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Abstract: Classification of faults in mechanical components using machine learning is a hot topic
in the field of science and engineering. Generally, every real-world running mechanical system
exhibits personalized vibration behaviors that can be measured with acceleration sensors. However,
faulty samples of such systems are difficult to obtain. Therefore, machine learning methods, such as
support vector machine (SVM), neural network (NNs), etc., fail to obtain agreeable fault detection
results through smart sensors. A personalized diagnosis fault method is proposed to activate the
smart sensor networks using finite element method (FEM) simulations. The method includes three
steps. Firstly, the cosine similarity updated FEM models with faults are constructed to obtain
simulation signals (fault samples). Secondly, every simulation signal is separated into sub-signals
to solve the time-domain indexes to generate the faulty training samples. Finally, the measured
signals of unknown samples (testing samples) are inserted into the trained SVM to classify faults.
The personalized diagnosis method is applied to detect bearing faults of a public bearing dataset.
The classification accuracy ratios of six types of faults are 90% and 92.5%, 87.5% and 87.5%, 85%,
and 82.5%, respectively. It confirms that the present personalized diagnosis method is effectiveness to
detect faults in the absence of fault samples.

Keywords: personalized fault diagnosis; bearings; finite element method; numerical simulation;
support vector machines

1. Introduction

With the rapid development of artificial intelligence (AI) technology, machine learning methods
have been widely used in fault diagnosis of mechanical components. Rolling bearings, as important
components in rotating machinery, they exhibit personalized vibration behaviors under different
work conditions. The running state of bearings directly affects the reliability and stability of the
entire machine. Thus, in order to detect the faults in bearings, many researchers have proposed
different intelligent diagnosis methods based on machine learning methods or artificial intelligence
models [1–3]. Wang et al. [4] presented convolutional neural network-based hidden Markov models
(CNN-HMMs) to classify multi faults in a bearing. To enlarge the application cases of training samples
collected from fault simulators, an intelligent fault diagnosis approach was proposed using transfer
learning to transfer fault samples from laboratory bearings to locomotive bearings [5]. By using limited
fault samples as training and testing samples, the performance of machine learning methods have
been verified to detect faults in bearings, such as extreme learning machine (ELM), support vector
machine (SVM), neural networks (NNs) [6–9], etc. However, in the real world, it is difficult to obtain
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sufficient suitable training samples to represent various kinds of bearing faults that may occur in
actual mechanical systems. Therefore, various machine learning methods have been greatly limited in
engineering applications for the lack of fault training samples.

To fully understand the fault mechanism and obtain agreeable fault detection results,
many researchers performed numerical simulations to analyze faults. To detect faults online in
nonlinear continuous systems, Bregon et al. [10] used the simulation and state observer models to
obtain the final fault diagnosis results. To detect the abnormal conditions of structures, two kinds of
wavelet-based numerical simulation models were carried out to calculate the dynamic responses of
a shaft [11,12]. Thereafter, Xiang and Zhong [13] further proposed a novel fault diagnosis scheme
using finite element method (FEM), wavelet packet transform (WPT), and SVM. To detect faults in
reciprocating machine, Wang et al. [14] proposed a combination method using the minimum entropy
deconvolution (MED) and FEM modal analysis determined band-pass filter to detect faults in an axial
piston pump. Generally, as a powerful tool, FEM simulation can be employed to obtain a large number
of numerical data/signals at a lower experimental cost, especially for those that are difficult to obtain
through physical experiments.

FEM models are constructed on the basis of a highly idealized engineering design, and the
dynamic responses of FEM simulations and physical experiments are usually quite different. In order
to obtain effective FEM simulation results similar to those in real-world running mechanical systems,
it is necessary to update the FEM model. As an optimization problem, the FEM model updating
is achieved by correcting the design parameters, such as boundary conditions and materials [15].
According to the dynamic theory of mechanical system, the dynamic information in different assembly
and working states will be carried in the corresponding vibration signals [16]. Therefore, various
FEM model parameters can be corrected effectively by comparing the measured signals with the FEM
simulation signals using similarity indexes, such as the cosine similarity, Theil’s inequality coefficient,
etc. [17].

