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Abstract: In recent years, there are several cost-effective intelligent sensing systems such as ultrasound
imaging systems for visualizing the internal body structures of the body. Further, such intelligent
sensing systems such as ultrasound systems have been deployed by medical doctors around the
globe for efficient detection of several diseases and disorders in the human body. Even though the
ultrasound sensing system is a useful tool for obtaining the imagery of various body parts, there is
always a possibility of inconsistencies in these images due to the variation in the settings of the system
parameters. Therefore, in order to overcome such issues, this research devises an SVM-enabled
intelligent genetic algorithmic model for choosing the universal features with four distinct settings of
the parameters. Subsequently, the distinguishing characteristics of these features are assessed utilizing
the Sorensen-Dice coefficient, t-test, and Pearson’s R measure. It is apparent from the results of the
SVM-enabled intelligent genetic algorithmic model that this approach aids in the effectual selection
of universal features for the breast cyst images. In addition, this approach also accomplishes superior
accuracy in the classification of the ultrasound image for four distinct settings of the parameters.

Keywords: Sorensen-Dice coefficient; t-test; Pearson’s R measure; ultrasound sensing systems;
SVM-enabled intelligent genetic algorithmic model; breast cyst imagery

1. Introduction

In general, medical practitioners classify the breast cysts in two major categories, namely the
benign and malignant tumors. It has to be noted that, even though the cysts observed in the breasts are
technically stated as tumors, it can be witnessed that every observed breast tumor is not malignant
(cancerous cell/tissue). Further, medical doctors state that eighty percent of the biopsied breast cysts
are observed to be benign (noncancerous cell/tissue). Even though such breast cysts are benign in
nature, it has to be removed surgically to avert its interference with the normal functioning of the
breasts. Moreover, it can be seen that these benign breasts do not affect the neighboring cell/tissue, and
it is not dangerous or life-threatening. On the other side, the malignant breast tumors are cancerous,
and if it is not diagnosed and treated premature, it will cause severe damage to the neighboring cells
and tissues. In addition, it gets spread to the nearby lymph glands (nodes). Further, these malignant
cancerous cells start spreading throughout the body via the lymph system and bloodstream, which is

Sensors 2020, 20, 432; d0i:10.3390/s20020432 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9476-8130
https://orcid.org/0000-0002-9352-0237
http://dx.doi.org/10.3390/s20020432
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/2/432?type=check_update&version=2

Sensors 2020, 20, 432 2 of 20

known as metastasis. Moreover, breast cancer at this point is dangerous, and the probability of cure is
very minimal.

According to the study conducted by the Taiwanese government in 2015 and 2016, there was
a substantial increase in deaths due to cancer [1]. In addition, this information is evident from the
details portrayed in Table 1 [1]. Moreover, in Taiwan, breast cancer in females ranks fourth amongst
the top 10 leading causes of cancer deaths for the year 2016. Therefore, many researchers are trying
to devise better approaches for the early detection of breast cancer [2,3]. Extensive use of intelligent
sensing in medical imaging has begun to correctly extract and visualize all the essential details of the
internal human body structures in the field of medical diagnosis [4-9]. Further, various intelligent
sensing modalities such as ultrasound sensing system, computerized axial tomography (CAT), positron
emission tomography (PET), and nuclear magnetic resonance imaging (NMR) are helping medical
doctors significantly in diagnosing several ailments and health disorders. Each intelligent sensing
modalities mentioned above have their own properties and utilities. The diagnosis of cancers in the
breast can be achieved through mammography (gold standard), which utilizes ionizing radiation
(X-rays). Since these ionizing radiations are harmful in nature and can also enhance the growth of
lesion cells, usage of nonionizing diagnosis methods such as ultrasound systems has become widely
popular. Moreover, it has to be noted that women with dense breasts are easily prone to breast cancer.
In addition, mammography exhibits low-sensitivity in detecting dense breasts with cancer. Therefore,
the role of ultrasound sensing systems becomes significant in the effective diagnosis of dense breasts
with cancer.

Furthermore, persistent exposure to such radiation might even be more dangerous for the
subject under scanning. Moreover, the ultrasound sensing system is considered to be a safe option
by medical physicians, as it uses sound waves and has no damaging radiation effects. Moreover,
such ultrasound sensing systems are widely prevalent these days in the real-time diagnosis of diseases
and health disorders.

In recent investigations, it has been found that when breast cancer is detected in earlier stages,
it can be diagnosed and operated upon to remove cancer altogether from the patient [4-9]. Moreover,
several physicians have recommended the deployment of sonography sensing systems for diagnosing
cancer in the breasts. Even though the sonography sensing systems are well-renowned in the premature
diagnosis of cancer in the breasts, on the other hand, it is a critical fact that the sonography sensing
systems in some cases produce imagery with low-resolution; therefore, suitable approaches are essential
for enhancing the resolution of these images. The imaging by the sonography sensing systems can
only point out at suspected masses (cysts), and the biopsy is mainly used to assess if the sampled
tissue is malignant or normal. In addition, the wastage of overall resources can be avoided by the use
of a suitable methodology that will enable medical doctors to make an efficient detection of breast
cancer during their primary examination of the imagery. The genetic algorithm (GA) is a well-known
approach for solving pattern recognition problems in medical and random image datasets [10-12].
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Table 1. Causes of cancer death, 2015 and 2016 (Unit: Persons, %).

