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Abstract: Single-axis rotational inertial navigation systems (single-axis RINSs) are widely used in
high-accuracy navigation because of their ability to restrain the horizontal axis errors of the inertial
measurement unit (IMU). The IMU errors, especially the biases, should be constant during each
rotation cycle that is to be modulated and restrained. However, the temperature field, consisting of
the environment temperature and the power heating of single-axis RINS, affects the IMU performance
and changes the biases over time. To improve the precision of single-axis RINS, the change of
IMU biases caused by the temperature should be calibrated accurately. The traditional thermal
calibration model consists of the temperature and temperature change rate, which does not reflect the
complex temperature field of single-axis RINS. This paper proposed a multiple regression method
with a temperature gradient in the model, and in order to describe the complex temperature field
thoroughly, a BP neural network method is proposed with consideration of the coupled items of the
temperature variables. Experiments show that the proposed methods outperform the traditional
calibration method. The navigation accuracy of single-axis RINS can be improved by up to 47.41% in
lab conditions and 65.11% in the moving vehicle experiment, respectively.

Keywords: single-axis rotational inertial navigation system; inertial measurement units; thermal
calibration; multiple regression method; BP neural network

1. Introduction

Inertial Navigation System (INS), as an entirely self-contained system, can obtain attitude, velocity
and position of the vehicle by resolving the data sampled by its Inertial Measurement Unit (IMU)
containing tri-axis gyroscopes and accelerometers [1]. With the characteristics of high reliability and
data rate, INS is widely used in airplanes, missiles, automobiles, submarines, ships, and robots [2–5].
However, the navigation errors of INS are mainly caused by the gyroscope drifts and accelerometer
biases. In order to improve the accuracy of INS without using the high-cost and high-precision IMU,
the Rotational Inertial Navigation System (RINS) has been proposed [6–8]. In a RINS, the IMU is
mounted on a rotary table and forced to rotate along the given axes back and forth to modulate
the errors of IMU from constant to periodically varying components, so as to reduce the navigation
errors [9].

The research on RINS can date back to 1968 when Geller proposed a local level inertial platform
that continuously rotated in azimuth and concluded that the platform rotation attenuated the system
position error [10]. From then on, RINS based on IMU of various accuracies have been widely studied.
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In 1980s, with the development of laser gyroscopes, RINSs based on laser gyroscopes were used for
marine navigation, with the ability to supply accurate navigation information for several days [11,12].
In 2004, Yang and Miao analyzed the single-axis RINS based on the fiber-optic gyroscopes [13]. In 2013,
Sun et al. proposed a MEMS-based RINS in which the significant sensor biases were compensated to
attenuate the navigation errors [14].

RINS can be divided into single-axis [8,15], dual-axis [16,17] and tri-axis [18,19] according to
the number of rotation axis. Theoretically, at least two rotation axes should be used to reduce the
impact of all tri-axis IMU errors. However, the errors of horizontal IMU contribute more to the
navigation system [20]. Hence, the single-axis RINS with its low cost and characteristic of restraining
the IMU errors in horizontal axis has been widely used for high-accuracy navigation. Although the
rotation modulation can fulfill self-compensation of IMU errors during the alignment and navigation
process, the premise is that the IMU errors especially the biases are constant during each rotation cycle.
However, the environment temperature and the power heating during the single-axis RINS cold starts
affect the IMU performance and make the IMU biases change over time, which cannot be modulated
by rotation and will decrease the accuracy of single-axis RINS.

In order to compensate the IMU errors caused by the temperature, plenty of works have been
done according to the grade of IMUs, and it has been proved that the thermal calibration process is
time-consuming and costly. There are currently two main approaches for thermal calibration: The Soak
method and the Ramp method. The Soak method works on the premise of stable sensor temperature
while the Ramp method is based on time-varying sensor temperature. Although time-consuming,
the Soak method can achieve better accuracy. In 2013, Niu et al. proposed a fast thermal calibration
method for low-grade IMU based on the Ramp method and concluded that the compensation accuracy
based on the proposed method was close to the Soak method and the calibration time was significantly
reduced [21]. In 2016, Wang et al. proposed a Soak method to calibrate the MEMS IMU’s biases, scale
factor errors and non-orthogonalities varying with temperature [22]. In 2017, Zhang et al. proposed
a parameter-interpolation method to calibrate the MEMS gyroscope’s biases and scale factor errors
caused by the temperature [23]. In 2018, Yang et al. utilized the calibration data in 10 temperature
points based on the Lagrange interpolation method to calibrate the tri-axial MEMS gyroscope over
a full temperature range [24]. With the development of artificial intelligence, many thermal calibration
methods for IMU based on Back Propagation neural network [25], Elman neural network [26] and
fuzzy neural network [27] have been proposed, and it is concluded that the compensation results are
more accurate than the traditional thermal calibration method.

