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Abstract: The paper presents an extensometer designed to measure two mechanical strains at the
same time—one from tensile load and the other from torsion load. Strain transducers provide different
electric signals, which, after calibration, lead to the simultaneous measurement of linear (ε) and
angular (γ) strains. Each of these two signals depends on the measured process and is not influenced
by the other strain process. This extensometer is designed to be easily mounted on the sample with
only two mounting points and can be used to measure the combined cyclical fatigue of tensile and
torsional loadings. This extensometer has two bars—one rigid, reported at the resulting stress points,
and one elastic and deformable. The elastic deformable bar has two beams with different orientations.
When the sample is deformed, both beams are loaded by two bending moments (perpendicular to
each other and both perpendicular on the longitudinal axis of the bars).
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1. Strains Compounded at Simultaneous Loading on an Axial Tensile Force and Torsion Moment

Determining stress and strain in loaded samples can be accomplished with analytical calculus
and numerical or experimental methods [1–4]. The theoretical determination of stress and strain
requires the acceptance of simplified theories on the shape and structure of the element, the mechanical
characteristics of the material, and even the loading and support modes [5–7]. The material of
the element is considered ideal if it is continuous, homogenous, isotropic, and perfectly elastic.
The deformation of a straight circular bar subjected simultaneously to tensile and torsion is a complex
one, in accordance with the overlap of the linear strain due to its tensile with the angular strain produced
as a result of torsion [8,9]. To determine stresses, in this case, the method of effect is considered to be
superposition. At tensile and torsion loadings, both the tensile strain and torsion strain are recorded.
As a result, the final strain will contain both component linear (ε) and angular (γ).

Let us consider a straight circular bar made from a continuous, homogenous, isotropic, and
perfectly elastic material (Figure 1). The bar is fixed at one end and is free moving at the other, where
an axial concentrated force (F) and a concentrated torsion moment (Mt) are applied. As a result
of this combined loading, the bar will deform (elastic), along with an element of volume with dx
length; the different points of the bar are, after deformation, in areas other than the initial ones.
The volume element will initially have angles of 90 degrees at the surface of the bar. After deformation,
as a consequence of applying torsion moment, these angles will change with the value γ, which more
or less depends on the direction of the application of the torsion moment. On the other hand, the same
volume element, under tensile, will elongate in the direction of the bar axis. The transversal sections of
the bar do not change their shapes; they just rotate around each other. Considering these observations,
the volume element will be in a new position but will suffer deformation, as observed in Figure 1.
There will also be an additional decrease in the size of the cross section, which is negligible.
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from the displacement of the four contact points with the specimen, when the tensile and torsion 
loading take place, is done by means of levers. Therefore, there is no direct transmission of moving 
the contact points with the specimen to the sensitive measuring elements. If it doesn’t work very 
carefully on mounting and setup of the extensometer and align of the contact points with the 
specimen center, measurement errors may occur.  

At the extensometer described in [10], it can be seen that there are four conductors with electrical 
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strains. With regard to the extensometer described in [11], it is clearly explained that it is, in fact, 
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Figure 1. Deformations at the tensile–torsion combined loading.

For small deformations, in the elastic domain, we can consider the following:

tan(γ) ≈ γ =
R·dϕx

dx
, (1)

where dϕx
dx is the specific rotation measured in (rad/m).

We can consider that two points, A and B, located on the bar’s generator after deformation under
axial force F and torsion moment Mt, will move in the positions of A’ and B’. Moreover, the volume
element we considered will elongate with this value:

∆dx =
F·dx
AE

= ε·dx, (2)

where A is the area of the transversal section of the bar, E is Young’s modulus, and ε is the tensile strain.

2. Comparisons with Other Types of Similar Devices, Description of the Extensometer and
Measurement Mode

The extensometer described in this paper is utilized to determine tensile strains ε and torsional
strains γ at the same time when a sample is under both tensile and torsional loads. Other types of
extensometers designed to simultaneously measure of the axial and torsional strains are known, [9–11].

