed form solution for computing the attitude matrix is provided.
The algorithm is developed in a dimensionless framework, requiring the knowledge of the shape of
the imaged target, but not of its size. As a result, the solution is less sensitive to the limb shift caused
by the atmospheric own radiance. To evaluate the performance of the proposed method, a numerical
simulator is developed, which generates images captured in low Earth orbit, including also the
presence of the atmosphere. In addition, experimental validation is provided due to a dedicated
testbed, making use of a miniature infrared camera. Results show that our sensor concept returns
rms errors of few hundredths of a degree or less in determining the local nadir direction.
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1. Introduction

The determination of spacecraft attitude from a set of vector observations is a recurrent problem,
which has been extensively studied for many decades. One of the vector directions that can be
profitably exploited for the attitude determination of an Earth orbiter is the local nadir. Indeed, horizon
or limb sensors have been traditionally used for this purpose in many missions [1–4], as they offer
reliability and relatively low cost. Standard algorithms for limb sensors rely on the knowledge of the
horizon height to compute the nadir direction [3]; as a result, their accuracy, especially in low Earth
orbit (LEO), is limited by the variability of the atmospheric layer being detected as the surface of the
infrared Earth’s spheroid [2].

In recent years, horizon sensors received renewed interest in the aerospace community, as they are
becoming a convenient choice for attitude sensing in small satellite platforms, due to the availability of
MEMS infrared sensors. In particular, thermopiles have been the most popular choice for miniaturized
horizon sensors onboard of CubeSats and micro-satellites [5–8]. The reported implementations often
require accurate modeling of the thermopile response, and the knowledge of the size and range to the
imaged target, the Earth. Rated errors are quite variable, spanning from few degrees down to 0.1 deg.

In this paper, we present a novel horizon sensor prototype, which leverages on the availability
of low-cost, highly miniaturized infrared cameras having increasingly higher image resolution,
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for enhancing its accuracy. A short version of this paper with preliminary results validated only
through simulations was presented at IEEE MetroAero 2019 [9]: experimental tests are presented in
this paper, along with new analysis.

The idea underlying our horizon sensor consists of using an infrared camera to capture one
(or more) images of the Earth, and to solve the mathematical problem of attitude determination from
the imaged ellipse generated by a target ellipsoid. In particular, it will be shown that exploiting the
knowledge of the target shape (i.e., the oblateness), not only the local nadir direction (pitch and roll
angles) can be retrieved, but in principle also the rotation about nadir (yaw angle), thus constraining
the full attitude. If an image of the planet is made available, the first step is to detect the limb points on
the image and fit those points to an ellipse. To this end, it is desirable to capture the entire planetary
limb within the camera field of view (FoV), however, the feasibility of such an assumption depends on
the orbit altitude. Indeed, for a LEO satellite, the Earth disk may cover more than 130◦, which cannot
fit within a wide camera FoV. We take, nevertheless, the LEO scenario as a reference to develop
a horizon sensor concept, showing that very good attitude determination accuracies can be achieved
by combining multiple partial views of the same planetary limb.

Note that the task of computing the attitude of a camera with respect to a celestial body is closely
related to the optical navigation problem: this last aims at providing an estimate of the relative position
between the spacecraft and an imaged planetary target, assuming the attitude known. Here we deal
with the opposite situation, i.e., estimating the attitude when the relative position is known. Despite
the optical navigation problem has received lots of interest [10–13], the attitude determination from
images of celestial bodies seems to have received fewer attention [14,15]. In particular, the authors
of [14,15] provide solutions to the three-axes attitude determination from the joint observation of the
center of the (partially) illuminated planet and of the terminator limb. Such observations fix two
directions in the camera frame, namely the observer-to-target direction and the target-to-sun direction.
Once these are known, the attitude can be reconstructed using any method available for the classic
attitude determination problem from vector observations, i.e., the so-called Wahba’s problem [16].
In this work, instead, we aim at computing the attitude from limb fitting only, without knowledge of
the terminator and of the Sun position. Furthermore, our method benefits from the detection of the full
limb, thus it is best suited for images in the infrared spectrum, while the cited methods benefit from
images in the visible spectrum, as they rely also on the detection of the terminator limb.

The theory upon which our horizon sensor measurement principle relies leads to a quite
simple solution for estimating the attitude matrix, which closely resembles an orthogonal Procrustes
problem [17]. With respect to some earlier results by the authors [18], the method is refined here in that
it now provides the attitude without knowing the size of the target, rather only the shape is required,
e.g., the polar and equatorial flattening coefficients. Such a feature is especially useful when dealing
with planets having atmospheres, whose impact is to produce a limb shift, i.e., an increase in the
effective size of the planet as seen by the sensor.