As one of the key problems in the intelligent diagnosis, the selection of feature vectors is affect
diagnosis result directly. Generally, feature vectors are generated by calculating the feature indexes
in time, frequency and time-frequency domains. Chen et al. [18] proposed an approach including
six indexes (e.g., mean value, root mean square, standard deviation, skewness, kurtosis and shape
indicator) and two indexes (e.g., mean frequency and standard deviation frequency) in the time
frequency domains, respectively to construct a feature set to train the SVM. Liu et al. [19] used a hybrid
time frequency analysis method to get the feature information to classify gear faults.

SVM is a pattern recognition approach widely used in fault classification [20]. Based on Vapnik
Chervonenkis (VC) dimension theory and structural risk minimization (SRM) principle, SVM can be
used to solve the nonlinear and high dimensional problems. However, due to the lack of fault training
samples, SVM has not been successfully applied to real-world running mechanical systems.

Recently, motivated by personalized medicine, Xiang [13] developed a personalized diagnosis
concept for mechanical fault diagnosis by the combination of numerical simulations and machine
learning methods or artificial intelligence models. If the FEM model can effectively represent the
real-world running mechanical systems, the lack of fault training samples will be inexpensively
obtained by FEM simulations. Thereafter, machine learning methods or artificial intelligence models
will be activated for the diagnosis of mechanical faults under different working conditions. In this
paper, we proposed a new personalized diagnosis method called FEM simulation driving SVM to
detect faults in a bearing. In Section 2, the basic principle of the personalized diagnosis method is
introduced. In Section 3, an example is given to show the performance of the present method to classify
six types of faults in experimental test rigs. Concluding remarks of this study are given in Section 4.
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2. The Basic Principle of Personalized Diagnosis Method

2.1. Cosine Similarity-Based FEM Model Updating Technique

As we know, vibration of mechanical system is the external reflection of its intrinsic dynamic
characteristics, thus vibration signals (dynamic responses) can be used to determine the corresponding
main parameters of FEM model, such as materials and boundary conditions. Many researchers
have done researches on model parameter identification and fault diagnosis based on vibration
signals [21–23]. Sarin et al. [24] made comparative study residual errors between time-domain
signals of simulations and experiments, and further provided a theoretical basis for model updating.
Zapico-Valle et al. [25] defined a residual value between FEM simulation and experimental signals
to search the minimum residual value using optimization methods for the purpose of FEM model
updating. Here, we directly use the cosine similarity between the time-domain vibration signals of
FEM simulation and experimental measurement to update the FEM model of a bearing by adjusting
the corresponding parameters. The cosine similarity between the measured and the FEM simulation
signals is defined by:

cos(θ) =
n∑

i=1

(xi × yi)/


√√ n∑

i=1

(xi)
2
×

√√ n∑
i=1

(yi)
2

 = X ·Y
‖X‖ × ‖Y‖

, (1)

where X and Y represent the measured and simulation signals, respectively. When the closer the value
of cos(θ) is to 1, the more similar the two signals are. Generally, in engineering applications, cos(θ) >

0.6 will lead to a satisfactory result [26].

2.2. A Brief Review of SVM

Consider a training set S:
S =

{
xi, yi

}l
i=1′ , (2)

where xi ЄRl, yi Є{-1,+1}, and l is the number of samples.
The aim of SVM is to determine an optimal hyper plane for separating one from the others

by using the training dataset. To get the ideal hyper plane, the dual optimization problem is often
mentioned in SVM as:

min−
1
2

l∑
i=1

l∑
j=1

αiα jyiy jK
(
xi, y j

)
+

l∑
i=1

αi, s.t.
l∑

i=1

yiαi 0 ≤ αi ≤ C, i = 1, 2, . . . , l , (3)

where αi is the Lagrange multiplier coefficient obtained by dealing with the dual optimization in
the process of the SVM training; K(xi, yi) is referred to as the kernel function; C > 0 is the error
penalty parameter.

There are many forms of the kernel function. The radial basis function (RBF) kernel is employed
in this paper for the highest accuracy ratio of classification. How to choose the tradeoff parameters ρ1

(the width of RBF) and C is a difficult task in the application of SVM. A possible way is suggested by
Xiang et al. [27] suggested that the simulation investigation should proceed first to obtain the relative
best parameters ρ1 and C, and hence, ρ1 = 1.05 and C = 10 were employed in the present investigation.