3 0f20

2016 2015
. Per 100,000 P lati Per 100,000 P lati
ICD-10 Mortality NO.  Causes of Cancer Death Rank Number of % of All er opwiation Rank Number of % of All er opuiation
Deaths Deaths Crude Age-Adjusted Deaths Deaths Crude Age-Adjusted
Death Rate Death Rate Death Rate Death Rate
C00-C97 Malignant neoplasms 47,760 100.0 203.1 126.8 46,829 100.0 199.6 128.0
C33-C34 Cancers of trachea, 1 9372 196 39.9 24.4 1 9232 19.7 39.3 247
bronchus and lung
c22 Cancers of liver and 2 8353 175 35.5 22 2 8258 176 352 238
intrahepatic bile ducts
C18-C21 Cancers of colon, rectum 3 5722 12.0 243 146 3 5687 121 242 149
and anus
C50 Cancer of breast (Female) 4 2176 4.6 18.4 11.8 4 2141 4.6 18.2 12.0
C00-C06, C09-C10, .
Cl2-Cl4 Cancer of oral cavity 5 2936 6.1 12.5 8.3 5 2667 5.7 11.4 7.8
Cé61 Cancer of prostate 6 1347 2.8 11.5 6.8 6 1231 2.6 10.5 6.4
Cl6 Cancer of stomach 7 2315 4.8 9.8 5.8 7 2326 5.0 9.9 6.1
C25 Cancer of pancreas 8 1996 42 8.5 53 8 1948 42 8.3 5.3
C15 Cancer of oesophagus 9 1731 3.6 7.4 4.8 9 1807 3.9 7.7 5.1
C56, C57.0-C57.4 Cancer of ovary 10 656 14 5.6 3.6 12 529 1.1 4.5 3.0
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The works presented in [13] established a conventional genetic algorithm for feature selection;
besides, they had deployed three distinct classifiers (neural networks, discriminant analysis, logistic
regression) for classifying microcalcification patterns present in the digital mammograms. Moreover,
they had implemented the digital database for screening mammography (DDSM) dataset obtained
from the University of South Florida (http://www.eng.usf.edu/cvprg/Mammography/Database.html).
The authors in [14] established a conventional genetic algorithm-based approach for feature subset
selection and also for fixing the parameters involved in the SVM Classification. Further, they had applied
this model to 11 different datasets (German-credit card, Australian-credit card; Pima-Indian diabetes,
heart disease-Statlog project, breast cancer-Wisconsin, contraceptive method choice, Ionosphere, Iris,
Sonar, Statlog project: Vehicle, Vowel) obtained from UCI repository (https://archive.ics.uci.edu/mL/
datasets.php). The works [13] and [14] deployed the conventional genetic algorithm-based model with
restricted (same) parameter settings. Moreover, these approaches were not validated under multiple
distinct settings of the parameters, which makes them inappropriate for processing the ultrasound
images of a patient obtained under various distinct settings of the parameters.

Further, it can be seen that numerous researchers have been working on developing better solutions
for ultrasound sensing systems [15] and also for classifying the lesion regions [16,17]. Currently,
a few deep-learning models have become popular in diagnosing the diseases from ultrasound image
datasets [18]. The work in [18] briefly introduces several popular deep learning architectures, and then
summarizes and thoroughly discusses their applications in various specific tasks in US image analysis,
such as classification, detection, and segmentation. The authors in [19], discuss a Faster R-CNN
based detector that is more suitable for thyroid papillary carcinoma detection in ultrasound images.
The research in [20] establishes an application of deep learning for predicting the low-resolution map
of fiber orientation in extracted muscle regions. However, the use of deep-learning models might be
challenging when the ultrasound image dataset is a small one. The work in [21] developed a novel
CAD system for mass detection and classification in breast ultrasound images based on the fuzzy SVM.
However, their breast ultrasound image dataset was captured in a single (restricted) parameter setting,
whereas the breast ultrasound image dataset in our work, has been captured with four different settings
of the parameters. The work in [22] established a novel and accurate method based on ultrasound RF
time series analysis and an extended version of support vector machine classification for generating
probabilistic prostrate cancer maps, which can augment ultrasound images of the prostate and enhance
the biopsy process. The work in [23] established an SVM system to characterize normal liver, cirrhotic
liver, and hepatocellular carcinoma (HCC) using wavelet packet texture descriptors. Further, even
though the works in [22] and [23] use the keyword SVM and ultrasound images, but it has to be noted
that the work in [22] deploys a prostate ultrasound image dataset in a single (restricted) parameter
setting and the work in [23] utilized the liver ultrasound images obtained in a single (restricted)
parameter setting, whereas, our work is related to the breast ultrasound image dataset captured with
four different settings of the parameters.

In general, three essential stages are part of the research methodology. The primary stage
is generating the required ultrasound dataset imagery, which involves the segregation of the
region-of-interest (ROI) for all the images. Then, the second stages include the extraction of the
appropriate features using the segregated ROI imagery that is achieved by training the proposed
model by utilizing the marked imagery. Subsequently, the third stage represents the classification of
these ultrasound imageries. In addition, it is clearly evident that in several scenarios, validating the
outcomes of the classification is quite challenging, since most of these approaches follow only a single
(constrained) setting of the parameters.