To the knowledge of the authors, the existing horizon sensor implementation closest to the
one proposed herein is found in [19]. In that recent work, a monolithic thermopile array is used to
capture a single, partial view of Earth limb, which is assumed as a perfect sphere. Then, two different
approaches are considered for estimating the attitude from the extracted limb. The first one relates the
attitude to the location of the limb within the image plane. This way, the attitude information depends
on the knowledge of the nominal location of the limb in the image at the reference attitude, which in
turns depends on the size of the Earth and range to the target. Alternatively, the limb can be fitted
to a circle, and the orientation inferred by the location of the circle’s center. This second option is in
principle insensitive to the range and target size; however, it relies on the assumption of a spherical
target and neglects the effects of the perspective transformation. Indeed, the center of the imaged
circle/ellipse is not, in general, the projection of the center of the target (this is true only for a perfectly
nadir-pointing camera). Therefore, any method that seeks to measure the attitude straight from the
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location of the imaged circle/ellipse center would suffer from such an error. As a final drawback,
a single, partial view of the limb hardly provides a reliable fit of the entire “Earth disk”.

The method proposed herein attempts to overcome all the above limitations, providing an
algorithm for attitude determination, which: (a) makes no restrictive assumptions on the shape of the
target, which can be a tri-axial ellipsoid; (b) properly accounts for the perspective transformation; and
(c) does not depend on the target size and range to the target, thus being less sensitive to the apparent
limb shift due to the atmosphere. As a by-product, the algorithm provides estimate also for the angle
about nadir, hence constraining the full attitude, by making use of the non-sphericity of the target.
However, this estimate is very coarse for an Earth orbiter, due to the very low flattening of our planet.

The manuscript is organized as follows: first, we recall the mathematical background of pinhole
projective transformation and its action onto quadric surfaces. Then, we formulate the problem of
attitude determination from an imaged ellipsoid by studying the transformation between an ellipsoid
and the resulting imaged ellipse (Section 2). A covariance analysis of the estimate is also provided in
Section 2. Sensor architecture is discussed in Section 3, taking as a reference micro- and nano-satellites
as hosting platforms. Section 4 presents the simulation environment developed for testing the attitude
determination algorithm through synthetically generated images, while the experimental testbed
implemented for the validation of a sensor prototype is described in Section 5. Results of the numerical
and experimental test campaigns are then provided in Section 6. Finally, a discussion on the main
outcomes of the study is found in Section 7.

2. Theory of Attitude Determination from Imaged Ellipsoids

The theory of attitude determination from imaged ellipsoids relies on the algebraic representation
of a known result from perspective geometry: the apparent contour of a quadric surface imaged by
a projective camera is the intersection of the tangent cone to the ellipsoid, and whose vertex is lying on
the camera center, with the image plane; this intersection is a conic.

In particular, under the roto-translation T = R
[

I tw
]
, the quadric Q transforms to the conic C

on the image plane, according to [20]:

K−1C∗K−T
∝ TQ∗TT. (1)

In Equation (1) Q is the matrix:

Q =


1/a2 0 0 0

0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1

, (2)

a, b, and c, being the ellipsoid semi-axes lengths (for Earth c = polar radius, and a = b = equatorial
radius; even though the numerical and experimental validations presented in this manuscript take as
a reference scenario the Earth spheroid, all the following theory holds for an arbitrary triaxial ellipsoid);
R is the orthogonal attitude matrix mapping from the world frame, defined by the ellipsoid axes, to the
camera frame (the unknown to be estimated); tw is the translation vector from the camera center to
the origin of the target ellipsoid expressed in world frame (assumed known); C∗ is the inverse (or the
adjugate) of the conic matrix C computed from the coefficients of the ellipse quadratic equation:

Ax2 + Bxy + Dy2 + Ex + Gy + H = 0↔ [x y 1]C


x
y
1

 = 0,

C =


A B

2
E
2

B
2 D G

2
E
2

G
2 H

,
(3)
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and K is the intrinsic camera matrix, representing the projective transformation. For a pinhole
camera with optical axis coincident with body axis z and the pixel array plane coincident with body x
− y plane:

K =


fx α px

0 fy py

0 0 1

, (4)

where fx and fy is the focal vector, px and py are the coordinates of the principal point, and α is the
skew-angle (equal zero for orthogonal x-y axes).

Note that C matrix represents an ellipse in the image plane in homogeneous coordinates, as such
it is invariant to a common scaling of all its elements.

By defining matrix C = KTCK, Equation (1) can be rewritten as:

C
∗
∝ R

(
Q∗3 − twtT

w

)
RT = R

(
Q∗3 − ρ

2νwνT
w

)
RT, (5)

where C∗ = K−TC∗K−1, ρ is the range from the camera to the target, and νw = tw/ρ is the line-of-sight
unit vector. An expression for the projection of the point quadric Q into the conic C may also be derived,
but it is more complicated than Equation (5). It retains, however, a clearer physical interpretation, as it
relates the target ellipsoid to the tangent cone centered at the camera [21].

