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Abstract: Object tracking in RGB-thermal (RGB-T) videos is increasingly used in many fields due to
the all-weather and all-day working capability of the dual-modality imaging system, as well as the
rapid development of low-cost and miniaturized infrared camera technology. However, it is still very
challenging to effectively fuse dual-modality information to build a robust RGB-T tracker. In this
paper, an RGB-T object tracking algorithm based on a modal-aware attention network and competitive
learning (MaCNet) is proposed, which includes a feature extraction network, modal-aware attention
network, and classification network. The feature extraction network adopts the form of a two-stream
network to extract features from each modality image. The modal-aware attention network integrates
the original data, establishes an attention model that characterizes the importance of different
feature layers, and then guides the feature fusion to enhance the information interaction between
modalities. The classification network constructs a modality-egoistic loss function through three
parallel binary classifiers acting on the RGB branch, the thermal infrared branch, and the fusion
branch, respectively. Guided by the training strategy of competitive learning, the entire network is
fine-tuned in the direction of the optimal fusion of the dual modalities. Extensive experiments on
several publicly available RGB-T datasets show that our tracker has superior performance compared
to other latest RGB-T and RGB tracking approaches.

Keywords: RGB-T object tracking; cross-modal data fusion; modal-aware attention network;
competitive learning

1. Introduction

Video object tracking is a basic task in data processing of imaging sensors. It is widely used
in video surveillance, autonomous vehicles, robots, and other fields. In recent years, with the
advancement of imaging sensor technology, imaging devices are developing rapidly towards the
direction of low cost and miniaturization, and these cameras working in different spectral bands
are increasingly popular. Among them, the uncooled infrared camera has a powerful complement
and expansion of the widely deployed visible spectrum imaging system due to its ability to work in
all-weather and all-day scenarios. Correspondingly, the demand for automatic analysis and processing
based on visible-infrared dual-modality data is proliferated, and object tracking based on RGB-thermal
(RGB-T) data has also received widespread attention as one of its core technologies.

The object tracking problem of RGB-T is an extension of the traditional visual tracking task, that is,
given the initial position state of the target, the RGB and thermal infrared image are comprehensively
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used to continuously estimate the target position in subsequent scenes. In recent years, several works
have been carried out on this RGB-T tracking research, and representative approaches are roughly
divided into two categories: Tracking based on traditional manual features [1-7] and tracking based
on deep learning [8-11].The former category is mostly based on theoretical frameworks such as sparse
representation [2-5], correlation filtering [6], Bayesian filtering [7], and uses hand-crafted textures
or local features to construct cross-modal object appearance model and state estimation methods.
The latter class builds the effective model of modeling targets from massive data by exploring the
powerful feature representation capabilities of deep neural networks. This kind of work has shown
great development potential in many related fields due to the end-to-end and data-driven advantages
of deep networks.

Generally speaking, the existing works have made great progress in the fusion and utilization
of dual-modality data. However, in the face of complicated application scenarios, there are still the
following technical challenges: (1) although infrared imaging is not affected by environmental factors
such as illumination, rain, smoke, and haze, it is limited by the inherent resolution of the infrared band,
atmospheric absorption, and scattering during propagation, as well as the imaging characteristics
of the sensor. The signal-to-noise ratio, contrast, and resolution of the infrared image are worse
than those of the visible spectrum image. How to make full use of the heterogeneity between two
modalities, effectively extract features and construct modality complementary representation is the
basis for obtaining a robust tracker. (2) Based on the above feature representation, designing a deep
network framework for video object tracking and its learning strategy, and establish a scene-adaptive
fusion method for cross-modal features to overcome the limitations of single modality and improve
the tracker performance.

Motivated by the aforementioned issues, this paper proposes an RGB-T object tracking method
based on a modal-aware attention network and competitive learning (MaCNet) within the deep
learning and tracking-by-detection framework. The proposed tracking network includes three parts:
a feature extraction network, modal-aware attention network, and a classification network. The feature
extraction network adopts the form of a two-stream network, which extracts hierarchical features
for the two modality images separately. The modal-aware attention network explores the attention
parameters that characterize the importance of features at each layer, and effectively guides the
feature fusion, thereby enhancing cross-modal information interaction. After the feature extraction
network, the classification network utilizes three parallel classification layers acting on the RGB branch,
the thermal infrared branch, and the fusion branch respectively, and builds a modality-egoistic loss
function with competitive learning to guide the entire network optimization towards the dual-modality
cooperation and complementarity. We evaluated the proposed tracker on two RGB-T tracking
benchmark datasets: GTOT [12] and RGBT234 [13]. Our method shows favorable performance
against the state-of-the-art approaches.

The main contributions of this paper are summarized as follows: firstly, a novel modal-aware
attention network is proposed, which can perceive the importance of each modality and guide the
adaptive fusion of dual-modality features on multiple feature layers. Secondly, based on competitive
learning, a model training approach is introduced to improve the performance of modality fusion.
Thirdly, a deep tracker MaCNet is constructed for RGB-T video tracking based on the above two
points, which effectively exploits the complementary characteristics of heterogeneous modality data.
In addition, the proposed method is a universal framework and can be easily extended to other
multi-modality scenarios.