Usually, this scenario leads to a drastic decrease in the quality of the obtained outcomes. Since such
a situation where the ultrasound sensing systems having distinct settings of the parameters, can
produce diverse imagery for a single subject under study. Additionally, in the computer-aided diagnosis
of breast cysts, several research teams have tried to segregate appropriate feature set for successful
classification; still, there is a research gap in identifying suitable optimal feature sets for such a task.
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Therefore, the extraction of highly discriminative and unique features is an arduous and exciting task.
Due to this fact, the proposed model is established, and it also generalizes (converges) for four distinct
settings of the parameters.

The key contributions of this work are summarized as follows:

e  This research devises an SVM-enabled intelligent genetic algorithmic model for choosing the
universal features with four distinct settings of the parameters.

e Inaddition, this proposed approach categorizes the breast cyst imagery as breast mice (BM) and
invasive ductal carcinoma (IDC).

e  Moreover, the intelligent genetic algorithmic model amalgamates the benefits of wrapper algorithm
and filter algorithm for choosing the highly discriminative and comprehensive set of features
under four distinct settings of the parameters.

e  The results of the proposed approach exhibit the fact that the chosen set of universal features
enables superior classification outcomes under four distinct settings of the parameters.

e  Furthermore, the proposed model also empowers the medical doctors in the detection of breast
mice (BM) and invasive ductal carcinoma (IDC).

The further portions of this research are categorized as an illustration of the materials and methods
available in Section 2, the outcomes of the experiments are elucidated in Section 3, and Section 4
establishes the conclusion of this research.

2. Materials and Methods

The ultrasound breast cyst imagery dataset was gathered from 23 different patients at the
Department of Medical Imaging, Buddhist Dalin Tzu Chi General Hospital. The physician used four
different settings of the parameter in GELOGIQ 700 for obtaining four diverse ultrasound breast images
from each patient. Further, the physician outlined the ROI on each ultrasound breast image, and the
system cut the ROI area into many 23 x 23 blocks. A total of 4038 samples with a size of 23 x 23
were collected, including 2012 samples of invasive ductal carcinoma and 2026 samples of breast mice.
Among these samples, 50% were utilized for selecting the features and the rest for testing purposes.
In this research, the SVM-enabled intelligent genetic algorithmic model is proposed for identifying a
superior set of features under four distinct settings of the parameters in the ultrasound sensing systems.
It has to be noted that this approach blends together the benefits of both the wrapper algorithm and the
filter algorithm, respectively. In addition, during the process of accomplishing the filter algorithm, the
features are assessed with the help of the metrics such as Sorensen-Dice coefficient; ¢-test; and Pearson’s
R measure. Subsequently, the wrapper algorithm comprises the deployment of the intelligent genetic
algorithmic approach for choosing the universal set of features that exhibits superior performance.

The schematic process flow diagram of the SVM-enabled intelligent genetic algorithmic model is
depicted in Figure 1. Primarily, the process begins with marking and segregating the ROI from the
breast cyst ultrasound imagery by a medical practitioner based on his expertise, along with insights
from the biopsy report. Then, it is followed by the extraction of 126 unique sets of features from the
marked ROI ultrasound imagery utilizing a mask with a size of 23 X 23. Subsequently, the highly
discriminative features that exhibit superior accuracy in classifying the images are chosen by deploying
the intelligent genetic algorithmic approach. In the final step, the breast cyst ultrasound imagery is
classified as breast mice and invasive ductal carcinoma with the assistance of a support vector machine
(SVM) approach.
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Start the Process Sele-ctxo-n (?f Hfghly
=) Discriminative
Features
Breast Cyst
Ultrasound Support Vector
Imagery Machine Classifier
Outlining the ROI Classification Results
from the Ultrasound
Imagery

Feature Extraction ( End of the Process )
Process

Figure 1. The schematic process flow diagram of the SVM (support vector machine)-enabled intelligent
genetic algorithmic model.

2.1. Outlining the Region-of-Interest from Ultrasound Image

The primary step is the feature set extraction from the ultrasound breast cyst imagery. Initially,
the expert medical practitioner identifies, marks, and segregates the ROI from the ultrasound breast
cyst image with the ideas taken from the biopsy report. In Figure 2a, we can observe the general
representation of the ultrasound breast cyst image, and Figure 2b portrays the marked and segregated
ROI portions from these imageries.

(b)

Figure 2. (a) General representation of the ultrasound breast cyst imagery, (b) marked and segregated
ROI (region of interest) portions from this imagery.

2.2. Extraction of Feature Sets

In general, from all the ROI images, a mask with a size 23 x 23 is utilized for extracting the
126 feature sets. Further, all these feature sets can be exemplified as follows:

2.2.1. Histogram Feature Sets

The statistical information from the ultrasound breast cyst imagery can be easily obtained utilizing
the histogram feature sets. Further, the gray level distribution and related properties of the ultrasound
breast cyst imagery can be computed employing the histogram. In addition, the histogram is utilized
in this work to extract and compute seven sets of the feature that are represented in Table 2.
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Table 2. Histogram feature sets.

Feature Name Feature Number
Energy F1
Entropy F2
Kurtosis F3

Mean F4
Skewness F5
Standard Deviation Fo6
Variance F7

2.2.2. Gray-Level Spatial Dependence Matrix

A statistical approach for assessing the texture that assumes the spatial association between the
pixels is mentioned as the gray-level spatial dependence matrix (GLSDM) [24]. Further, this matrix
produces distinct outcomes based on the distance and angle parameter values, respectively. It can be
observed that the gray-level spatial dependence matrix aids in the computation of 13 sets of the feature
represented in Table 3.

Table 3. Gray-level spatial dependence matrix feature sets.