Defining B∗ = Q∗3 − ρ
2νwνT

w, Equation (5) becomes:

B∗ ∝ RT
C
∗R. (6)

Equation (6) is a modified form of the well-known orthogonal Procrustes problem, and is also
known as the hand-eye calibration problem [22]. Now, assume that we do not wish the overall target
size to be known, rather only the semi-axes ratios. We define a dimensionless matrix B̃∗:

B̃∗ = Q̃∗ − ρ̃2νwνT
w, (7)

where Q̃∗ = diag
([

1, b2

a2 , c2

a2

])
and ρ̃ = ρ/a is an unknown dimensionless range. Equation (6) is

rewritten as:
B̃∗ = Q̃∗ − ρ̃2νwνT

w ∝ RT
C
∗R. (8)

This matrix equation has now four unknowns, namely ρ̃ and the three independent components
of the attitude matrix. The idea is to split the solution in two steps:

1. Find ρ̃ such that B̃∗ and C∗ are orthogonally similar matrices apart from an unknown scaling.

2. Once ρ̃ and thus B̃∗ are known, compute the attitude matrix as the solution of a modified
orthogonal Procrustes problem.

To solve step 1, we recognize that a necessary condition for Equation (6) to hold is that any
dimensionless rational function of the eigenvalues for the two matrices B̃∗ and C∗ shall be the same.
One of such functions is, for example:

0 <
tr2

(
B̃∗

)
tr
(
B̃∗2

) =
tr2(C∗)

tr(C∗2)
=

(λc,1 + λc,2 + λc,3)
2

λ2
c,1 + λ2

c,2 + λ2
c,3

= kc, (9)

where:
tr
(
B̃∗

)
= tr

(
Q̃∗

)
− ρ̃2,tr

(
B̃∗2

)
= tr

(
Q̃∗2

)
+ ρ̃4

− 2ρ̃2kq, (10)

and kq = νT
wQ̃∗νw ≤ 1. Substituting Equation (10) into Equation (9) leads to the following second

order equation in t = ρ̃2:

(1− kc)t2
− 2

[
tr
(
Q̃∗

)
− kqkc

]
t +

[
tr2

(
Q̃∗

)
− kctr

(
Q̃∗2

)]
, (11)
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which admits analytical solutions. Equation (11) will have two real roots, whether of different signs or
both positive. In the former case, the correct root is the positive one. If both roots are positive, then one
should check the one which better matches another dimensionless rational function of the eigenvalues

of B̃∗ and C∗, such as
tr3(B̃∗)
det(B̃∗)

=
tr3(C∗)
det(C∗) . Knowing ρ̃2, matrix B̃∗ is fully determined. Now, following the

method devised in [18], we consider the spectral decompositions of C∗ and B̃∗:

C
∗ = VDCVT; B̃∗ = WDBWT, (12)

with V, W orthogonal matrices. Then, it is easy to verify that by setting

R = VWT. (13)

Equation (16) is satisfied, provided that the eigenvalues are arranged in the same order relative to
each other. Actually, any matrix of the form:

R = VSWT, (14)

with S = diag{±1± 1± 1} being signature matrices, will be a solution, too. In [18], it was proved that
Equation (13) provides an optimal estimate of R in a least squares sense. Of the eight possible solutions
given by Equation (14) only four will have determinant equal to +1, thus being proper rotation matrices.
Of these four, only two corresponds to the camera pointing towards the ellipsoid. As a result, there
will be a two-fold ambiguity left in the solution that cannot be resolved, unless some additional
independent information is available, e.g., past attitude history or angular information obtained from
other sensors.

Note that the rotation matrix computed according to Equation (14) allows, in principle, to constrain
the full attitude of the spacecraft when imaging a tri-axial ellipsoid. For a spherical target, the yaw
angle (about nadir) is clearly unobservable due to spherical symmetry. When imaging a spheroid (i.e.,
an ellipsoid of revolution, such as the Earth), the capability of detecting the yaw angle depends on
the vantage point: whenever the local vertical is aligned to the axis of revolution, then the symmetry
of the target prevents yaw observability [18]. Furthermore, the detectability of the orientation about
nadir is also degraded when the difference between the polar and equatorial semi-axes gets smaller:
unfortunately, that is the case for a spacecraft horizon sensor targeting the Earth, which features a very
low flattening (1/298). Nevertheless, it is interesting to assess whether at least a coarse estimate of the
yaw angle can be achieved in such a scenario.

Covariance Analysis

The value of an estimate is as equally as important as the knowledge of its uncertainty. To provide
an estimate of the estimated R matrix accuracy, we first aimed at a first-order perturbation analysis
of Equation (14) subject to perturbations δC∗, δB̃∗. The former accounts for error in the best-fitted
ellipse to the detected limb points, the latter accounts for errors in the ellipsoid model and in the
observation direction.