2. Related Work

In this section, according to the relevance of our work, we briefly review three aspects: RGB-T
tracking, attention mechanisms in visual tasks, and competitive learning.
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2.1. RGB-T Tracking

Video object tracking is a basic task in computer vision and video processing field.
A comprehensive review of tracking methods for a single imaging spectrum can be found in [14-16].
The state-of-the-art methods can be divided into two broad categories: correlation filtering based
methods and deep learning-based methods. The former is based on the two-dimensional correlation
filtering operation, which makes the tracker achieve a good compromise between real-time and
robustness with high computing efficiency and algorithm robustness [17-22]. The latter constructs
deep tracker, which uses the powerful feature representation capabilities of deep neural networks
and data-driven model construction methods, has a significant improvement in robustness compared
to the previous methods. In addition, with the continuous optimization of deep network structures
and model-solving algorithms, such methods are increasingly showing performance advantages,
and typical works are [23-26].

Along with the improvement of the above-mentioned methods, the corresponding performance
of RGB-T trackers has been continuously upgraded. Representative works [2,6-11] are based on sparse
representation, correlation filtering, and deep learning. Li et al. [2] proposed a cross-modal manifold
sorting algorithm, which solved the influence of background clutter during the tracking process.
Wang et al. [6] proposed a soft-consistent correlation filters dedicated to RGB-T data, and achieved
real-time tracking by using fast Fourier transform. Wu et al. [7] integrated candidate objects from
different sources into a one-dimensional vector and forms a sparse representation in the object template
space, then combines the sparse solution with a particle filtering framework to obtain an improvement
in RGB-T tracking performance. In addition, Li et al. [8] proposed a convolutional neural network
architecture, which integrated the two-stream network and fusion network to achieve the adaptive
fusion of different modality data. Zhu et al. [9] proposed a recursive strategy to densely aggregate
deep features and prune the aggregated features of each modality in a cooperative manner, which can
effectively reduce redundancy and noise incurred by the feature representation. Lu et al. [10]
proposed a multi-adapter convolutional network, taking full advantage of the potential value of
shared information between modalities and instance-aware information. Different from general visual
tracking methods, these methods focus more on exploring information sharing and cooperation of
different modalities. We build a cross-modal object description model to obtain an extension of
single-modality tracking performance and broaden the application scenarios of video tracking.

2.2. Attention Mechanisms in Vision Tasks

The attention mechanism in computer vision [27-31] is mainly for the algorithm of learning
how to focus on the regions of interest and it plays an increasingly important role in solving many
vision tasks. In recent years, most of the work of combining visual attention and deep learning is to
form attention parameters by introducing a feature mask. The principle of this mask is to identify
informative features in the image data through another layer with new weights. These obtained
attention parameters will be applied to different feature mapping layers after training so that the
deep neural network can autonomously focus attention points and highlight the target subject of
interest in different feature layers. Wang et al. [28] improved the classification performance of the
network by introducing the attention module at different levels, demonstrating that attention not
only enables the operation to focus on a particular region, but also enhances the features of that
region. Zhang et al. [29] added a channel attention to the residual network, indicating that the network
characteristics captured by different channels are different, thus using these differences to improve the
accuracy of image super-resolution. Zhu et al. [30] proposed a new spatio-temporal attention strategy
in the visual tracking task, which fully models the impact of the previous N frames on the current
frame by weighting the previous N frames. Our method is inspired by the above ideas, but unlike
previous work, we explore the attention of each modality in order to estimate the importance of the
corresponding features based on real scene data.
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2.3. Competitive Learning

Competitive learning is the common learning strategy in Ad hoc network [32-35]. It encourages
all units in the network group to compete for the right to respond to external stimulus patterns.
The connection right of the winner unit changes in a direction that is more favorable to the competition
of this stimulus patterns. At present, the most popular generative adversarial nets (GANSs) [36] is a kind
of deep network architecture based on competitive learning. It is used to obtain a data generation
model whose data distribution is consistent with or as close as possible to the statistical distribution
of the observed space. The more general form of competitive learning is not only allowing a single
winner to appear, but also allowing multiple winners to appear, and the learning takes place on the
connection weight of each unit in the winner set.

Competitive learning for deep neural networks usually adopts a two-stream architecture
for implementation. The representative GANs networks [36-38] employ a two-branch form that
includes generator and discriminator. The typical works are as follows. Zhao et al. [37] proposed
an energy-based generative adversarial network, using the discriminator in GANs as an energy
function, and training a single-scale network architecture to generate high-resolution images.
Zhong et al. [38] employ CycleGAN to complete the style transfer between different camera lenses,
thereby solving the problem of data scarcity in personal identification. Unlike previous work, our
goal is to apply competitive learning to the field of multi-modality object tracking, so that the result
of multi-modality fusion is better than the result of each single-modality branch. To our knowledge,
this is the first time that competitive learning is applied to the RGB-T tracking task.