2.3. The Personalized Diagnosis Method by Using FEM Simulation and SVM

For the bearings under different running sates, the vibration response signals exhibit personalized
characteristics. In the fault diagnosis of bearings, a generalized fault samples definitely not available
for all the bearings. Therefore, a new idea for personalized fault diagnosis is developed using FEM
simulation to activate SVM. Figure 1 shows the flowchart of the present method.
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Figure 1. The flowchart of the personalized fault diagnosis method.

2.3.1. Construct and Update the FEM Model for a Mechanical System

FEM model of a mechanical systems is constructed using the commercial FEM software ANSYS.
To keep the FEM model effectively represent the corresponding physical mechanical system, the cosine
similarity-based FEM model updating technique is used to determine the model parameters based
on the comparison of the time-domain signals obtained by FEM simulations and measurements.
If the value of cosine similarity is larger than 0.6, the FEM model can well represent its physical one.
Moreover, the faulty models will be inserted into the FEM model to simulate the dynamic response of
mechanical system with faults.

2.3.2. Obtain the Faulty Training Samples

The FEM models of the mechanical systems with different faults are calculated to obtain the
simulation vibration signals in time-domain. Then, each simulation signal is divided into sub-signals
with the same length in time domain, and the sixteen time-domain indexes (as shown in Table 1) of
each sub-signal are further calculated. Therefore, the number of training samples corresponding to
each fault is the same, which ensures the balance of the samples.
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Table 1. Sixteen indexes in time domain.

Index Equation Index Equation

Mean xm xm =
∑N

i=1 xi/N Average amplitude xava xava =
∑N

i=1

∣∣∣x(i)∣∣∣/N

Standard deviation xstd xstd =
√∑N

i=1 (x(i) − xm)
2/N Square root amplitude xsra xsra =

(∑N
i=1

√∣∣∣x(i)∣∣∣/N
)2

Variance xvar xvar =
∑N

i=1 (xi − xm)
2/N Skewness xske xske =

∑N
i=1 (x(i) − xm)

3/N
Peak xP xP = max

∣∣∣x(i)∣∣∣ Kurtosis xkur xkur =
∑N

i=1 (x(i) − xm)
4/Nx4

std
Maximum xmax xmax = max(x(i)) Shape factor SF SF = xrms/

(∑N
i=1

∣∣∣x(i)∣∣∣/N
)

Minimum xmin xmin = min(x(i)) Impulse factor IF IF = xP/
(∑N

i=1

∣∣∣x(i)∣∣∣/N
)

Peak to peak xpp xpp = max(x(i)) −min(x(i)) Peak factor PF PF = xP/xrms

Root mean square xrms xrms =
√∑N

i=1 (xi)
2/N Clearance indicator CI CI = xmax/

(∑N
i=1

√∣∣∣x(i)∣∣∣/N
)2

x is the data; N is the number of data points.

2.3.3. Fault Classification Using SVM

The fault training samples formed by the time-domain indexes are used as inputs to train SVM.
Same as the processing of simulation signals, each measured signal (the fault type is unknown) is
employed to generate the testing samples to the trained SVM, and fault patterns are finally identified.

3. Experimental Investigations

In this section, experimental investigations of a public bearing dataset were carried out, which
proves that the personalized diagnosis method is feasible in bearing faults diagnosis using FEM
simulation driving SVM. In order to ensure the reliability of the measured signals, the bearing data
are from the Bearing Data Centre at Case Western Reserve University (CWRU), as referred to in the
website [28]. The drive-end bearing is taken as the experimental object, and the sampling frequency is
6 kHz.

3.1. Construction and Updating of Bearing FEM Model

According to the experiment of CWRU, the geometrical dimensions of bearing were determined,
shown in Figure 2a. Using commercial finite element analysis (FEA) software ANSYS to construct
a three-dimensional (3D) FEM model of the bearing with the bearing seat and shaft, as shown in
Figure 2b.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 12 

 

are from the Bearing Data Centre at Case Western Reserve University (CWRU), as referred to in the 
website [28]. The drive-end bearing is taken as the experimental object, and the sampling frequency 
is 6 kHz. 

Table 1. Sixteen indexes in time domain. 