Feature Name Feature Number
Correlation F8
Difference of entropy F9
Difference of variance F10
Sum of average F11
Sum of entropy F12
Sum of squares F13
Sum of variance F14
Contrast F15
Energy F16
Entropy F17
Local homogeneity F18
Cluster shade F19
Cluster prominence F20

2.2.3. Statistical Feature Matrix

Generally, the statistical characteristics such as the distance between the pixels of the image is
computed with the aid of the statistical feature matrix (SFM) [25]. In this research, we compute the
dissimilarity (F21) feature using the statistical feature matrix, as shown in Table 4.

Table 4. Statistical feature matrix feature.

Feature Name Feature Number

Dissimilarity F21

2.2.4. Gray Level Run-Length Textural Matrix

The gray level run-length textural matrix can be computed using the image’s gray-level and
the maximum amount of gray-level value that appears incessantly in a particular pathway [26].
The five sets of features can be computed utilizing the gray level run-length textural matrix (GLRLM),
as depicted in Table 5.
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Table 5. Gray level run-length textural matrix feature sets.

Feature Name Feature Number
Short-run emphasis F22
Long-run emphasis F23

Gray-level uniformity F24
Run-length uniformity F25
Run percentage F26

2.2.5. Laws’ Texture Energy Matrix

The core vector of the texture can be computed using the Law’s texture energy matrix [27].
The statistical outcomes are achieved by deploying the Law’s mask with the size 5 X 5 over the
ultrasound breast cyst imagery. As a result, we could compute around ten sets of features utilizing this
matrix, as represented in Table 6.

Table 6. Laws’ texture energy matrix feature sets.

Feature Name Feature Number
LE mean F27
EL mean F28
SL mean F29
EE mean F30
LS mean F31

LE variance F32
EL variance F33
SL variance F34
EE variance F35
LS variance F36

2.2.6. Neighboring Gray Level Dependence Matrix

Usually, the gray-level association between all the image pixels and its neighbors can be utilized
for generating the neighboring gray level dependence matrix (NGLDM) [28]. The five sets of the
features extracted using the neighboring gray level dependence matrix is represented in Table 7.

Table 7. Neighboring gray level dependence matrix feature sets.

Feature Name Feature Number
Small number emphasis F37
Large number emphasis F38
Number non-uniformity F39
Second moment F40
Entropy F41

2.2.7. Neighborhood Gray Tone Difference Matrix

The neighborhood gray tone difference matrix (NGTDM) aids in attaining the spatial variation of
the gray intensity via the notification of the gray tone difference amidst the pixel and its neighboring
pixels in an image [29]. Then, neighborhood gray tone difference matrix is utilized for obtaining the
five sets of the feature, as shown in Table 8.
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Table 8. Neighborhood gray tone difference matrix feature sets.

Feature Name Feature Number
Busyness F42
Coarseness F43
Complexity F44
Contrast F45
Textural Strength F46

2.2.8. Wavelet Transform Feature Sets

Typically, using the wavelet transform, the images can be disintegrated as the low-low frequency
subband images utilizing the low pass filters [30]. In addition, the LL subband obtained using the
wavelet transform is deployed for computing the forty-eight sets of features, as portrayed in Table 9.

Table 9. Wavelet transform feature sets.

Feature Name Feature Number(s)
Histogram features FA7-F53
GLSDM features F54-F66
SFM feature F67
GLRLM features F68-F72
Mean F73
Standard deviation F74
Laws’ features F75-F84
NGLDM features F85-F89
NGTDM features F90-F94

2.2.9. Fourier Features—Local Fourier Coefficients

The local Fourier coefficients of the ultrasound breast cyst imagery can be obtained by deploying
the Fourier transform. Further, it can be observed that all the coefficients have two elements, namely,
the magnitude and the phase angle. Moreover, utilizing the Fourier transform, we could compute
around 32 features, as listed in Table 10.

Table 10. Fourier features—local Fourier coefficients.

Feature Name Feature Number(s)
Means of eight magnitudes F95-F102
Means of eight phase angles F103-F110
Standard deviations of the eight magnitudes F111-F118
Standard deviations of the eight phase angles F119-F126

2.3. SVM-Enabled Intelligent Genetic Algorithmic Model for Selecting Appropriate Features

In this work, the SVM-enabled intelligent genetic algorithmic model encompasses the selection of
features portion that entails two stages; namely, the first stage is the filter algorithm stage, and the
second one is the wrapper algorithm stage. Further, in the filter algorithm stage, the features possessing
a low score are removed. In addition, this is accomplished through utilizing the Sorensen-Dice
coefficient, t-test, and Pearson’s R measure. Then, the highly discriminative and superior subset of
features is obtained by deploying the intelligent genetic algorithmic approach.