The ones described in [9,10] use four arms to be mounted on the sample, two of which are intended
for actual measurement, one for each component of the strain. A feature of both extensometers is that
they contain many adjacent pieces. The transmission of the movement resulting from the displacement
of the four contact points with the specimen, when the tensile and torsion loading take place, is done
by means of levers. Therefore, there is no direct transmission of moving the contact points with the
specimen to the sensitive measuring elements. If it doesn’t work very carefully on mounting and setup
of the extensometer and align of the contact points with the specimen center, measurement errors
may occur.

At the extensometer described in [10], it can be seen that there are four conductors with electrical
signal starting from four measuring elements. In these conditions, it is necessary to have a special
software for processing the acquired signals in order to provide, finally, the tensile and torsional strains.
With regard to the extensometer described in [11], it is clearly explained that it is, in fact, composed of
two different extensometers, one for tensile and the other for torsion, which are contained in a single
assembly. Under these conditions, the devices described in [9,10] are quite complicated, with many
adjacent components, including zeroing.
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The device described in [11], although it has only two arms to be mounted on the sample, contains
intermediate parts between the arms and sensors. This can lead to certain errors, if the extensometer is
used longer or when it is not handled with care. This extensometer can operate at temperatures up to
1200 ◦C, which requires certain precautions such as cooling the main elements. At this extensometer,
observations could be made in relation to the way of gripping on the sample, which is done by pressing,
based on the rigidity (even at high temperature) of the elements adjacent to the two arms that come in
contact with the sample.

The extensometer proposed in this paper, Figure 2, has only two arms to be mounted on the
sample, one of them being elastic and directly taking the strains. The novelty of this sensor consists
in the construction of the elastic arm, with the cross formation of the two elastic beams that will
simultaneously measure the two specific deformations. Also, as will be seen, the signals provided by
the two elastic elements are not influenced by the complementary loading. Thus, the signal given by
the tensile beam is not influenced by the torsion load and the signal provided by the torsion beam is
not influenced by the traction load. Compared with the existing extensometers, the one proposed in
this paper is more durable, without adjacent components, has a low manufacturing price and, due to
its simplicity, has a high accuracy.
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The extensometer presented in this paper is intended for simultaneous measurement of the strains,
ε and γ, at the tensile and torsion loading. The extensometer with the dimensions of Figure 2 was
machined from Al7075. The dimensions of the tensile and torsion elastic beams, 4 and 6, both subject
to bending, are designed so that they can measure relatively large specific deformations, up to 6%
from axial strains and up to 4.5% from shear strains (torsional strains). With this extensometer, we
can perform measurements having a resolution for determining axial strains of 0.112% and for shear
strains of 0.105%.

If the extensometer, with the shape of Figure 2, is built with different dimensions and other
material, other ranges can be obtained for the axial and shear strains, depending on the desired
applications. Obviously, it must ensure the correct elasticity of the tensile and torsion beams and also
an adequate rigidity for the other elements. The extensometer can also be used separately for tensile or
torsion. The extensometer is mechanically attached to the sample. The two strain transducers, the type
instrumented beams with four strain gauges connected in Wheatstone bridges and electrically powered
on the diagonal, will provide an electric signal on the other diagonal, which can be transformed, based
on a calibration process, into torsional and tensile strains.

This extensometer is designed to simultaneously retrieve two mechanical strains, transformed
by the strain transducers into different electrical signals, which will lead to an exact measurement of
the tensile and torsional strains after calibration. The two signals both depend only on the measured
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process, so they are not influenced by the other strain process. This device can be easily mounted on the
samples with just two mounting points and can also be used for cyclical fatigue tensile–torsion loading.

In Figure 2, we present a general image of the extensometer mounted on the sample with the
following components:

1—The rigid supporting basis of the two beams; 2—the rigid bar, with a section approximately
constant; 3—the bar containing the elastic measuring beams with cross-shaped manufacturing;
4—the beam used for monitoring tensile strains resulting from the tensile loading(the tensile beam);
5—the four strain gauges (two underneath) mounted on the tensile beam; 6—the beam used for
monitoring torsional strains resulting from the torsional loading (the torsion beam); 7—the four strain
gauges (two in the back) mounted on the torsional beam; 8—two auxiliary pieces, each with two
extensions, required for mounting the extensometer on the sample; 9—two screws with sharp and
hardness ends < 30◦, screwed in auxiliary pieces 8 and used for mounting the extensometer on the
sample; 10—the sample loaded with tensile and torsional strain; 11—elastic rubber bands and / or arcs
for mounting the extensometer on the sample.