3. Proposed Approach

In this section, we first describe the proposed network architecture for RGB-T tracker in detail,
and then introduce the two main parts of the network, including the modal-aware attention network
and the modal competitive learning algorithm.

3.1. Tracker Architecture

The RGB and thermal infrared images captured by two cameras with aligned field-of-view
(FOV) reflect the amount of radiation received by the sensors in different bands of the same scene.
Correspondingly, the images of two modalities share some low-level and semantic information, and at
the same time, they present a lot of heterogeneous scene details based on their spectral perspective.
Furthermore, in the real-world application of video tracking, the two modalities often play different
roles in different challenging scenarios. For example, when there is insufficient illumination at night,
the thermal infrared modality tends to capture the position and motion of the target more easily,
while in low resolution, the visible spectrum modality often provides more valuable information.
Therefore, it is essential for RGB-T tracking to effectively mine and use each modality feature in
different scenarios to build a cooperative and complementary cross-modal object representation.

To this end, we propose a novel object tracking algorithm for RGB-T image sequences,
namely MaCNet. The overall algorithm structure is shown in Figure 1. Within the framework of
deep learning and tracking-by-detection, our tracker includes three modules: feature extraction
network, modal-aware attention network, and classification network. The feature extraction network
consisting of three convolutional layers takes the form of a two-stream network for independent feature
extraction of visible spectrum and thermal infrared modalities. The modal-aware attention network is
used for cross-modal information interaction. On one hand, this module exploits the importance of
each convolutional layers directly from the raw data to form a modal-aware attention that is sensitive
to the scene. On the other hand, the estimated attention is used to guide the fusion of dual-modality
features to increase the response of the network to informative features. The classification network is
composed of three parallel branches after the feature extraction network, which respectively acts on
the RGB path, the thermal infrared path, and the fusion path, and each branch is a binary classification



Sensors 2020, 20, 393 50f 19

network containing three fully connected layers. In the offline phase, these three branches complete
training with competitive learning, which promotes the optimization of the entire network parameters
towards the cooperation and complementarity of the dual-modality data. It is worth noting that only
the fusion branch is retained during the online tracking phase, and the remaining two branches will
be discarded.

In addition, in order to adapt to the specific requirements of video tracking, such as arbitrary types
and unfixed semantic categories of the target, we adopt the strategy of multi-domain learning [24]
for the offline training. The third fully connected layer of each binary network contains k branches,
each branch corresponds to a specific domain, and different targets and scene sequences correspond to
different domains. For the different domains of the training data, the entire network is divided into
two parts: the shared layers and the domain-specific layers. The former part shares the consistent
parameters for all domains, while the latter uses the alternate optimization between different domains
to complete the training.
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Figure 1. The overall architectural diagram of the proposed algorithm. Part of the network marked
with dotted lines is only used for offline competition training.

3.2. Modal-Aware Attention Network

Inspired by the widely adopted attention module [29,30], our modal-aware attention network
is dedicated to exploring efficient feature extraction from a cross-modality level. Based on the basic
components of the attention module such as the pooling layer, fully connected layer and activation layer,
we build a collaborative structure between modalities at different feature layers to achieve informative
feature capture with a scene-adaptive manner. As shown in Figure 2, the whole modal-aware attention
network is designed into two parts, which are composed of a modal-aware attention layer and
a cross-modal fusion layer.

The modal-aware attention layer is composed of an average pooling layer, two fully connected
layers, and a ReLU layer. Specifically, the initial sample images of the two modalities are first
concatenated into x € RE*W*2C where H, W and C are its height, width and the number of channels,
respectively. Then map x to a new attention space () through the modal-aware attention layer,
denoted as A, which is given by

H W
A(x) =WoR | W1 )Y x(ij,0) |, 1)
i=1j=1
L,_/
average pooling

where W1 and W are learnable weight matrices, R(-) represents a ReLU function, and the average
pooling operation is used to reflect the overall response characteristics of each channel. To make more
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efficient use of raw data, we employ a fully connected layer to directly learn the modality attention
weights of all feature extraction layers and denote the weights () € Q) as

Q=[wf, @], me{V,1), @

where L is the total number of convolutional layers, V and I represent the visible spectrum and thermal
infrared modality, respectively.

RGB

Modal-aware Attention Layer .es

=4

Y T
H concatenate weighting superposition vee _i > >

' i c ! > > eee
! @ operation ® operation @ operation | Thermal Infrared N

Figure 2. Schematic diagram of modal-aware attention network.
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Fusion Layer
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!

The cross-modal fusion layer is used for information interaction between modalities. The weighted
feature maps are first concatenated by channel, obtaining

¢ = Concat [w,vxy,w,{xﬂ , lell L] 3)

where x)' and x! represent the output of the /" convolutional layer of the two modalities,
respectively. In order to fuse the cross-modal information, the fused feature superimpose with each
modality feature map is fed to the next convolution layer. This operation can be formalized as

X =0 () +x"), me{V,I},lelL], 4)

where xjt | represents the input of convolutional layer | + 1 of modality m, o(-) represents a nolinear
function. {(-) denotes a 1 x 1 convolution operation, which is used to adjust the cross-modal feature
map to the same size as the original convolution feature map of each modality.