In a word, although the thermal calibration method for IMU has been widely researched, some
problems are still not settled. Firstly, the thermal calibration model lacks the reflection for the work
environment. There exists a temperature field caused by the power of single-axis RINS heating and
the environmental temperature change. What is more, the temperature field is more complicated
during the cold start process. Besides, both polynomial and interpolation calibration methods utilize
the sectional compensation method among all temperature points. However, the segment points may
change because the IMU biases are different due to the repetition priming as shown in Figure 1a, and
it makes the compensated IMU data step-like at the segment points as shown in Figure 1b, which
decrease the position accuracy of single-axis RINS.

Hence, in order to reflect the temperature field change accurately, especially during the cold start
process, the sensor temperature, temperature change rate and temperature gradient inside and outside
the sensor should be introduced to the thermal calibration model. Besides, an overall compensation
method should be proposed to overcome the drawbacks of the sectional compensation method.
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Figure 1. The sectional compensation error analysis. (a) The schematic of sectional compensation. (b) 
The accelerometers output at segment point. 

Hence, in order to reflect the temperature field change accurately, especially during the cold 
start process, the sensor temperature, temperature change rate and temperature gradient inside and 
outside the sensor should be introduced to the thermal calibration model. Besides, an overall 
compensation method should be proposed to overcome the drawbacks of the sectional compensation 
method. 

The main purpose of this paper is to improve the accuracy of single-axis RINS over a work 
temperature range by thermal modeling and calibration of IMU. The rest of this paper is organized 
as follows. The single-axis RINS error analysis with the IMU biases is made in Section 2. The effects 
of the temperature on the change of IMU biases are analyzed based on the experiment data in Section 
3. The thermal calibration method based on the multiple nonlinear regression method and BP-neural 
network method are proposed in Section 4. The analysis of simulation and experiment results are 
presented in Section 5. Finally, the conclusions are concluded in Section 6. 

2. Single-Axis RINS Error Analysis 

2.1. Definition of Frames 

The frames used in the paper are listed in Table 1. 
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Symbol Frames 
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n The orthogonal navigation frame directs east-north-up(ENU) 
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The system structure of single-axis RINS is shown in Figure 2. The single-axis RINS mainly 
includes IMU, which is composed of a tri-axis gyroscope and a tri-axis accelerometer, a rotation 
framework, an angular encoder, and a torque motor. The torque motor drives IMU to rotate 
periodically along the vertical body axis, and the angular encoder provides rotation angle relative to 
the body frame. The r-frame refers to the rotation frame, which varies with the change of IMU 
pointing direction in real time. The b-frame is defined as the rotation axis zs that overlaps with the zb. 
The relationship between two frames is defined as the rotation angle ϕ, and the r-frame coincides 
with the b-frame completely when ϕ is zero. The rotation modulation of the system is the classical 
four-position modulation (−135°, 45°, 135°, −45°) used in many RINS [28]. 

Figure 1. The sectional compensation error analysis. (a) The schematic of sectional compensation.
(b) The accelerometers output at segment point.

The main purpose of this paper is to improve the accuracy of single-axis RINS over a work
temperature range by thermal modeling and calibration of IMU. The rest of this paper is organized as
follows. The single-axis RINS error analysis with the IMU biases is made in Section 2. The effects of
the temperature on the change of IMU biases are analyzed based on the experiment data in Section 3.
The thermal calibration method based on the multiple nonlinear regression method and BP-neural
network method are proposed in Section 4. The analysis of simulation and experiment results are
presented in Section 5. Finally, the conclusions are concluded in Section 6.

2. Single-Axis RINS Error Analysis

2.1. Definition of Frames

The frames used in the paper are listed in Table 1.

Table 1. The definition of frames.

Symbol Frames

i The orthogonal inertial frame

n The orthogonal navigation frame directs
east-north-up(ENU)

e The earth-fixed frame
r The rotation frame
b The body frame

The system structure of single-axis RINS is shown in Figure 2. The single-axis RINS mainly includes
IMU, which is composed of a tri-axis gyroscope and a tri-axis accelerometer, a rotation framework,
an angular encoder, and a torque motor. The torque motor drives IMU to rotate periodically along
the vertical body axis, and the angular encoder provides rotation angle relative to the body frame.
The r-frame refers to the rotation frame, which varies with the change of IMU pointing direction in real
time. The b-frame is defined as the rotation axis zs that overlaps with the zb. The relationship between
two frames is defined as the rotation angle φ, and the r-frame coincides with the b-frame completely
when φ is zero. The rotation modulation of the system is the classical four-position modulation (−135◦,
45◦, 135◦, −45◦) used in many RINS [28].
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Figure 2. The structure of single-axis RINS. 
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2.2. The Single-Axis RINS Error Analysis with the IMU Biases