Index Equation Index Equation 

Mean mx   =
= N

i im N/xx
1

 
Average amplitude 

avax  ( ) =
= N

iava N/ixx
1  

Standard 
deviation stdx  

( )( ) =
−=

N

i mstd N/xixx
1

2

 

Square root 
amplitude srax  ( )( )2

1 =
= N

isra N/ixx  

Variance arvx  ( ) =
= N

i miarv N/-xxx
1

2 Skewness skex  ( )( ) =
−= N

i mske N/xixx
1

3  

Peak Px  ( )ixmaxxP =  Kurtosis kurx  ( )( ) 4
1

4
st

N

i mkur xN/xixx  =
−=

 
Maximum maxx  ( )( )ixmaxxmax =

 Shape factor SF  ( )( ) =
= N

irms N/ix/xSF
1

 

Minimum minx  ( )( )ixinmxmin =
 Impulse factor IF  ( )( ) =

= N

iP N/ix/xIF
1

 

Peak to peak ppx  ( )( ) ( )( )ixinm-ixmaxxpp =  Peak factor PF  rmsP x/xPF =  

Root mean 
square rmsx  ( ) =

= N

i irms N/xx
1

2  
Clearance indicator 

CI  
( )( )2

1 =
=

N

imax N/ix/xCI
 

x is the data; N is the number of data points. 

3.1. Construction and Updating of Bearing FEM Model  

According to the experiment of CWRU, the geometrical dimensions of bearing were 
determined, shown in Figure 2a. Using commercial finite element analysis (FEA) software ANSYS to 
construct a three-dimensional (3D) FEM model of the bearing with the bearing seat and shaft, as 
shown in Figure 2b. 

 
 (a)  

(b) 
  

Figure 2. The geometrical dimension and finite element method (FEM) model of a bearing: (a) the 
geometrical dimension and (b) the FEM model. 

In constructing the FEM model of the bearing, 3D solid element (SOLID164) and shell element 
(SHELL163) are employed to mesh the body and inner surface of inner ring (for applying the 
rotating loading), respectively. In order to reduce the computing time and improve the calculation 
accuracy, the element size is changed according to the components of bearing, as shown in Table 2. 
Figure 2b shows the result of meshing, and the total FEM model contains 71,976 elements with 
73,133 nodes. All the components of bearing are constructed with line elastic material: density ρ = 
7860 kg/m3, elastic modulus E = 2.06 × 10 Pa, and Poisson’s ratio μ = 0.3. 

Figure 2. The geometrical dimension and finite element method (FEM) model of a bearing: (a) the
geometrical dimension and (b) the FEM model.

In constructing the FEM model of the bearing, 3D solid element (SOLID164) and shell element
(SHELL163) are employed to mesh the body and inner surface of inner ring (for applying the rotating
loading), respectively. In order to reduce the computing time and improve the calculation accuracy,
the element size is changed according to the components of bearing, as shown in Table 2. Figure 2b
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shows the result of meshing, and the total FEM model contains 71,976 elements with 73,133 nodes.
All the components of bearing are constructed with line elastic material: density ρ = 7860 kg/m3, elastic
modulus E = 2.06 × 10 Pa, and Poisson’s ratio µ = 0.3.

Table 2. The element size of bearing.

Component Element Size (mm)

Outer ring 1
Inner ring 1

Ball 1
Cage 0.5
Shaft 2

Bearing seat 2

Consider the actual working condition, three contact pairs are defined in the FEM model:
(1) S1, a contact pair between the balls and inner ring.
(2) S2, a contact pair between the balls and outer ring.
(3) S3, a contact pair between the outer ring and bearing seat.
Due to the max radial load of bearing is known to be Fr = 14 kN, the dynamic friction coefficients f 1

and f 2 of S1 and S2, respectively, can be determined using the geometry and material parameters [29–31]
to f 1 = 0.02 and f 2 = 0.016, respectively. Generally, the contact damping c of the bearing in running state
is variable, while the damping coefficient λ is near constant [32–34] and is suggested to λ = 0.02 [35].
To set the contact stiffness, a normal contact stiffness factor FKN is employed in ANSYS to estimate the
contact stiffness based on the material properties and the elemental deformations. FKN is suggested
to be the maximum value within the interval [0.1, 1] to avoid penetration and keep the contact
stress unchanged using static analysis [36]. Based on the static analysis of bearing under Fr =14 kN,
the FKN=0.12 can be empirically determined with f 1 = 0.02, f 2 = 0.016, and λ = 0.02. The contact
parameters of the FEM model are finally listed in Table 3.