3.3. Modal Competitive Learning Algorithm

In order to obtain better results than single modality in dual modalities tracking, another key is to
establish an effective object appearance model based on the fused features, and to achieve the object
and background discrimination in more challenging scenarios. To this end, we introduce a model
learning scheme with competition between modalities, which is aimed to guide the entire network to
optimize in the direction that the two modalities cooperate and complement each other. After cascading
to the feature extraction network, we design three independent classification branches corresponding
to RGB features, thermal infrared features, and fusion features, then construct an adversarial loss
function based on self-affirmation principle of modality performance. Furthermore, the learning of
network parameters is performed in a way that the three classification results compete with each other.

The goal of competitive learning is to achieve a classification loss of the fusion branch that is
lower than any single-modality branch. Specifically, we first calculate the cross-entropy loss of three
independent binary classification networks, i.e., the corresponding form is

N

— ) (vilog (p(xi)) + (1 —yi)log (1 — p(xi))) ®)

i=1
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where (x;,y;) represents the i-th sample and its label, N is the number of samples and p(-) denotes
the output of softmax. Based on this loss function definition, the fusion branch uses RGB branch and
thermal infrared branch as competitors to conduct competitive learning in the form of self-affirmation.
The corresponding loss function with the penalty term is defined as

£ = £F 4 max (.CF 1V, cF - LI,O), )

penalty term

where £V, L1, and LF represent the basic cross-entropy loss functions as Equation (5) of the RGB
branch, the thermal infrared branch, and the fusion branch, respectively. At the same time, both the
RGB branch and the thermal infrared branch utilize the fusion branch as an opponent to competitive
learning, and their antagonistic loss function can be formalized as

L= L"+max ("~ £5,0) m e {V,1}. @)

penalty term

It should be noted that the difference between the penalty terms of Equations (6) and (7) is that
our purpose is to explore the complementary characteristics between the two modalities, so they are
more cooperative than competitive. The fusion branch and the two modality branches are mutually
motivated through competition, which helps to find a better feature fusion solution.

Based on the above competitive loss functions, we use a part-by-part iterative training strategy
to optimize network parameters. The details of the offline training process will be discussed in
Sections 4.2 and 4.3.

4. Implementation

In this section, we mainly describe the implementation of the entire tracker, including network
parameters settings, offline training details, and online tracking procedures.

4.1. Network Parameters

(1) Feature extraction network. We adopt a more lightweight VGG-M network [23] as the backbone
network of our feature extraction module. Considering the difference between the two modalities,
we separately train the feature extraction layers of each modality instead of sharing their weights.
For clarity and completeness of the MaCNet method description, as shown in Table 1, we briefly
introduce the configuration of the feature extraction network below. Specifically, our feature extraction
network consists of the first three layers of VGG-M, where the sizes of the convolution kernel are
7x7x%x96,5%x5x256and 3 x 3 x 512, respectively. Each layer is composed of a convolutional layer,
a ReLU activation function, a local response normalization (LRN), and a maximum pooling layer.
The network inputs are the candidate patches cropped from the aligned dual-modality images, and they
are resampled to the size of 107 x 107. The initial weights of the two-stream path are transferred from
the VGG-M model trained on the large-scale dataset ImageNet [39], and then fine-tuning independently
for each branch to adapt to the corresponding modality.

(2) Modal-aware attention network. To adapt to the backbone network structure and ensure
the dimensional balance of data among modalities, we extend the thermal infrared image to three
channels. The adaptive average pooling operation is performed on the dual-modality data to generate
a six-channel pooling vector, and then the 12-node and 6-node fully connected layers are sequentially
used to estimate the attention parameters of different convolutional layers. At the same time, the ReLU
operation is applied to each node in the first fully connected layer to increase the nonlinear fitting
ability of the network and prevent the gradient from disappearing when the node is activated.
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(3) Classification network. Three binary classification networks are designed for the visible
spectrum, thermal infrared and fusion branches. As shown in Table 2, each branch consists of three
fully connected layers with the network hyper-parameters are set to 512, 512 and 2 output units,
respectively. We employ the multi-domain learning strategy [24], which treats each semantic definition
that divides objects and backgrounds as a domain. The overall network has k domain branches,
which are denoted by the last fully connected layers and recorded as fc6; ~ fc6y.

Table 1. The configuration of feature extraction network and architecture details.

Layers Kernel Size Stride Channels
(input) X3
conv-1 7x7 2 x96
ReLU x96
LRN x96
MaxPool 3x3 2 x96
conv-2 5x5 2 x256
ReLU X256
LRN %256
MaxPool 3x3 2 X256
conv-3 3x3 2 x512
ReLU x512

Table 2. The configuration of classification network and architecture details.

RGB Branch Fusion Branch Thermal Infrared Branch
Dropout
Linear (fc4) Linear (fc4) Linear (fc4)
ReLU ReLU ReLU
Dropout Dropout Dropout
Linear (fc5) Linear (fc5) Linear (fc5)
ReLU ReLU ReLU
Dropout Dropout Dropout
Linear (fc6) Linear (fc6) Linear (fc6)
softmax softmax softmax

4.2. Offline Training

The training process of the entire network mainly consists of two phases, offline training,
and online updating. In this section, we mainly introduce the details of the offline training phase.