The extensometer is made out of a rigid bar 1, reported based on the strain resulting from its
loading, which supports two bars, the first rigid bar, 2, and the second elastically strained bar, 3, with
cut areas 4 and 6. The elastic deformed bar contains two different beams oriented in relation to both
loads. There are four strain gauges glued to each elastic beam (5 and 7, also presented in Figure 3).
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When the sample is loaded (tensile and torsional loads), both beams are loaded until bending
via two different moments: perpendicular to each other and both perpendicular on the longitudinal
axis of the arm. The first beam, which is the closest to the mounting tips, is used for measuring tensile
strains after tensile loading. The second beam, which is the furthest from these mounting tips, is used
for measuring shear (torsional) strains after torsion loading.

The operation of the extensometer is as follows:

• The sharp tips 9 are mounted on sample 10, which is loaded under a tensile–torsion combined load;
• The extensometer is mounted on the sample using elastic bands 11 or arcs that pass through the

cuttings 8, thereby forcing the easy penetration of the sharp tips through the surface of the sample;
• Once the loading starts, the signals for the strains are retrieved from the two transducers: the tensile

and torsional beams;
• Using calibration constants, which will be determined according to the steps below, the real strains

will be calculated: tensile strain ε and torsional (shear) strain γ.

Due to how the strain gauges are connected in a Wheatstone bridge, both theoretically and
practically, each transducer gives a ‘clean’ signal generated by the deformation it monitors. Even
though each of the beams is deformed under bending moments on the two planes (Figure 3), the total
signal from the strain gauges following the deformation from the ‘residual’ bending moment (aimed at
bending the other beam) will be zero. The ‘residual’ bending moment, for each of the two beams, is
the one that leads to the deformation reported for the neutral fiber positioned perpendicularly to the
minimum dimension.
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The electrical binding of the strain gauges on the tensile beam in a Wheatstone bridge was made in
order to measure the strain that occurred due to the bending moment, Mzt. Thus, the signal retrieved
in this case will be:

εmas = εt1 + εt2 − (εc1 + εc2). (3)

Since all strain gauges provide the same signal ε in the modulus, with the compression gauges
providing a negative value for the signal, we will have:

εmas = ε+ ε− (−ε− ε) = 4ε. (4)

We can do the same calculation for the torsion beam (due to the bending moment Myr).
The bending moment Myr results from the torsional loading and is the residual moment for the

tensile beam. When the tensile beam is loaded under the bending moment, Myr (Figure 3) the strain
gauges mounted on the tensile beam deform as follows:

• The strain gauges mt1 and mc1 provide the tensile strains (+ε) that occur on the middle part of the
beam 5 subjected to tensile due to the residual moment, Myr;

• The strain gauges mt2 and mc2 provide the compression strains (-ε) that occur on the middle part
of the beam 5 subjected to compression due to residual moment, Myr.

The signals provided by the four strain gauges are equal in the module, ε, with those of the
compression providing a negative signal. In these conditions, considering the location and connection
of the four strain gauges (see Relation (3)), we will have (in the same order as in Relation (3)):

εmas = ε− ε− (ε− ε) = 0. (5)

As a result, when the tensile beam is loaded with the bending moment Myr (residual for the tensile
beam), given by the torsion load, the signal of the linear deformation transducer (the tensile beam) will
be zero. Similarly, when the torsion beam is loaded with the bending moment Mzt (residual for the
torsion beam) given by the tensile load, the signal of the torsion deformation transducer (the torsion
beam) will be zero. In this way, each specific deformation transducer will provide signals according to
the load for which it was designed: tensile or torsion.