Table 3. Contact parameters and loading parameters for the FEM model.

Contact Parameters Value Loading Parameters Value

FKN 0.12 Fg 500 N
f 1 0.02 Fe 0.12 MPa
f 2 0.016 n 1797 rpm
λ 0.02 Fro 0.5 MPa

In the FEM simulations, the shaft and inner ring are combined as one volume. The displacement
constraining of the model are: the axial degree-of-freedom (DOF) of bearing, the rotating DOF of outer
ring, and all the DOFs on the outer surface of bearing seat.

However, the loads of bearing are unknown, include the gravity load of shaft Fg, the eccentric load
caused by machining error Fe, and the preload of inner ring Fro, which are the main factors affecting the
vibration response of the bearing. Therefore, the three loads are the sensitive parameters to be updated
using the cosine similarity cos(θ). Referring to the rotating load of bearing in the actual experiment,
the rotating speed n = 1797 rpm is applied to the inner surface of the inner ring. Fg is preliminary set in
the range from 100 N to 1000 N. Meanwhile, Fe is applied to the upper surface of inner ring. According
to the general coaxiality requirement of a shaft, the maximum eccentric distance of the shaft is limited
to 0.01 mm. Then Fe is accordingly updated in the range of 0 to 0.2 MPa. Moreover, Fi is applied on
the inner surface of the inner ring to make each ball fully contact with the raceway. According to
Reference [37], the radial preload of inner ring Fao can be calculated:

Fao = 1.13× 10−12D3
wdm

(
1− γ2

)
(1− γ) ×Zn2 sin β sinα/ f1 + 1.9Frtgα, (4)
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Fro = Fao · cosα/Si, (5)

where Dw denote the diameter of ball; dm is the inner diameter of bearing; Z is the number of balls;
α = 0.19 rad is the contact angular of the bearing; β is the self-rotation angle of ball, β=α; γ denotes the
structural parameter of bearing, γ = 2Dw cosα/(D + d); D and d are the outer and inner diameters of
bearing (mm), respectively; and Si is the area of inner surface of inner ring. Using Equation (5), Fro can
be determined.

Through iteratively adjusting the selected load parameters (Fg, Fe, and Fro) according to the
flowchart shown in Figure 1, we finally obtain the maximum cosine similarity cos(θ) = 0.618.
The changing trend of cosine similarity values are shown in Table 4 and Figure 3. Figure 4 shows
the comparison between measured and simulated signals when cos(θ) = 0.618. The two signals are
matched well at a certain degree, which proves that the updated FEM model constructed using the
relative optimal parameters (shown in Table 3) is agreeable.

Table 4. The experimental design and cosine similarity value of model parameter updating.

cos(θ).
Fe (MPa)

0 0.04 0.08 0.12 0.16 0.2

Fg (N)

100 0.202 0.268 0.394 0.505 0.403 0.374
200 0.193 0.292 0.463 0.559 0.446 0.351
300 0.151 0.255 0.412 0.498 0.501 0.306
400 0.206 0.311 0.455 0.581 0.455 0.364
500 0.223 0.351 0.501 0.618 0.451 0.411
600 0.169 0.271 0.504 0.601 0.507 0.403
700 0.201 0.336 0.503 0.499 0.473 0.418
800 0.203 0.227 0.472 0.549 0.437 0.372
900 0.174 0.294 0.418 0.517 0.422 0.393

1000 0.161 0.258 0.358 0.458 0.428 0.358
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3.2. Generation of Simulation Fault Training Samples

According to bearing data from CWRU, six types of bearing faults (denoted by T1, T2, T3, T4, T5,
and T6) are considered, as shown in Figure 5. Using the updated FEM model parameters (shown in
Table 4), the FEM models with the above six types of faults are constructed to generate the simulation
signals, and the length of each simulation signal is 12,000 data points, as shown in Figure 6.
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For getting satisfactory performance in fault classification, each simulation signal is normalized
and divided into 40 sub-signals in time-domain (12,000 data points in total, 300 data points as the
length), then calculated the 16 time-domain indexes of each sub-signal. Therefore, for each fault,
16× 40 = 640 indexes are forming a feature vector. Finally, the data as training samples of the six types
of faults are a 640× 6 matrix.