2.3.1. Filter Algorithm

We observed that the previous section also dealt with the extraction of 126 feature sets. Furthermore,
these sets of features become the input of the intelligent genetic algorithmic model. Moreover, another
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major point to be taken into account is that the set of features, which were obtained using four distinct
settings of the parameters, become a diverse group. However, it has to be noted that the complexity of
the overall computation becomes a challenging point at this juncture. Therefore, this arduous challenge
can be surpassed through the deployment of the three assessment measures such as Sorensen-Dice
coefficient, t-test, and Pearson’s R measure for scoring the extracted set of features and thereby
eliminating the low-scoring and irrelevant features. The assessment metrics used in eliminating the
irrelevant features are discussed beneath:

e Augmented Sorensen-Dice coefficient

The augmented version of the Sorensen-Dice coefficient of the i-th feature set for the ultrasound
breast cyst datasets can be expressed using the following equation:

ZS: (fi(j) —fi)z
=1
Fi) = — — )
1 =) _=(
]él nj_lkél(xk’i i )

(7)

where the values x;, and x;”’ signifies the average of the i-th feature in for all the ultrasound breast cyst

datasets and the j-th ultrasound breast cyst dataset, correspondingly. Further, the value J_c]i]l.) specifies
the average of the i-th feature of the k-th instance in the j-th ultrasound breast cyst dataset and s

represents the total number of features.
o  The t-test

The values of the t-test score for the i-th feature in the j-th dataset can be expressed using the
following equation:

@

SOV /) 4 (TOY 0l
(/) /) + (o)) /]

where the values Elj (+), and E{ (=) specify the average value of the positive and negative instances of

the i-th feature in the j-th ultrasound breast cyst dataset, correspondingly. The values nf (+) and nlj. )
signify the total number of positive and negative instances of the i-th feature in the j-th ultrasound
breast cyst dataset, correspondingly. Further, the values o;, j(+) and o;, ]-(_) characterize the standard
deviation of the i-th feature of the positive and negative instances in the j-th ultrasound breast cyst
dataset, correspondingly. The t-test score of the i-th feature in all ultrasound breast cyst datasets can be

stated using the following equation:

S .
Y 1
=1

Ti:sxa(T},Tf,...,Tg)

®)
where s represents the total number of ultrasound breast cyst datasets.

e Pearson’s R measure

Pearson’s R measure of the k-th feature between ultrasound breast cyst datasets i and j can be
expressed using the following equation:
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o Z(6 R -
i — ' 4)

where the factors x;; and xi specify the value of the feature k in i-th and j-th ultrasound breast cyst

dataset, correspondingly. Further, the factors E;; and fl]c signify the mean values of x;( and xl]c averaged
over p occurrences. Moreover, after the computation of the Pearson’s R measure for all likely groupings
of the ultrasound breast cyst datasets, the Pearson’s R measure of the k-th feature in each ultrasound
breast cyst dataset is computed.

The Pearson’s R measure of the feature k in ultrasound breast cyst dataset i can be expressed using
the following equation:

j=1

Cor, = ifi#] ©)

where s signifies the total number of ultrasound breast cyst dataset. Finally, Pearson’s R measure of the
k-th feature for all ultrasound breast cyst datasets can be computed using the following equation:

s
Z Cork,i
=1

COT’k =

(6)

s X U(Corkrl, Corio, ..., Cork,s)

Moreover, after accomplishing the computation of the assessment metrics such as Sorensen-Dice
coefficient, t-test, and Pearson’s R measure for all the sets of features, three scores for each set of
features are listed. Subsequently, these features are sorted down in the decreasing order based
on their assessment scores. Further, the set of irrelevant features with low assessment scores are
removed. Consequently, the support vector machine classifier is utilized for computing the accuracy of
classification for these set of features. Lastly, the set of ranked features in both these lists that intersect
gets selected for the next phase, namely the wrapper algorithm.

2.3.2. Wrapper Algorithm

Usually, selecting the features that yield superior accuracy in classifying the ultrasound breast
cyst datasets for four distinct settings of the parameters is achieved through this stage. Moreover,
the SVM-enabled intelligent genetic algorithm gets utilized as the wrapper. The intelligent genetic
algorithm can be seen as a smart approach for searching the highly discriminant features, which
impersonates the natural selection approach. Subsequently, based on the principle known as the
“survival of the fittest,” this intelligent genetic algorithm achieves optimal outcomes after a sequence
of iterations. It can be observed that in this algorithm, all the chromosomes are depicted by means
of a bit or an integer string. Consequently, the intelligent genetic algorithm has three major phases,
namely, the reproduction, the crossover, and the mutation. Therefore, in the reproduction phase,
the chromosomes are selected based on the assessment of their fitness values. Then, the crossover and
mutation phases are the critical stages for producing the next generation chromosomes. In addition,
the fitness function, design of chromosomes, and the intelligent genetic algorithm are discussed in the
subsequent subsection.

e  Fitness Function

We have initially stated that the key objective of this research is determining the universal sets of
the feature that achieves superior classification outcomes for four distinct settings of the parameters.
Therefore, the accuracy of the classification and the variance in the accuracy for all four distinct settings
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of the parameters play a vital role in designing the fitness function. In addition, the following equation
represents the fitness function, which obeys the principles as mentioned above:

S
fitness = Y, Acc_S;—
i=1
(Acc_Sy - Acc_Sz)2 + (Acc_S1 - Acc_53)2 +... ?)
+(Acc_S1 — Acc_Sn)* + (Acc_Sy — Acc_S3)* + ...

+(Acc_Sy — Acc_SN)* + ...+ (Acc_Sn-1 — Acc_SN)*

where s specifies the total number of ultrasound breast cyst images, the value Acc_S, signifies the
accuracy of classification for the i-th ultrasound breast cyst images.

e  Design of Chromosomes

In the design of chromosomes, each chromosome can be portrayed utilizing an n-digit binary string.
Further, the factor “F” signifies the total number of feature sets. Moreover, individual chromosomes
designate either the digit “one” or “zero” to indicate the selection of a feature. The schematic diagram
of the binary encoding of the chromosome is depicted in Figure 3.

h f f 7 fra Tr
v v 4 4 v \
1 0 0 T | 1 0

Figure 3. The schematic diagram of the binary encoding of the chromosome.
e  Feature Selection Using the Intelligent Genetic Algorithm

The schematic flow diagram for selecting the set of features utilizing the intelligent genetic
algorithm is illustrated in Figure 4. Subsequently, the algorithm is discussed in the following subsection.