The derivatives of eigenvalues and eigenvectors of real symmetric matrices admit quite simple
analytical formulations. In particular, for any real symmetric matrix A, having eigenvalue–eigenvector
couples (υi, ui), subject to a perturbation δ A, it holds [23,24]:

δui = (υiI −A)+δ Aui,
δυi = ui

Tδ Aui,
(15)

where the superscript + denotes the Moore-Penrose pseudoinverse. Equation (15) allows us to compute
the variation of the spectral decomposition of C∗; B̃∗, as a function of some applied perturbations
δC∗, δB̃∗. Note that these equations indicate that the eigenvector perturbation lies in the plane orthogonal
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to the unperturbed eigenvector. Furthermore, they hold only for eigenvalues with multiplicity one,
as multiple eigenvalues bifurcate, thus are non-differentiable [23]. The variation in the estimated R
follows directly by differentiation of Equation (14):

δ R = δ VSWT + VSδ WT. (16)

When dealing with perturbed matrices for covariance computation, it is convenient to switch to
the vectorized matrix representation using the “vec” operator, which stacks the columns of a matrix
one underneath the other. To this end, we reshaped the first of Equation (15) in a vectorized form:

vec(δV) =


(λ1I −C∗)+ ⊗ v1

T

(λ2I −C∗)+ ⊗ v2
T

(λ3I −C∗)+ ⊗ v3
T

vec(δC∗) = Mvec(δC∗),

vec(δW) =


(µ1I − B∗)+ ⊗w1

T

(µ2I − B∗)+ ⊗w2
T

(µ3I − B∗)+ ⊗w3
T

vec
(
δB̃∗

)
= Nvec

(
δB̃∗

)
,

(17)

where ⊗ denotes the Kronecker product and (λi, vi), (µi, wi) are the eigenvalue–eigenvector couples
of C∗, B̃∗, respectively. It is worth to be noted that, as we deal with 3 × 3 symmetric matrices, their
eigen-decomposition admits a simple analytical solution [25].

Vectorization of Equation (16) leads to:

vec(δ R) = (WS⊗ I)vec(δV) + (I ⊗VS)vec
(
δWT

)
, (18)

where vec
(
δWT

)
= vec(PδW), P being a permutation matrix. Equation (18) allows computing the

desired attitude error covariance matrix defined as PRR = E
[
vec(δ R)vec(δ R)T

]
, through:

PRR = (WS⊗ I)PVV(WS⊗ I)T + (I ⊗VS)PWW(I ⊗VS)T

= (WS⊗ I)MPCCMT(WS⊗ I)T + (I ⊗VS)PNPBBNT
P

T(I ⊗VS)T,
(19)

starting from the covariance of the errors affecting matrices C∗ and B∗:

PCC = E
[
vec(δC∗)vec(δC∗)T

]
; PBB = E

[
vec

(
δB̃∗

)
vec

(
δB̃∗

)T
]
. (20)

In deriving Equation (19) use has been made of the reasonable assumption of uncorrelated noise

sources: E
[
vec(δC∗)vec

(
δB̃∗

)T
]
= 0.

To check the consistency of the analytic covariance formula, we performed a set of Monte Carlo
simulations, as follows. We generated 1000 synthetic images of an Earth-like spheroid as captured
by a nadir-pointing camera, using Matlab® 3D scene control. All images are created assuming the
same relative position and attitude between the camera and the target, and differ one from each other
only by some additive random noise. For each image, the limb is detected and fitted to an ellipse.
Then, the attitude determination algorithm is run, and the error δC∗ between the true and estimated C∗

matrices is recorded, along with the estimated attitude error, δ R. Once all images are processed, we
numerically estimated the covariance matrix PCC from the recorded 1000 samples of δC∗. Having PCC
available, we computed for each test case the analytical covariance PRR according to Equation (19) to
be compared to the actual estimation errors.

The outcome of this process is summarized in Figure 1, where histogram distributions are shown
for three off-diagonal elements of the δ R matrix, ri,j (i , j). Since the assumed nominal R matrix is the
identity (null attitude) ri,j is equal, to first order, to the error angle about k-axis, so that r1,2 r1,3 and
r2,3 correspond approximately to the error angles about the third (yaw), second (pitch), and first (roll)
axis, respectively. Superimposed to each histogram, the curve of a Gaussian distribution probability
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function is shown, having variance equal to the corresponding element in the main diagonal of the
analytic PRR.Sensors 2019, 19, x FOR PEER REVIEW 7 of 17 
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Figure 1. Comparison between the numerically retrieved error distributions and analytic variances for
three off-diagonal elements of the attitude matrix. (a) r1,2; (b) r1,3; and (c) r2,3.

Comparison of the numerical distributions with the theoretical variances shows very good
matching. The simulations confirm also that the yaw angle (leftmost panel) was poorly observable, as
expected for an imaged spheroid having very low flattening.