3. Calibration for Tensile Loading

The tensile calibration is meant to match the reads made by the gauge strain system (Wheatstone
bridge) mounted on the tensile beam, with the real strain obtained by the tensile loading. A ‘control’
sample is used for the tensile loading, and a strain gauge is mounted on it, placed parallel with the
longitudinal axis of the sample. This strain gauge mounted on a Wheatstone quarter bridge will
provide real tensile strains following the tensile loading of the sample. Both the strain gauge described
above and the four strain gauges on the tensile beam will be connected to a system (for example,
a Vishay bridge) with power and data acquisition. The control sample will be loaded under tensile
stress on a testing machine using movements with small speeds (approximately 1 mm/min).

The data provided below illustrate the determinations made with the extensometer we built with
a control sample made out of steel R260Mn (1.0624). Using the data provided by the strain gauge from
the control sample under loading and the four strain gauges on the tensile beam (one signal), the graph
in Figure 4 was drawn. We observe a good linearity in this graph (considered an approximation line).

Later, by using the extensometer for tensile loading, the signal provided by the tensile strain
transducer will need to be multiplied by the calibration coefficient 20.94, thereby revealing the real
tensile strain.

Observation: This coefficient is valid for the extensometer we built, with its specific shape,
used materials, strain gauge placement, dimensions, etc. For any other extensometer built
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following this description, a proprietary calibration will be required. The calibration tensile
coefficient results are characteristic only for our own extensometer.
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Figure 4. Tensile calibration with the Wheatstone bridge connected to the Vishay bridge P3—the signals
from the extensometer and control sample are in µε.

To determine the tensile strain when the torsional loading is also performed, the previous
coefficient is not sufficient. We need to consider that, along with the elongation ∆l of the portion
between the supporting points of the extensometer (Figure 5), the cross-sections are rotated one
after another.
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Figure 5. The drawing of the displacement of the fixing points on the sample under
tensile–torsion loading.

Assume that we are mounting the extensometer between A and B, where B is located at the end
of the bar. If we use the method of effect superposition (valid in the elastic domain), we can say that
point A is moving in point A1, and point B in B1, when the tensile loading takes place. If the torsional
loading continues, point A1 moves to A’1 and point B1 to B’1. Finally, both initial points (A and B)
where the extensometer was mounted will be in A’1 and B’1 after the tensile–torsion loading.

In Figure 5, we present the following notations: F is tensile force; Mt is torsion moment; ϕ is the
rotation angle of the free-end of the bar; l0 is the initial length of the bar; ∆l is the total elongation
of the bar due to tensile loading; γ is the torsional (shear) strain due to torsional loading; a is the
initial distance between the mounting points of the extensometer; ∆a is the elongation of the bar in
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the mounting area of the extensometer (a) if only the tensile stress takes place. When the sample is
subjected to only tensile loading, the tensile strain is given by the following relation:

εreal =
BB1

OB
=

∆l
l0

=
∆a
a

, (6)

which is determined based on the total elongation of the bar and the elongation between the
mounting points.

When the loading is compounded (tensile and torsion), the signal from the tensile strain transducer,
εext, will be higher than εreal because A’1B’1 > A1B1. Under these conditions, the measured signal will
contain an error that can be removed based on a computational relationship that will be presented in
the following.

The tensile strain provided by the extensometer is:

εext =
A′1B′1 − a

a
=

A′1B′1
a
− 1, (7)

A′1B′1 =
a + ∆a
cos(γ)

=
a + ∆a√

1− sin2(γ)

=
a + ∆a√

1− γ2
, (8)

considering the small deformation sin(γ) ≈ γ.
When we substitute the last part of Relation (8), which gives us A′1B′1, into Relation (7) while

considering Relation (6), we get:

εext =
a + ∆a

a
√

1− γ2
− 1 =

(1 + εreal)√
1− γ2

− 1, (9)

which results in:
εreal =

√
1− γ2(1 + εext) − 1, (10)

with γ in (m/m).
Therefore, the real tensile strain εreal under simultaneous tensile–torsion loading will be calculated

based on the signal given by the tensile strain transducer, εext, and torsional strain γ, using Relation
(10). The torsional strain is determined based on the signal received via the torsion beam, multiplied
by a calibration constant, as shown below.