The errors restraint principle of single-axis RINS can be explained by the following analysis.
At time t, the direction cosine matrix from r-frame to b-frame can be described as follows:

Cb
r(t) =


cosωrt − sinωrt 0
sinωrt cosωrt 0

0 0 1

 (1)

where ωr is the rotation speed, and φ = ωr × t.
The angular rate and specific force output of gyroscopes and accelerometers in r-frame are

ω̃
r
ir =

(
Cb

r

)T
ωb

ib + δωr
ib +ωr

br (2)

f̃
r
ir =

(
Cb

r

)T
fb
ib + δfr

ib + fr
br (3)

where ω̃
r
ir, ω

b
ib, f̃

r
ir, and fb

ib are the raw output and the ideal output of gyroscopes and accelerometers
respectively; δ[·] denotes the error of the vector [·]; ωr

br and fr
br are the rotation rate and the specific

force between b-frame and r-frame in r-frame.
The angular rate and specific force output of gyroscopes and accelerometers in b-frame are

ω̃
b
ib = Cb

rω̃
r
ir +ωb

rb (4)

f̃
b
ib = Cb

r̃ f
r
ir + fb

rb (5)

where ω̃
b
ib, ω̃r

ir, f̃
b
ib, and f̃

r
ir are the raw output of gyroscopes and accelerometers in b-frame and r-frame

respectively. ωb
rb and fb

rb are the rotation rate and the specific force between r-frame and b-frame in
b-frame.

For the sake of simplicity, we only consider the biases as the IMU errors and ignore the scale factor
errors and misalignment errors of IMU. Take (1), (2) and (3) in (4) and (5) respectively, and we have:

ω̃b
ib = ω

b
ib + Cb

r

(
δωr

ir + δωr
rb

)
= ωb

ib +


εx cosωrt− εy sinωrt
εx sinωrt + εy cosωrt

εz

 (6)
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f̃
b
ib = fb

ib + Cb
r

(
δfr

ir + δfr
rb

)
= fb

ib +


∇x cosωrt−∇y sinωrt
∇x sinωrt +∇y cosωrt

∇z

 (7)

where δωr
ir = ε =

[
εx, εy, εz

]T
and δfr

ir = ∇ =
[
∇x,∇y,∇z

]T
are the gyroscopes drifts and accelerometers

biases respectively. Besides, the rotation error of the torque motor is ignored, which means that
δωr

rb= δfr
rb= 0.

Apparently, by rotating the IMU about the vertical axis, the gyroscope drifts and accelerometer
biases in horizontal axes are modulated into periodic signals, whose average value is zero in a rotation
period T = 2π/ωr. For the sake of simplicity, we assume b-frame is aligned with n-frame, which means
Cb

n is an identity matrix, then the horizontal attitude errors and velocity errors can be calculated as:

[
δϕE

δϕN

]
=


∫ t=T

t=0

(
εx cosωrt− εy sinωrt

)
dt∫ t=T

t=0

(
εx sinωrt + εy cosωrt

)
dt

 (8)

[
δVE

δVN

]
=


∫ t=T

t=0

(
∇x cosωrt−∇y sinωrt

)
dt∫ t=T

t=0

(
∇x sinωrt +∇y cosωrt

)
dt

 (9)

Hence, the horizontal IMU biases are self-compensated in a complete rotation cycle based on
the premise that the IMU biases are constant during each rotation cycle. However, the environment
temperature and the power heating when the single-axis RINS cold starts affect the IMU performance
and make the IMU biases change over time. As shown in Equations (8) and (9), if the IMU biases change
in a rotation cycle, the effects of modulation for single-axis RINS will decrease and the navigation
errors may accumulate and grow rapidly. Hence, the IMU biases caused by the temperature should be
compensated in order to improve the position accuracy of single-axis RINS.

3. The Effects of Temperature on IMU Biases

In order to analyze the effects of temperature on IMU biases, there are several equipments: the
two-axis turntable with a thermal chamber, and the temperature sensors inside and outside the IMU.
The performance of thermal calibration equipment is shown in Table 2. The thermal chamber is used to
simulate the temperature change of the work environment. It should be pointed out that the IMU chip
is packaged with the temperature sensor inside, and attached is a temperature sensor in the surface
of the package, which is defined as the outside temperature sensor. The inside temperature sensor
reflects the sensor heating, while the outside temperature sensor reflects the power heating and the
environmental temperature change.

Table 2. The performance of thermal calibration equipment.