Stage (i): The feature values are scaled into (-1, +1) using the following equation:

I == ®)
0j
where x; signifies the value of feature i, X; illustrates the mean value of x;, 0; symbolizes the standard
deviation of feature i. Moreover, the scaling process is performed in order to ignore the attributes in the
numeric range superseding the attributes in a smaller numeric range. In addition, the accuracy rate of
the support vector machine classification can also be improved utilizing this scaling of the ultrasound
breast cyst images.

Stage (ii): The process of initializing the population begins along with the chromosome encoding.
These populations are generated in a random manner. Moreover, it has to be noted that all chromosomes
get themselves encoded in the form of a binary string.

Stage (iii): For all the chromosomes, the accuracy rate of the support vector machine classification
is computed utilizing the five-fold cross-validation approach.

Stage (iv): The fitness function is deployed to assess all the chromosomes in the ultrasound breast
cyst dataset with the aid of computing the accuracy rate of the SVM classification

Stage (v): The process terminates itself when the stopping criterion gets fulfilled. In addition, this
process gets terminated when the chromosome generation attains the value 500. During this stage,
if the algorithm is still running, then this process proceeds to stage (vi).

Stage (vi): The process searches for superior solutions employing reproduction, crossover, and
mutation. The stage (ii)-stage (vi) is repeated until this algorithm attains the stopping criterion.
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2.3.3. Support Vector Machine Approach

Moreover, this research devises the fitness function that relies on the accuracy rate of the support
vector machine classification. Further, the objective of the SVM is about searching the optimal
hyper-plane that segregates the ultrasound breast cyst dataset into two different classes. The support
vector machine hyper-plane can be expressed using the following equation:

N

f(x) = sgn[z a;idiK(x;,x) + b

i=1

)

where d; signifies its respective class membership, the factor x; portrays the support vectors that
are feature values of the ultrasound breast cyst images, N represents the total number of support
vectors, and the factor K(x;, x) denotes the kernel function. In addition, it has to note that the kernel
function deployed in this research is the radial basis function (RBF) and it can be expressed using the
following equation:

2
_M) (10)

K(xx) = oxp( -3

where 0 specifies the kernel width.

3. Results and Discussion

All the experiments conducted for this research made use of the ultrasound breast cyst imagery
dataset obtained from 23 different patients at the Department of Medical Imaging, Buddhist Dalin
Tzu Chi General Hospital. Further, these images were acquired from the patients utilizing all the
four distinct settings of the parameters in the ultrasound sensing system. The four distinct settings
of these parameters are illustrated using Table 11. Figure 5 depicts the ultrasound breast cyst
images for four distinct settings of the parameters acquired from the same ultrasound sensing system
(GE GELOGIQ 700).

In general, the proposed SVM-enabled intelligent genetic algorithmic model categorizes the
ultrasound breast cyst imagery datasets into two distinct groups, namely: Class 1—Invasive ductal
carcinoma and Class 2—Breast Mice. Moreover, in this research, the ultrasound breast cyst imagery’s
pathological information was determined with the support from an expert radiologist and was also
validated using the biopsy report. The sets of the feature were extracted using the 23 x 23 mask that
was applied to the ROI portion of the ultrasound breast cyst imagery. Further, overall, 4604 samples
were gathered comprising of 2012 Class 1—Invasive ductal carcinoma and 2026 Class 2—Fibroadenoma
samples. Among these samples, 50% were utilized for selecting the features and the rest for
testing purposes.
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(©) (d)

Figure 5. Ultrasound breast cyst image for four distinct settings of the parameters acquired from the

same ultrasound sensing system (GELOGIQ 700). Breast cyst images acquired from (a) Parameter
Setting-1, (b) Parameter Setting-2, (c) Parameter Setting-3, and (d) Parameter Setting-4.

Table 11. The four distinct settings of the parameters in the ultrasound sensing system (GELOGIQ 700).

Parameter Setting Number Details

The probe is a B-mode linear array. The depth range = 4 cm; dynamic range = 66 dB;

GELOGIQ700-Parameter Setting-1 gain = 36; edge enhance = E3; gray map = MD; frame average setting = A3.

The probe is a B-mode linear array. The depth range = 4 cm; dynamic range = 69 dB;

GELOGIQ700-Parameter Setting-2 gain = 35; edge enhance = E2; gray map = MC; frame average setting = A3.

The probe is a B-mode linear array. The depth range = 3 cm; dynamic range = 69 dB;

GELOGIQ700-Parameter Setting-3 gain = 34; edge enhance = E3; gray map = MC; frame average setting = A3.

The probe is a B-mode linear array. The depth range = 3 cm; dynamic range = 63 dB;

GELOGIQ700-Parameter Setting-4 gain = 34; edge enhance = E2; gray map = MD; frame average setting = A4.