An example of the calculus needed to realistically determine the tensile strain with simultaneous
tensile and torsional loading is presented below.

The data obtained by measurements are as follows:

• εext = 600 µε = 600·10−6 m/m (where the dimension of µε is µm/m);
• γ = 250 µε = 250·10−6 m/m.

For the tensile strain that is not increased with the calibration coefficient, the following
formula is used:

εreal =
√

1− 0.000252(1 + 0.0006) − 1 = 0.0005999687.

The error that results when we do not consider the effect of torsion on tensile strain will be

Er[%] =
εext − εreal

εreal
·100 =

600·10−6
− 599, 968·10−6

599, 968·10−6 ·100 = 0.00521%.

The strains we obtained by measurement and the data presented above were determined for
samples made of steel in the elastic domain. Therefore, for these types of strains, the previous
calculation leads to very small errors. Consequently, we can consider the results of the tensile strain by
directly measuring the tensile beam (multiplied by the calibration coefficient). For higher strain values,
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especially those resulting from torsion, the tensile strain needs to be determined using Relation (10).
After this calculation, multiplication with the calibration constant is required, which provides a value
of 20.94 for the extensometer we built.

4. Calibration for Torsional Loading

Calibration for torsional loading is provided to match the readings made on the torsion transducer
with the real strain resulting from torsion loading. For this purpose, we built a special device that
loads a control sample for pure torsional loading. This device is presented in Figure 6 and works as
described below.
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In order to not insert initial torsional moment due to the weight of arm 10 (and also to allow
reversibility of the arm’s movement), a supporting arc was inserted on the bottom side. This arc is able
to push towards arm 10 when screw nut 11 is unscrewed. Thus, the measurements can be performed
in two ways. In either case, at the beginning of the measurement, the two Wheatstone tensiometric
bridges formed on the two sides (strain gauges on the torsion beam and strain gauges on the control
sample) are balanced so that the initial signal equals 0, regardless of whether initial loading is present,
as this loading is negligible and belongs to the elastic domain.

The calculation for the torsional strain γ is, [12]:

γ = 2ε =
τ

G
=

Mt
G·Wp

=
Mt

G·πR3

2

=
2Mt

πR3

2(1 + ν)
E

=
4Mt(1 + ν)

πR3E
. (11)

Calculus Relationship (11) is given just for verification.
The two strain gauges mounted on the control sample are linked in a half bridge, as observed in

Figure 7b. The measured signal will be:

εmas = ε− (−ε) = 2ε, (12)

because one of the samples provides a tensile signal, and the other provides a compression signal.
As a result, the signal measured from the transducer mounted on the control sample will be

precisely the torsion strain, γ, according to first part of Relation (11).
Using the data, we acquired from the two strain gauges on the control sample (one signal) and

from the four strain gauges on the torsion beam (one signal), the graph in Figure 8 is drawn. The graph
has good linearity, and we also show an approximation line. With subsequent uses of the extensometer,
the signal provided by the torsion strain transducer will need to be multiplied by a calibration coefficient
of 12.77 to obtain the real torsion strain, γreal.
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the extensometer is in µε.

Observation: This coefficient is valid for the extensometer we built (i.e., with the specific
characteristics, shape and materials, strain gauge positioning, and dimensions. For any other
extensometer built as we described, a new calibration needs to be done in order to obtain
an appropriate calibration coefficient.
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5. Conclusions

The extensometer presented in this paper can provide tensile strain and torsional strains at the
same time when a sample is loaded under combined torsional and tensile stress. The new characteristic
of this extensometer is the manufacture of instrumented beams with four strain gauges each, connected
in complete Wheatstone bridges. One of the beams is used for determining tensile strain and the other
to determine torsional strain. Considering the way these two elastic beams were made, as well the
location of the strain gauges, their residual bending moments do not influence the signals acquired.
Thus, each beam will provide a ‘clean’ signal. For each extensometer built as per our description,
two different calibrations need to be made: one for tensile strain and one for torsional strain. As
we observed, the torsional loading does not significantly influence the measurement of the tensile
strain. In these conditions, the signals provided by these elastic beams will only be affected by the
calibration constants.
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