The offline training phase can be divided into four steps. First, we employ the pre-trained
model of the VGG-M network to simultaneously initialize the weights of three convolutional layers
in two modalities. At this time, the fully connected layers in the classification network are randomly
initialized. Then, in order to adapt to the dual-modality data, we fix the parameters of the modal-aware
attention network and fine-tuned the network path of two modalities separately, i.e., the weights of the
feature extraction layer and the classification layer are updated. The learning rates of the convolutional
layer in the feature extraction network and the fully connected layer in the classification network are
set to 0.0001 and 0.001, respectively, and 100 iterations are performed at this stage. The third step is that
we fix all the parameters of the feature extraction network, train the modal-aware attention network
with a learning rate of 0.0001, and fine-tune the classification network parameters with a learning
rate of 0.0005. The iteration epoch is set to 100. Finally, we utilize competitive learning to conduct
adversarial training on the fully connected layers of the three classification branches, while keeping the
parameters of the feature extraction network and the modal-aware attention network fixed, where the
learning rate is set to 0.001 and 100 iterations are performed. In each iteration, we input a mini-batch
of 32 positive samples and 96 negative samples. Note that the weight decay in each of the above steps
is 0.0005 and the momentum is set to 0.9.
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The training process of the entire network uses the ordinary stochastic gradient descent (SGD)
method, and each domain is processed separately in each iteration. The candidate samples are
generated by Gaussian sampling whose mean is the ground-truth of target bounding box, and using
intersection over union (IoU) overlap ratio of samples and ground-truth bounding boxes as a metric,
50 positive samples (IoU ratio greater than 0.7) and 200 negative samples (IoU ratio less than 0.5) are
collected in each frame.

4.3. Online Tracking

In the tracking process, we fix all the parameters of the feature extraction network and
modal-aware attention network, only fine-tune the network parameters of the fusion classification
branch with the same implementation as [24]. For each test sequence, k domain branches of the last
fully connected layer are replaced by a single branch and updated in the subsequent frame pairs.
Specifically, given the first frame pair of the sequence and the ground-truth bounding box, we collect
500 positive samples (IoU ratio with ground-truth greater than 0.7) and 5000 negative samples (IoU
ratio with ground-truth less than 0.5) to train a new domain-specific layer. For the last layer and
the other two layers of the fully connected layers, the learning rates are set to 0.001 and 0.0005,
respectively. We train the new branch with 50 iterations, and the weight decay and momentum are
fixed to 0.0005 and 0.9, respectively. In the following frames, we collect positive samples (IoU ratio
with ground-truth greater than 0.7) and negative samples (IoU ratio with ground-truth less than 0.3) as
training samples for long-term update and short-term update, and the learning rate of the last layer
and the other two layers of the fully connected layers are set to 0.002 and 0.0002, respectively.

At frame t, we first build a candidate set {x.} from a Gaussian distribution of previous frame
tracking result ¢ — 1, where the mean of Gaussian function is the center position of previous frame and
the covariance is set to diag{0.09r?,0.09r%,0.25}, where r is the mean of the width and height of target
in the previous frame. Each positive sample (IoU with previous target bounding box greater than 0.6)
and negative sample (IoU with previous target bounding box less than 0.3) from the candidate set are
fed into our network as the current frame inputs and obtain their classification scores. The positive
and negative scores for sample i are denoted as f+ (xlt) and f~ (xlt) We sort the samples by scores
and select the candidate sample with the highest score as the tracking result xj of frame ¢, i.e.,

x; = argmax f (x’t) , i=1,---,256. 8)
1

We also apply a bounding box regression [24] to further improve the localization accuracy and
solve the problem of target scale change during the tracking process. It is worth noting that we only
train a bounding box regressor in the first frame of each test sequence, so as to avoid the potential
unreliability in the subsequent frames.

5. Experiments

To validate the effectiveness of the proposed MaCNet, we evaluate it on two popular large-scale
RGB-T tracking benchmarks: GTOT dataset [12] and RGBT234 dataset [13]. We compared the
performance with the state-of-the-art RGB-T trackers and RGB trackers, and evaluated each major
component of MaCNet to analyze their effectiveness. During the experiments, we first train our
network using the RGBT234 dataset [13] and test it on the GTOT dataset [12]. In another experiment,
We exchange training and test sets, that is, GTOT dataset [12] is used as training data and RGBT234
dataset [13] is used as test data.

5.1. Evaluation Setting

(1) Datasets. The GTOT dataset [12] and the RGBT234 dataset [13] are two large-scale RGB-T
tracking datasets released in recent years. They are captured by two FOV-aligned cameras and the data
content is very challenging. The GTOT dataset [12] has 50 RGB-T video clips with target annotations
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under different scenes and conditions. To analyze the sensitivity of the RGB-T tracking methods to
different attributes, the entire dataset is divided into seven subsets, corresponding to the challenges of
different attributes. It contains a total of approximately 15,000 frames, many of which are small targets.
RGBT234 dataset [13] is extended from the RGB-T210 dataset [3]. It contains a total of 234 highly
aligned RGB-T video pairs. Its total number of frames reaches about 234,000 and the longest video
pair length up to 8000 frames. In order to analyze the effectiveness of different tracking algorithms for
different challenges, 12 attributes are labeled for RGBT234 dataset [13].