3. Sensor Architecture

Since computing the attitude from ellipsoid images relies on fitting an ellipse to a set of edge points,
it is desirable to have the entire planetary limb lying within the camera field of view. The feasibility of
such an assumption depends on the orbit altitude with respect to the planet size and, for LEO, it is
hardly to be fulfilled, unless a very wide FoV camera is available, which would induce severe lens
distortion. We take, however, this scenario as a target, since a small satellite platform in LEO orbit is
deemed to be the most common application for such a kind of attitude sensor.

To cope with a target that exceeds the camera FoV, a multi-head sensor concept was envisaged: here,
we required that three simultaneous views of limited limb portions were made available to properly
constrain the full “Earth circle” [9]. We therefore considered a sensor assembly formed by a set of three
miniaturized infrared camera cores. Two alternative implementations were envisaged, according to
the hosting spacecraft platform: configuration (a) for the microsatellite class, and configuration (b)
for the nanosatellite class, both being based on commercial, uncooled microbolometer. In particular,
a FLIR Boson 320® and a FLIR Lepton® 3 were chosen as the reference for configuration (a) and (b),
respectively. Their main characteristics are collected in Tables 1 and 2 [26,27].

Table 1. Physical characteristics of the IR camera core, FLIR Boson 320, taken as a baseline for
a microsatellite targeted implementation of our horizon sensor prototype.

Image Size (px) HFoV (deg) Power (mW) Weight (g) Envelope (mm3)

320 × 256 50 500 (operating) + 330 (shutter) 20 g 21 × 21 × 30
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Table 2. Physical characteristics of the IR camera core, FLIR Lepton® 3, taken as a baseline for
a nanosatellite targeted implementation of our horizon sensor prototype.

Image Size (px) HFoV (deg) Power (mW) Weight (g) Envelope (mm3)

120 × 160 57 150 (operating) + 500 (shutter) 0.9 g 10.5 × 12.7 × 7.14

Measurement Principle: Limb Detection and Fitting

In our sensor conceptual design, the measurement is an ellipse extracted from the image,
which consists of five independent scalar parameters. Estimating the ellipse parameters from an image
requires two processing steps, namely:

(a) Edge detection;
(b) Edge fitting to an ellipse.

Both these topics are extensively studied in the image processing community, however, since they
are not the core of this work, we will not pursue them in detail.

The multi-head limb sensor demands for an extension of the theory described in Section 2
(originally developed to handle a single ellipsoid view), to fuse the observations from different images
into one best-fit ellipse, as follows. Let us first define a body reference frame, with respect to which
the orientation of the three sensor heads is specified through matrices R1/b, R2/b, R3/b, respectively.
Then, it is easy to verify that, for each image i, the following transformed homogeneous limb pixel
coordinates x̃i:

x̃i = RT
i/bK−1xi, (21)

are referenced to the common body frame. We then stack the transformed homogeneous coordinates
of the limb points detected in the three images into a single vector, x̃st:

x̃st =


x̃1

x̃2

x̃3

. (22)

Fitting an ellipse to the stacked vector, the corresponding adjoint matrix will satisfy Equation (6),
which provides the desired generalization of the attitude estimation method from multiple partial
views of the same ellipsoid.

It is worth to note that, for the multi-head sensor concept applicability, the three sensor cores do
not need to be clustered together in a single mechanical assembly: one just need to know the relative
orientation of each camera with respect to the others, and to the common spacecraft reference frame.

To test the consistency of the developed theoretical framework, we set up both a numerical
simulation scenario and an experimental testbed, as described in the following sections.

4. Numerical Simulator

As a first step towards the validation of the horizon sensor concept, we focused on the testing
of the algorithm for attitude determination from multiple views of the limb of an Earth-like target.
To this end, we developed a Matlab®-based simulation environment, which generates synthetic images
of an ellipsoid target with the same flattening of the Earth. The simulator accounts for the main
error source affecting the attitude determination from infrared Earth images, namely, the presence
of a diffuse, inhomogeneous limb shift, due to the atmosphere. The consequence of a diffuse limb
is that of resembling a slightly larger Earth, or a slightly smaller camera distance to the target.
A non-homogeneous limb shift, instead, will result to a detected target shape, which differs from
the solid Earth ellipsoid. While the former effect is rejected by the proposed algorithm, the latter is
expected to induce some errors. The simplified atmospheric model implemented in our simulator aims
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at assessing, at least approximately, the magnitude of such errors, rather than providing a high-fidelity
imaging simulation tool.

Several studies are found in the literature, assessing the issue of the stability of our planetary
atmosphere over the infrared spectrum, both from a theoretical and experimental standpoint.
A widespread descriptor used to characterize the atmospheric stability are the curves of the atmospheric
radiance variation as a function of the tangent height, defined as the minimum altitude of the radiometric
line of sight, see Figure 2. The main features can be summarized as [2,4]:

- The normalized atmospheric radiance profile decreases with the tangent height roughly following
an inverse S-shaped curve.