3.1. Classification Results of the SVM-Enabled Intelligent Genetic Algorithmic Model-Universal Features

In the experiments, the two-point cross over approach was deployed, and this approach had
the probability and the rate of mutation as 0.65 and 0.03, respectively. Then, the possibly effective
recombination solutions were selected utilizing the roulette wheel selection technique. The size of the
population was chosen to be 500, and the generation process gets iterative until it reaches a value of
500. The accuracy rate of the SVM-enabled intelligent genetic algorithmic model for diverse sets of
features under four distinct settings of the parameters is demonstrated in Tables 12-14, respectively.
It can be witnessed from these tables that the maximum, minimum, and maximum mean accuracy
values are 0.9914, 0.9581, and 0.9798, correspondingly. The value of the accuracy’s standard deviation
in the case of four distinct settings of the parameters is set as 1.35, during the process where the
SVM-enabled intelligent genetic algorithmic model chose the 15 sets of features. Moreover, the
experimental outcomes illustrate the fact that the SVM-enabled intelligent genetic algorithmic model
exhibits superior performance by selecting a highly distinguishable and essential set of features,
which also accomplishes the supreme accuracy rate of classification under four distinct settings of
the parameters.

3.2. Classification Accuracy of SVM-Enabled Intelligent Genetic Algorithmic Model for Features Chosen in
Each (Individual) Parameter Setting

Generally, the chosen universal set of features for four distinct settings of the parameters can
be compared in terms of the classification accuracy rate with the best feature sets chosen for each
(individual) parameter settings. Further, the SVM-enabled intelligent genetic algorithmic model gets
deployed for selecting the appropriate best feature sets in each (individual) parameter settings. The
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accuracy rate of the SVM-enabled intelligent genetic algorithmic model, when it chooses 5, 10, and 15
best feature sets under each (individual) parameter setting are represented in Tables 15-17, respectively.
The mean value of the accuracy rate for classification, while choosing 5, 10, and 15 sets of features under
the each (individual) parameter setting is 0.977, 0.9839, 0.9822, correspondingly. It can be witnessed
from Tables 12-17 that the best feature sets obtained from each (individual) parameter setting exhibit
superior classification accuracy when compared with the accuracy rates of the universal set of features.
The difference in the mean accuracy value amongst the universal set of features and the individual best
feature sets is 1.03%, 0.57%, correspondingly. From these quantitative outcomes, it can be seen that
the SVM-enabled intelligent genetic algorithmic model is supremely efficient in the selection of the
universal set of features under four distinct settings of the parameters.

Table 12. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses five universal features.

Ultrasound Sensing System Setting Detail Accuracy Rate (%)
Parameter Setting-1 98.42
Parameter Setting-2 96.81
Parameter Setting-3 97.52
Parameter Setting-4 94.27
Mean 96.75

Table 13. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses 10 universal features.

Ultrasound Sensing System Setting Detail Accuracy Rate (%)
Parameter Setting-1 98.35
Parameter Setting-2 98.86
Parameter Setting-3 98.27
Parameter Setting-4 95.81
Mean 97.82
Feature sets F4, F5, F22, F26, F30, F95, F108, F109, F113, F124

Table 14. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses 15 universal features.

Ultrasound Sensing System Setting Detail Accuracy Rate (%)
Parameter Setting-1 99.14
Parameter Setting-2 98.48
Parameter Setting-3 98.27
Parameter Setting-4 96.02
Mean 97.98
F4, F5, F14, F22, F25, F29, F77, F103, F106, F108, F109,

Feature sets F113, F115, F121, F124

Table 15. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses five features in each parameter setting.

Ultrasound Sensing System Setting Detail The Best Feature Sets Accuracy Rate (%)
Parameter Setting-1 F4,F5, F105, F121, F11 99.00
Parameter Setting-2 F4, F29, F37, F19, F1 97.17
Parameter Setting-3 F39, F107, F6, F37, F1 98.04

Parameter Setting-4 F4,F15, F51, F47, F124 96.91
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Table 16. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses 10 features in each parameter setting.

Ultrasound Sensing System Setting Detail The Best Feature Sets Accuracy Rate (%)
Parameter Setting-1 F4, F5, F105, F3, F11, F40, F6, F1, F2, F7 99.34
Parameter Setting-2 F4, F29, F9, F22, F1, F12, F8, F37, F5, F32 98.94
Parameter Setting-3 F4, F107, F5, F37, F1, F2, F3, F6, F113, F9 98.42
Parameter Setting-4 F4, F15, F5, F17, F123, F109, F1, F104, F106, F2 96.86
Mean 98.39

Table 17. Classification results of the SVM-enabled intelligent genetic algorithmic model when it
chooses 15 features in each parameter setting.

Ultrasound Sensing System Setting Detail The Best Feature Sets Accuracy Rate (%)
F4, F5, F105, F3, F11, F40, F6, F1, F2, F7, F10,

Parameter Setting-1 F13, F9, F12, F8 99.27
Parameter Setting-2 F4, 29, 19, F22,FI;’1,FI;1§,11(3)?,F1;37, F5, 132, 48, 98.94
Parameter Setting-3 F4,F107, F5, Flgafé,FFli 113’212513’,5166, F113, F9, F10, 98.38
Poramete Setng.4 FiFI5F5 FI7FL23 FIS FLFIGLFIOG R, g

Mean 98.22

3.3. Comparison with Peer Approaches

This subsection compares the performances of the SVM-enabled intelligent genetic algorithmic
model with Chang’s approach [31] and Xie’s model [32]. The performance of the SVM-enabled
intelligent genetic algorithmic model and the other approaches are listed in Table 18. The mean
accuracy of these methods is 97.82%, 97.58%, and 95.24%, correspondingly. The standard deviation
amongst all parameter settings of these methods is 1.36, 1.93, and 2.06, correspondingly. It can be
witnessed that the SVM-enabled intelligent genetic algorithmic model achieves maximum accuracy
rate for classification in comparison with its peer approaches. In addition, the SVM-enabled intelligent
genetic algorithmic model also exhibits a low value for the standard deviation metric when compared
with other approaches.