(2) Evaluation metrics. We employ two widely used indicators of precision rate (PR) and success
rate (SR) for quantitative performance evaluation. PR is the percentage of video frames whose
distance between the center point of the target location estimated by the tracking algorithm and
the corresponding ground-truth is less than a given threshold. SR is the percentage between the
number of frames in which the overlap ratio of the bounding box obtained by the tracker and its
ground-truth is greater than the set threshold and the total number of frames of the video. Different SR
plots can be obtained by changing the threshold, and the area under the success rate curves can be
used as the representative SR for quantitative performance evaluation. Since the target of the GTOT
dataset [12] is relatively small, we set the thresholds to 5 and 20 pixels for GTOT and RGBT234 [13]
datasets respectively.

5.2. Evaluation on GTOT Dataset

(1) Comparison with RGB-T trackers. On the GTOT dataset [12], we compare our method
with 12 state-of-the-art trackers, including DAT [27], ECO [25], CCOT [21], MEEM [40], SRDCF [20],
SiameseFC [26], ADNet [41], STRUCK [1], RT-MDNet [42], MDNet [24]+RGBT, SiamDW [43]+RGBT
and SGT [3]. Since there are fewer existing RGB-T trackers, some RGB approaches extend the RGB-T
tracking by concatenating RGB and thermal infrared features into a single vector or by considering
the thermal infrared image as one or three additional channels of RGB. In the above trackers, the last
three methods are RGB-T based trackers, and the rest are RGB based trackers. Figure 3 shows
that our algorithm is obviously better than other state-of-the-art trackers on the GTOT dataset [12],
demonstrating the effectiveness of our approach. Specifically, our tracker achieves 8.0%/7.7% and
2.9%/8.6% performance gains in PR/SR over MDNet [24]+RGBT and SGT [3], respectively. In addition,
compared with other trackers, our approach also has an obviously superior performance, which shows
that our tracker can make good use of RGB and thermal infrared information to construct a robust
feature representation and improve tracking performance.
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Figure 3. Precision rate (PR) and success rate (SR) curves of different tracking result on GTOT

dataset [12], where the representative PR and SR scores are presented in the legend.

(2) Attribute-based performance. The GTOT dataset [12] contains seven different attributes:
occlusion (OCC), large scale variation (LSV), fast motion (FM), low illumination (LI), thermal crossover
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(TC), small object (SO), and deformation (DEF). To analyze the sensitivity of our MaCNet to different
attributes, we also compare it with 12 state-of-the-art algorithms, including DAT [27], ECO [25],
SiameseFC [26], MEEM [40], SRDCF [20], ADNet [41], CCOT [21], STRUCK [1], RT-MDNet [42],
SGT [3], MDNet [24]+RGBT and SiamDW [43]+RGBT. The results in Tables 3 and 4 show that our
trackers perform best under all other challenges except LSV. One possible reason is that our method
is based on a random sampling process of the tracking-by-detection framework, so more candidate
samples are required to adapt to the dramatic changes of target scale. ECO [25] constructs a generative
model of dense sample space, thereby ensuring the diversity of training samples to obtain a more
robust model for LSV attribute.

Table 3. Attribute-based PR scores (%) on GTOT dataset [12] against with twelve RGB-T trackers.
Optimal and suboptimal results are represented by red and green fonts, respectively.

Attributes OoCcC LSV FM LI TC SO DEF ALL
MEEM [40] 684 628 686 665 696 693 688 64.8
SiameseFC [26] 702 787 727 615 747 724 538 655
SiamDW [43]+RGBT 675 689 711 700 635 764 691 68.0
STRUCK [1] 674 660 640 740 680 745 756 681
CCOT [21] 751 818 754 713 745 838 664 712
ADNet [41] 727 748 728 715 712 819 707 718
SRDCEF [20] 727 804 683 717 705 805 66.6 719
RT-MDNet [42] 733 791 781 772 737 856 731 745
ECO [25] 775 8.6 779 752 819 907 752 770
DAT [27] 772 786 76.0 809 886 769 771
MDNet [24]+RGBT 770 805 795 795 870 816 80.0
SGT [3] 81.0 842 799
MaCNet 87.6 823 894 892 950 926 88.0

Table 4. Attribute-based SR scores (%) on GTOT dataset [12] against with twelve RGB-T trackers.
Optimal and suboptimal results are represented by red and green fonts, respectively.