- The spatial variation of the apparent limb shift has a systematic component, depending mainly
on the latitude, plus a stochastic component. The two are almost equally important in magnitude.

- Overall, the variability of the atmospheric radiance induces changes in the detected infrared limb
height of about ±10 km.

These features were taken as a guideline to implement a simple model for simulating the effects
of a planetary limb on an infrared gathered image, as follows. First, we assumed the atmospheric
infrared radiance profile width to be the sum of a nominal, constant value, w, plus a variable term,
dw. The nominal width w depends on the band of interest within the IR spectrum; for our study, we
assumed w = 76 km. The variation dw is modeled as a discrete first-order Markov process function of
the latitude λ of each subpixel point:

dw(λk+1) = dw(λk)e−
∆λ
τ + uk, (23)

where the correlation length τ and the standard deviation of the normally distributed random process
uk, were tuned for leading to dw variations of up to about ±10 km.

Then, we generated synthetic images through the following steps. Given the assumed relative
attitude and position from the camera to the target ellipsoid:

(a) For each pixel p of the sensor, compute the nearest point on the target ellipsoid to the
line-of-sight vector stemming from the camera centre to the pixel (i.e., the sub-pixel point). This task
was accomplished through JPL’s SPICE toolkit routine cspice_npedln.

(b) Compute the distance from that ellipsoid point to the pixel line, i.e., the tangent height, and the
latitude of the sub-pixel point.

(c) To each sub-pixel point latitude, an inverse S-shaped atmospheric radiance profile is assigned,
having width equal to w + dw, as predicted by Equation (23);

(d) The image intensity level at the given pixel, I(p), is assumed to be proportional to the normalized
atmospheric radiance profile computed at step (c).

The resulting synthetic images were convoluted using a Gaussian kernel having standard deviation
of 1.5 pixels, to resemble the blur effect expected in the infrared spectrum. Then, Gaussian noise was
added, and images were finally converted to 16-bit grayscale.

The process above was repeated for generating a cluster of three images (Figure 3, left panel)
captured by the three sensor heads. A zoom of the limb region of one of the images is given in Figure 3,
right panel, which highlights the variable limb height across the image.
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5. Experimental Testbed

The conceptual design of the horizon sensor was verified through a five degrees-of-freedom
experimental testbed designed and assembled in our laboratory, making use of opto-mechanics
components from Thorlabs Inc. (see Figure 4). The testbed was equipped with one camera and
implements a virtual multi-head sensor, which is described in the following. Indeed, using a single
camera with variable orientation allowed for a simpler and more cost-effective implementation of the
testbed than by using three separated physical cameras, without undermining the algorithm validation.
The sensor employed consists of a Flir Lepton® 3 camera (see Table 2), thus representative of a lower
resolution sensor implementation targeted to nano-satellites. Three rotational degrees of freedom are
provided by micrometric stages, having 10 arcmin of resolution. The target consists of a spheroid made
of PVC plastic having nominal radii equal to 68.75 and 69.00 mm, respectively and mounted with the
axis of symmetry orthogonal to the test-bed plane. The remaining two translational degrees of freedom
allows for fine alignment between the camera and the target center. Rotations are implemented as
a 3-1-2 (yaw-roll-pitch) rotation sequence, with angular excursions of 360◦ about yaw (ψ), ±5◦ and
±10◦ for the roll (ϕ, inner) and pitch (ϑ, outer) axes. Yaw axis is directed towards the spheroid center,
pitch axis is orthogonal to the test-bed plane (positive downward), and roll axis directed to create
a right-handed triad. The camera itself is then mounted on a PVC support tilted by 45◦ about pitch
axis, for having a portion of the spheroid limb in view at nominal orientation.

The implemented rotation kinematics allows for the camera to perform a conical scan of the target
limb when rotating around the yaw axis. Capturing three successive images at three different camera yaw
orientations, allows us to virtually simulate the multi-camera scenario. More precisely, since the conical
scan is the first angle of the rotation sequence (performed before the pitch-roll rotations), such configuration
is equivalent to prescribe variable camera orientations Rb/i with respect to a fixed body-to-world R attitude,
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rather than assuming a fixed camera-to-body orientation Rb/i w.r.t. a rotating body-to-world attitude, as
in an actual operative scenario. However, implementing this last option requires the conical scan to be
performed after the pitch-roll rotations, as in a 1-2-3 sequence, which, in turn, is not achievable with the
mounting options offered by the three rotational stages in our testbed.