Table 18. Classification results of SVM-enabled intelligent genetic algorithmic model and peer
approaches when chooses 10 features in each parameter setting.

Ultrasound Sensing The SVM-Enabled Intelligent

System Setting Detail Genetic Algorithmic Model Chang’s Approach [31] Xie’s Model [32]
Parameter Setting-1 98.35% 99.80% 95.87%
Parameter Setting-2 98.86% 97.79% 96.23%
Parameter Setting-3 98.27% 97.76% 96.72%
Parameter Setting-4 95.81% 95.09% 92.12%

Mean 97.82% 97.58% 95.24%
The best feature sets F4, F5, F26, F22, F30, F95, F108, F109,  F4, F112, F44, F99, F122, F6, F101, F98, F44, F56,
F113, F124 F78, F11, F120, F5, F22 F2, F104, F31, F113, F108

3.4. Discussion

In Table 12, the classification results of the proposed SVM-enabled intelligent genetic algorithmic
model chooses five universal features is illustrated with accuracy rate 0.9842 (Parameter Setting-1),
0.9681 Parameter Setting-2), 0.9752 (Parameter Setting-3), and 0.9427 (Parameter Setting-4), respectively.
Moreover, in Table 13, the classification results of the proposed method chooses 10 universal features
illustrated with accuracy rates 0.9835 (Parameter Setting-1), 0.9886 (Parameter Setting-2), 0.9827
(Parameter Setting-3), and 0.9581 (Parameter Setting-4), respectively. In addition, in Table 14,
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the classification results of the proposed method chooses 15 universal features is illustrated with
accuracy rates 0.9914 (Parameter Setting-1), 0.9848 (Parameter Setting-2), 0.9827 (Parameter Setting-3),
and 0.9602 (Parameter Setting-4), respectively. Hence, it can be witnessed from Tables 12-14 that when
there is an increase in the number of the universal features (5, 10, and 15), there is a corresponding
increase in the accuracy rate and the mean accuracy rate.

Moreover, in Table 15, the classification results of the proposed method choose five features in
each parameter setting is portrayed with accuracy rate 0.99 (Parameter Setting-1), 0.9717 (Parameter
Setting-2), 0.9804 (Parameter Setting-3), and 0.9691 (Parameter Setting-4), respectively. In addition,
in table 16, the classification results of the proposed method chooses ten features in each parameter
setting is portrayed with accuracy rate 0.9934 (Parameter Setting-1), 0.9894 (Parameter Setting-2), 0.9842
(Parameter Setting-3), and 0.9686 (Parameter Setting-4), respectively. Subsequently, in Table 17, the
classification results of the proposed method choose 15 features in each parameter setting is portrayed
with accuracy rate 0.9927 (Parameter Setting-1), 0.9894 (Parameter Setting-2), 0.9838 (Parameter
Setting-3), and 0.9631 (Parameter Setting-4), respectively. Therefore, it can be witnessed from Tables 15
and 16 that when there is an increase in the number of the individual features from 5 to 10, there
is a corresponding increase in the accuracy rate and the mean accuracy rate. However, in general,
there is a drop in both the accuracy rate and the mean accuracy rate when there is an increase in the
number of individual features from 10 to 15. The experimental results exhibit the fact that the proposed
SVM-enabled intelligent genetic algorithmic model possesses significant potential in the selection of
appropriate best feature sets, which can assist in the early detection of breast cancer.

4. Conclusions

The cause of death among Taiwanese and worldwide women due to malignant breast cancer is
widely increasing in the present day scenario. Moreover, the ultrasound sensing systems perform well
in the diagnosis of the lesion region, and it can clearly distinguish it from the healthy tissues in the
breast. Moreover, it has to be noted that the resolution achieved by these ultrasound sensing systems
is not so high. Consequently, this makes the task of classifying the breast cysts arduous for medical
doctors through direct vision. Furthermore, obtaining the breast cyst imagery of a patient through
four distinct settings of the parameters in an ultrasound sensing system might be useful in avoiding
the invasive procedures. Therefore, this research establishes the SVM-enabled intelligent genetic
algorithmic model for selecting the universal set of features that can easily aid in distinguishing between
the breasts with and without cysts. Further, the evaluation metrics such as Sorensen-Dice coefficient,
t-test, and Pearson’s R measure is utilized for assessing the extracted feature sets. The SVM-enabled
intelligent genetic algorithmic model is deployed for choosing a highly discriminant and relevant set
of features. The experimental outcomes indicate that the SVM-enabled intelligent genetic algorithmic
model accomplishes a superior accuracy rate for classification under four distinct settings of the
parameters. Moreover, the SVM-enabled intelligent genetic algorithmic model surpasses the other
compared peer-level approaches in terms of classification accuracy; also, it converges (generalizes)
well in the case of distinct settings of the parameters. In addition, the proposed model also enables
medical doctors in the detection of fibroadenoma and invasive ductal carcinoma (IDC). Moreover, an
advanced ultrasound system with real-time autonomous diagnosis capabilities can be considered as
the task for the future. With sufficiently large ultrasound image datasets, deep learning models can be
utilized in the future for efficient disease diagnosis.
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