Attributes OoCcC LSV FM LI TC SO DEF ALL

MEEM [40] 53.0 462 523 518 546 496 578 523
SiameseFC [26] 559 635 604 507 595 552 450 54.0
SiamDW [43]+RGBT 536 565 57.6 588 517 588 582 565

STRUCK [1] 516 496 518 553 510 527 604 533
CCOT [21] 576 662 610 563 579 599 516 56.7
ADNet [41] 60.0 636 606 644 599 637 632 629
SRDCEF [20] 58.0 611 594 580 575 537 591
RT-MDNet [42] 576 637 641 638 590 634 610 613
ECO [25] 622 705 61.7 59.8 63.1
DAT [27] 592 624 615 609 626 644 633 618
MDNet [24]+RGBT 573 598 643 609 622 688

SGT [3] 56.7 547 559 615 618 62.8
MaCNet 68.7 673 659 731 697 695 765 714

5.3. Evaluation on RGBT234 Dataset

(1) Comparison with RGB trackers. For a more comprehensive evaluation, this experiment
validates the superiority of the proposed RGB-T tracking approach over RGB trackers.
We evaluated our MaCNet on the RGBT234 dataset [13] with eight state-of-the-art RGB trackers,
including MDNet [24], ECO [25], SRDCF [20], SOWP [44], CSR-DCF [22], CFnet [17], DSST [45],
SAMEF [18]. As illustrated in Figure 4a, our tracker achieves 8.0%/6.4% and 8.8%/4.0% performance
gains in PR/SR over MDNet [24] and ECO [25], which demonstrates the necessity of adding thermal
infrared information to traditional visual tracking.
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Figure 4. Evaluation results on the RGBT234 [13] benchmark. The representative scores of PR/SR are
given in the legend. For a clear comparison, we separately plot the RGB and RGB-T trackers results
curves in (a) and (b).

(2) Comparison with RGB-T trackers. We also compare our MaCNet versus ten state-of-the-art
RGB-T trackers, including MDNet [24]+RGBT, SGT [3], C-COT [21], SOWP [44]+RGBT,
CSR-DCF [22]+RGBT, JSR [4], L1-PF [7], MEEM [40]+RGBT, CFnet [17]+RGBT, KCF [19]+RGBT.
Figure 4b shows that our tracker is significantly better than them. From the results, our tracker
achieves 6.8%/5.9% and 7.0%/8.2% performance gains in PR/SR over MDNet [24]+RGBT and SGT [3],
respectively. These results also confirm that our schemes for feature fusion and model training can
effectively utilize dual-modality information to construct a more reliable target representation.

(3) Attribute-based performance. We also report the attribute-based results of our MaCNet
versus other state-of-the-art eight RGB trackers and ten RGB-T trackers on the RGBT234 dataset [13].
RGB tracking algorithms include: MDNet [24], ECO [25], SRDCF [20], SOWP [44], CSR-DCF [22],
CFnet [17], DSST [45], SAMF [18]. RGB-T tracking algorithms include: MDNet [24]+RGBT,
SGT [3], C-COT [21], SOWP [44]+RGBT, CSR-DCF [22]+RGBT, JSR [4], L1-PF [7], MEEM [40]+RGBT,
CFnet [17]+RGBT, KCF [19]+RGBT. The attributes shown in Tables 5 and 6 include no occlusion
(NO), partial occlusion (PO), heavy occlusion (HO), low illumination (LI), low resolution (LR),
thermal crossover (TC), deformation (DEF), fast motion. (FM), scale variation (SV), motion blur
(MB), camera moving (CM), and background clutter (BC). From Tables 5 and 6 we observe that our
RGB-T tracker performs better than RGB trackers in most challenges except for TC. Figure 5 displays
the results of the prediction rate of our tracker and other RGB-T trackers on each attributes of the
RGBT234 dataset [13], and the success rate results are shown in Figure 6. From these PR/SR results,
we observe that our MaCNet can well handle various challenging factors and outperform the other
trackers in ten out of twelve attributes.

Table 5. Attribute-based PR scores (%) on RGBT234 dataset [13] against with eight RGB trackers.
Optimal and suboptimal results are represented by red and green fonts, respectively.

Attributes NO PO HO 1I IR TC DEF FM SV MB CM BC ALL

SAMF [18] 676 540 398 468 507 547 424 424 554 378 402 376 504
CFnet [17] 724 577 379 436 482 512 460 363 595 384 417 363 520
DSST [45] 69.7 565 410 483 579 495 438 355 568 358 399 458 524
CSR-DCF[22] 788 641 522 490 579 629 557 530 670 550 558 503 620
SRDCEF [20] 79.1 688 526 575 620 661 563 526 704 559 569 481 641
SOWP [44] 80.1 66.6 547 524 679 712 611 579 666 598 598 528 642
ECO [25] 722 604 821 622 570 579 702
MDNet [24]  81.2 589 66.0 74.8 739 624 613

MaCNet 927 811 709 777 783 731 728 787 716 717 778 79.0
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Table 6. Attribute-based SR scores (%) on RGBT234 dataset [13] against with eight RGB trackers.
Optimal and suboptimal results are represented by red and green fonts, respectively.