The theory developed in Section 2 assumes an undistorted pinhole camera model, with known
intrinsic matrix K; therefore, a calibrated camera is required for the experimental tests. In this work,
camera calibration has been performed using Matlab Camera Calibration Toolbox, with a second
order radial distortion model. The calibration device consists of a checkerboard pattern printed
on an aluminum board (checkerboard size = 15 mm, see Figure 5). To allow for sufficient thermal
contrast, the checkerboard is heated up using a heat gun. An index commonly used for evaluating the
quality of a camera calibration is the mean reprojection error (MRE) of the corner points’: in this work,
an MRE = 0.13 pixels has been achieved after processing 12 checkerboard images. Such MRE value is
quite in line with published data on thermal cameras calibration employing standard checkerboard
patterns [28], even though lower MRE values can be achieved with dedicated calibration devices [29].
The estimated intrinsic camera parameters are reported in Table 3.
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Table 3. Estimated intrinsic camera parameters after calibration procedure (length unit in pixel).

Focal Lengths fx, fy Principal Point Coordinates Radial Distortion Coefficients

160.42 ± 1.22 80.70 ± 0.57 −0.333 ± 0.012
160.35 ± 1.22 63.29 ± 0.41 0.212 ± 0.051

6. Results

6.1. Results of Numerical Validation

The Matlab tool described in Section 4 was used for numerical validation through extensive
simulations, for assessing the expected accuracy of the attitude determination algorithm when
capturing images of an Earth-like spheroid with atmosphere, under varying points of observation.
In particular, three orbit altitudes were considered, corresponding to different ratios of altitude to
Earth radius, namely h/RE = 0.1, 0.2, and 0.3 (note that in the short conference version of this paper [9],
the dimensionless orbit altitudes were incorrectly reported as 0.01, 0.02, and 0.03, due to typos).
For each altitude, vantage points were generated at latitudes ranging from 0 to 85◦, with 5◦ of angular
step. For each vantage point, a set of three images was generated (as if they were captured by the
three sensor heads), prescribing a nominally nadir-pointing spacecraft attitude, with some randomly
generated, normally distributed off-nadir angles (ϕ, ϑ having mean and standard deviation µ = 0◦,
σ = 1◦, respectively). Images resolution corresponds to the one of a micro-satellite targeted camera,
as found in Table 1.

For each triple of images, raw limb points were detected using the method in [30], transformed
according to Equation (21), and then fitted to an ellipse using the robust iterative ellipse fitting algorithm
of [31]. Then, the attitude determination algorithm was run applying the steps from Equation (11) to
(14), and the estimated attitude matrix was compared to the one used to generate the image triple,
to compute the attitude error angles. The above procedure was repeated for 30 times, thus providing
30 image triples, and the corresponding attitude errors were root-mean-squared (rms) across the batch.
The resulting rms error angles are displayed in Figures 6–8, for h/RE = 0.1, 0.2, and 0.3, respectively.

Inspection of the figures suggest that very high accuracy was reached in the estimation of the
nadir direction, with rms errors spanning from 10−3 to 10−2 degrees for pitch and roll angles. On the
other hand, the angle about nadir (yaw) could be retrieved only very coarsely, with increasing error
as the vantage point approaches the symmetry axis of the Earth spheroid (i.e., for latitudes close to
90◦). This is an expected outcome, according to the discussion at the end of Section 2. Overall, the rms
yaw error remained below 10◦ only up to a latitude of 60◦. On the other hand, pitch and roll angles
accuracies were only marginally degraded when approaching Earth symmetry axis.

Note that the worse accuracy in estimating the yaw angle has a clear physical interpretation,
which is well-known also in star tracking sensors [32]: while the off-nadir angles depends mostly on the
location of the center of the ellipse in the image, which can be determined with sub-pixel precision, yaw
accuracy is related to how well the orientation of the ellipse axes within the image can be determined.
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If the target resembles a sphere (i.e., it has very low flattening ratios), the imaged ellipse will resemble
a circle, and the yaw angle becomes barely detectable: indeed, this is the situation encountered in an
Earth sensor scenario.

Finally, performance was also sensitive to orbit altitude: the accuracy tended to improve when
increasing the altitude, as a result of the wider portions of the Earth limb being captured by the cameras
and, at the same time, of the apparently thinner atmosphere.
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6.2. Results of Experimental Validation

Four test cases were considered for the preliminary validation of the sensor prototype,
corresponding to different pitch-roll configurations. For all the tests, the camera height was kept

aligned to the spheroid center, which corresponds to setting νw =
[

1 0 0
]T

in Equation (7) when

computing B̃∗ matrix. For each pitch-roll setting, three images were gathered at yaw orientations
separated by 120◦ one from each other. For each image, the limb was extracted using a standard Sobel
operator. Limb pixels’ coordinates from raw pictures were undistorted according to the estimated
distortion coefficients, using a built-in Matlab function. The undistorted limb coordinates are then
transformed according to Equation (21), using the calibrated intrinsic camera parameters in Table 3,
and setting matrices Rb/i according to:

Rb/1 = E2[45◦ − ϑ]E1[ϕ]E3[0◦],
Rb/2 = E2[45◦ − ϑ]E1[ϕ]E3[−120◦]
Rb/3 = E2[45◦ − ϑ]E1[ϕ]E3[120◦],