3.3. Experimental Investigations Using a Public Bearing Dataset Based on SVM

In this section, the measured signals corresponding to six types of faults in associates with the
simulations are selected from the same Bearing Data Centre at CWRU.

The six types of bearing faults of the measured signals include the IRF, ORF, and BF with three
levels of fault diameters 0.007 inches and 0.021 inches, respectively. Just as the simulation signals,
the length of each measured signal is 12,000 data points, which are used for testing SVM. The measured
fault signals for testing samples are shown in Figure 7.

Similar to the FEM simulations for generating testing samples of six faults, each corresponding
measured signal is normalized and divided into 40 sub-signals with 300 data points as length in the
time domain, and the 16 corresponding time-domain indexes of each sub-signal are calculated. In this
fault classification, all six types of fault training samples are all missed. The simulation signals are
used to provide the faulty training samples, and the testing samples are all from the measured signals.

To distinguish the six faults numerically, they are labeled from 1 to 6, respectively. In the process
of classification, the adjustable parameters of SVM are selected as ρ1 = 1.05 and C = 10 [27]. Based
on the SVM toolkit trained by Franc et al. [38], the six types of faults in bearing are classified and the
results are listed in Table 5. It shows that the fault classification accuracy ratios of outer ring, inner
ring, and ball using the personalized diagnosis method are 90% (T1) and 92.5% (T2), 87.5% (T3) and
87.5% (T4), and 85%(T5) and 82.5% (T6), respectively. We can see that the classification accuracy ratios
are not agreeable. To make a fair comparison, the classification accuracy using the measured signals
alone (the training and testing samples are selected from the same measured signals) is also given
using the same SVM with parameters ρ1 = 1.05 and C = 10. From Table 5, the relative errors of the
present personalized diagnosis method with the measured signals alone are varying from 2.2 % to
12.8%. It notes that the relative errors of inner ring faults T3, T4, and ball fault T5 are a little bit large.
The possible reason is the large measured noise of experimental test rigs of Bearing Data Centre at
CWRU using the accelerometer mounted on the outer surface of bearing house far away from inner
race and balls. In conclusion, the comparison investigations testify that the proposed personalized
fault diagnosis method is feasible for judge the fault types of bearings.
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Figure 7. The measured signals with six types of faults: (a) Fault type T1 (b) Fault type T2, (c) Fault
type T3, (d) Fault type T4, (e) Fault type T5, and (f) Fault type T6.

Table 5. The classification results using the proposed method (16 indexes) and measured fault
signals alone.

Fault Type Training
Samples

Testing
Samples

Faults
Labels

Classification
Accuracy Using the
Present Method (%)

Classification
Accuracy Using the
Measured Signals

Alone (%)

Relative
Error (%)

T1 40 40 1 90% 92% 2.2
T2 40 40 2 92.5% 95% 2.6
T3 40 40 3 87.5% 95% 7.9
T4 40 40 4 87.5% 90% 7.9
T5 40 40 5 85% 97.5% 12.8
T6 40 40 6 82.5% 87.5% 5.7

Further, the possible way to improve the performance of the personalized diagnosis method is to
do in-depth research on the construction of the simpler FEM models, high-performance FEM model
updating, and updating more model parameters, and using transfer learning, etc.
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4. Conclusions

For the application of machine learning methods in intelligent diagnosis of a mechanical system,
sufficient fault training samples are the most basic and critical requirement. Based on the advantages
of FEM simulation, the problem of lacking samples is solved by using FEM simulation, and the
idea of personalized diagnosis based on FEM simulation driving machine learning is put forward.
Specifically, a personalized fault diagnosis method based on FEM simulation driving SVM is proposed.
The method is applied to diagnosis of the faults in a bearing, and the fault type are distinguished.
In the experimental investigations using simulation signals to make up for the lack of faulty training
samples, the classification accuracy of three faults located in outer ring, inner ring, and ball are 90%
and 92.5%, 87.5% and 87.5%, and 85% and 82.5%, respectively. Finally, the classification results show
that the present personalized fault diagnosis method is effective in identifying the faults in bearings.
The proposed personalized fault diagnosis method based on FEM simulation driving machine learning
can solve many problems, such as providing complete fault samples for various intelligent diagnosis,
ensuring that the fault signal is pure without noise interference, etc.

Furthermore, the proposed method is worthy to be widely applied in complex mechanical systems
for accurate fault detection.
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