Attributes

NO

PO

HO

LI

LR TC

DEF

M

SV

MB

CM BC

ALL

SAMEF [18]
CFnet [17]
DSST [45]
CSR-DCF [22]
SRDCF [20]
SOWP [44]
ECO [25]
MDNet [24]

43.3
54.5
43.3
56.6
58.5
50.2
65.5
59.0

38.0
41.8
36.2
444
499
42.7
53.4
50.9

28.5
27.2
27.0
36.0
37.1
35.4
43.2
43.2

32.7
31.5
29.9
329
40.9
33.6
45.0
39.6

329
33.9
36.8
37.0
41.0
421
46.4
445

38.1
38.5
32.5
42.8
46.7
46.2
60.9
53.0

33.2
34.0
32.5
41.0
40.6
42.0
458
46.8

27.0
25.3
224
35.0
34.3
33.5
39.5
39.3

39.7
43.2
33.7
47.3
51.8
39.6
55.8

51.9

27.9
29.4
25.1
39.8
415
39.9
52.3
442

30.6
32.1
27.9
39.6
409
39.0
47.7
433

259
25.7
29.3
324
324
33.6
39.9
41.8

359
38.0
33.6
432
46.3
41.1
51.4
49.0

MaCNet

66.5

57.2

48.8

52.7

52.3

56.3

51.4

471
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Figure 5. PR evaluation results on various attribute challenges comparing to ten state-of-the-art
approaches on RGBT234 [13].
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Figure 6. SR evaluation results on various attribute challenges comparing to ten state-of-the-art
approaches on RGBT234 [13].

5.4. Ablation Study

To verify the effectiveness of each major component of MaCNet, we compare the following three
algorithm variants on the GTOT dataset [12]. (1) MaCNet-noMAA eliminates the modal-aware
attention network and uses only feature extraction layers and classification layers for tracking.
(2) MaCNet-noCL removes the competitive learning loss and uses only the standard cross-entropy
binary classification loss. (3) Only-pretrain uses the RGB-T dataset for fine-tuning after we load the
VGG-M [23] parameters, primarily to demonstrate the necessity of adapting to the RGB-T dataset.

From the results of Table 7 and Figure 7, we can draw the following conclusions. (1) MaCNet is
significantly better than MaCNet-noMAA, which indicates that the modal-aware attention network
can better consider the importance of the information provided by each modality in feature extraction.
(2) MaCNet outperforms MaCNet-noCL, which is a good illustration of the importance of considering
heterogeneity and complementarity between modalities in multimodal tasks. Competitive learning can
better integrate the complementary information provided by the two modalities to improve tracking
performance. (3) The result of Only-pretrain is better than MDNet [24]+RGBT, which indicates that it
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is necessary to fine-tune the parameters of the feature extraction network using the RGB-T dataset in

the pre-training phase.

Table 7. PR/SR scores (%) of different variants induced from modal-aware attention network and
competitive learning (MaCNet) on the GTOT dataset [12].

Only-Pretrain MaCNet-noMAA  MaCNet-noCL MaCNet
PR 82.2 85.2 85.9 88.0
SR 66.1 69.5 69.9 714
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Figure 7. The comparison results of MaCNet and its variants on the GTOT dataset [12], where the
representative PR and SR scores are presented in the legend.

5.5. Efficiency Analysis

We implemented our approach on the PyTorch platform with 3.6GHz Intel Core i7-6850K CPU,
NVIDIA GeForce GTX 1080 Ti GPU and 16G RAM. The frames rate of our MaCNet is approximately
0.8 FPS, while MDNet [24]+RGBT is 1.6 FPS. Note that MDNet [24]+RGBT is tracked by running
a thermal infrared image into the MDNet [24] as an additional channel for the RGB image. Figure 8
shows a qualitative comparison of our algorithm with three state-of-the-art RGB trackers and
three state-of-the-art RGB-T trackers on partial video sequences, including MDNet [24], ECO [25],
CFnet [17], MDNet [24]+RGBT, SGT [3] and C-COT [21]. In general, our approach shows better
performance in dealing with challenges such as partial occlusion, motion blur, background clutter,
illumination variations, low resolution, and large appearance changes. It also intuitively demonstrates

the effectiveness of our approach.
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Ours MDNet CFnet MDNet+RGBT SGT c-cot ECO

Figure 8. Qualitative comparison of our MaCNet versus three state-of-the-art RGB trackers and three
state-of-the-art RGB-T trackers on six video sequences.

6. Conclusions

In this paper, we propose a MaCNet algorithm based on a modal-aware attention network
and competitive learning, which is an object tracking approach for RGB-T dual-modality data.
The method evaluates the modality importance of different scenes through the modal-aware
attention module and achieves an adaptive fusion for multi-level features between modalities.
Moreover, through introducing a competitive learning strategy, a better-performing feature fusion
method and classifier are trained to achieve a cooperative and complementary representation of
infrared and visible spectral data. A large number of experiments on the public datasets demonstrate
the effectiveness of the algorithm for dual-modality data mining and utilization. In the future
work, we will investigate a deeper and wider network to enhance feature representation and further
improve RGB-T tracking performance, and use similar feature pruning to eliminate redundancy and
unnecessary calculations and achieve real-time object tracking.
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