, (24)

where Ej j = 1, 2, 3 denotes the elementary rotation matrix around the j-th coordinate axis. Finally,
an ellipse was fitted to the stacked vector of transformed points from the three views, using the method
in [31]. Having the ellipse matrix available, the attitude determination algorithm was run applying
the steps from Equations (11)–(14). The attitude matrix R output of this process was compared to the
zero-reference attitude matrix R0 computed running the algorithm for ϕ = ϑ = 0◦. We defined the
estimation errors as the angles of the 3-1-2 rotation sequence computed from the error attitude matrix
RRT

0 . The process was repeated for four test-cases, corresponding to different pitch-roll combinations:
the outcome is summarized in Table 4. A schematic representation of the overall measurement
workflow, from image capturing to attitude matrix estimation, is given in Figure 9.
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Table 4. Error angles retrieved during experimental tests.

Test Case ψ Error (◦) ϕ Error (◦) ϑ Error (◦)

1: ϕ = 5◦, ϑ = 0◦ −3.29 0.03 0.04
2: ϕ = 0◦, ϑ = 5◦ 14.20 −0.01 −0.006
3: ϕ = 5◦, ϑ = 5◦ 8.05 −0.02 0.02

4: ϕ = 10◦, ϑ = 5◦ −6.88 0.07 −0.001

By inspection of Table 4, it emerged that the errors in the determination of the off-nadir angles
lay in the range 10−2 deg, i.e., well below the accuracy limit of the experimental platform. This is
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evidence that the foreseen measurement procedure leads to results that are consistent with the previous
theoretical and numerical analyses, providing high accuracy nadir direction determination. This is
a relevant outcome, especially when considering the additional error sources affecting the experimental
set-up, such as the imperfect camera distortion compensation, and imperfect knowledge of the relative
orientation of the camera when capturing the three images. On the other hand, the estimation of the
yaw angle was very poor, and worse than what was predicted by the numerical simulator, which is,
nevertheless, not surprising, given the lower image resolution of the FLIR Lepton® 3 camera.

7. Discussion

Some new theoretical results for the attitude determination from multiple limb views of an
ellipsoid, together with the increased availability of highly miniaturized infrared cameras, allowed us
to design a high accuracy horizon sensor for spacecraft attitude determination in Low Earth Orbit.
The sensor makes use of images of the Earth gathered in the infrared spectrum, and on fitting the
detected limb to an ellipse. For satellites in LEO, where the target exceeds significantly the camera FoV,
a single, partial, limb view is not enough to provide accurate ellipse fitting; therefore, the proposed
sensor concept exploits a multi-head implementation, where limb views from three different images
are combined for providing a single best-fitted ellipse. The full camera attitude is then estimated
starting from the analytic projection of an ellipsoid onto the image plane of a pinhole camera. Once the
Earth shape and the direction of observation are known, the camera attitude can be retrieved as the
solution to a modified orthogonal Procrustes problem. The proposed solution, being invariant to an
unknown scaling of the target size, is less affected by errors due to the atmosphere own radiance.

The attitude determination algorithm was first checked against synthetically generated images
of an Earth-like target, embedding a simple model for a diffuse, inhomogeneous limb to resemble
the presence of the atmosphere. Sensitivity of the algorithm accuracy under varying vantage points
was assessed through numerical simulations. Obtained results lead to rms errors in the order of
10−2 deg (or less) for the off-nadir angles in most operating conditions. The capability of measuring the
orientation about nadir was instead very coarse, and strongly dependent on the observation latitude
and camera resolution.

The sensor concept was then validated through an experimental testbed, designed to virtually
recreate a multi-head sensor, making use of only one low-resolution COTS infrared camera equipped
with three rotational DoF. The experiments allowed us to verify the nadir direction estimation down to
the resolution of the testbed rotational stages (<10 arcmin). On the other hand, the orientation about
nadir can be estimated only very coarsely: its practical usefulness in an operative scenario might be
achieved using higher resolution cameras, which remains a topic for further investigations.

Our results look promising when compared to existing static horizon sensors for LEO satellites,
and motivated us to further develop the conceptual design presented herein. For example, Selex-Galileo
IRES-C and Sodern ST-12 are reported to having 3-sigma errors of 1◦ and 0.1◦ respectively [33,34];
Maryland Aerospace MAI-SES has a resolution of 0.25 deg [35]; the thermopile array sensor flown
on-board of PSSCT-2 picosatellite from the Aerospace Corporation has a rated error within 0.5◦ [36].

Future efforts will be mainly devoted to the manufacturing of a complete sensor prototype
with higher camera resolution, and to its thorough experimental validation. In parallel, a more
comprehensive error budget shall be developed, which accounts for additional error sources, such as
the misalignment between the different sensor heads.
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