Turntable

Principal and tilting axis rotation range Continuous infinite
Principal and tilting axis angular position accuracy ±5′

Thermal chamber

Temperature range −50 ◦C~100 ◦C
Temperature change rate ±0.1~± 5 ◦C/min linear

Temperature sensors

Temperature range −50 ◦C~200 ◦C
Temperature measurement accuracy 0.01 ◦C

For the high-precision navigation grade IMU, the soak method is more accurate than the ramp
method. Hence, we utilize the soak method to analysis the temperature field when the single-axis
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RINS cold starts at different temperature points. The single-axis RINS was installed on the turntable in
the quasi-static state, and the thermal chamber was set at seven temperature points, which is shown in
Table 3. These temperature points have covered the working temperature range of single-axis RINS.
The single-axis RINS kept thermal insulation for 3 h before the cold start, and then turned on the
single-axis RINS without the torque motor rotation at each temperature point.

Table 3. The temperature points set by the thermal chamber.

Symbol T1 T2 T3 T4 T5 T6 T7

Temperature (◦C) 0 7 14 21 28 35 42

The IMU output at different temperature points is shown in Figure 3. It should be pointed out
that the outliers caused by the torque motor vibration were excluded. Obviously, the IMU biases
change variously at different temperature points, and the accelerometers of single-axis RINS are
more sensitive to temperature field than the gyroscopes. In order to ensure the effects of modulation
for single-axis RINS, the IMU biases caused by temperature should be calibrated and compensated.
The traditional calibration methods based on the polynomial or interpolation method utilize the
sectional calibration and compensation method at different temperature points. However, it results in
the IMU output errors shown in Figure 1b and decreases the position accuracy of single-axis RINS.
Besides, the temperature gradient is ignored in the traditional method, hence, the temperature variation
between the environment and the single-axis RINS cannot be reflected in the IMU thermal model.
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4. Multiple Regression Method and BP Neural Network

4.1. The Multiple Regression Method

In order to reflect the temperature field of single-axis RINS, the inner temperature of IMU,
the temperature change rate of IMU, and the temperature gradient between the sensor inside and
outside are considered in the temperature model of IMU. To overcome the drawback of sectional
compensation, the temperature model of accelerometers and gyroscopes proposed in this paper is
as follows:

N′ = N− f
(
T,

.
T, ∆T

)
(10)
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where N and N’ are the IMU output before and after compensation, respectively. T,
.
T, and ∆T are the

inner temperature, temperature change rate and temperature gradient between the inside and outside
IMU, respectively. The biases of IMU caused by the temperature can be summarized as:

f
(
T,

.
T, ∆T

)
= diag




a0xaT1x · · · aTpxa .

T1x · · · a
.
Tqxa∆T1x · · · a∆Tsx

a0yaT1y · · · aTpya .
T1y · · · a

.
Tqya∆T1y · · · a∆Tsy

a0zaT1z · · · aTpza .
T1z · · · a

.
Tqza∆T1z · · · a∆Tsz





1 1 1
Tx Ty Tz
...

...
...

Tp
x Tp

y Tp
z.

Tx
.
Ty

.
Tz

...
...

...
.
T

q
x

.
T

q
y

.
T

q
z

∆Tx ∆Ty ∆Tz
...

...
...

(∆Tx)
s

(
∆Ty

)s
(∆Tz)

s





(11)

where a0i (i = x, y, z) are the constant biases; aT1i . . . aTpi (i = x, y, z) are the temperature coefficients;
a .

T1i . . . a .
Tqi (i = x, y, z) are the temperature change rate coefficients; a∆T1i . . . a∆Tsi (i = x, y, z) are the

temperature gradient coefficients; and p, q, s are the order of the temperature variables.
The purpose of thermal calibration based on the multiple regression method proposed in this paper

is to estimate the temperature coefficients in Equation (10). The thermal calibration data were collected
as shown in Figure 3, and the temperature coefficients can be calculated using the multiple regression
method. Compared to the traditional method, the IMU output does not show a step-like pattern caused
by the sectional compensation, which is not acceptable for high-precision single-axis RINS. Besides,
the temperature gradient is considered in the model to fully describe the temperature field.

4.2. BP Neural Network

The multiple regression method utilizes the polynomial of temperature variables to establish the
temperature model. However, the relationship between the temperature variables is more complicated,
and there are coupled items among the temperature, temperature change rate and temperature gradient
of IMU. Hence, BP neural network is introduced to solve the problem. The BP neural network is
an algorithm for error back propagation training with a multi-layer network structure. The connection
weight coefficients and thresholds are adjusted by the back-propagation of the output error, hence the
error of the network is minimized to achieve the desired precision. The topology used in this paper is
shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 8 of 19 
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It is a three-layer network structure, consisting of an input layer, a hidden layer, and an output
layer. The input layer consists of three neurons, and the relationships among the three layers can be
characterized by the following formulas:

fn =
n∑

i=1

wni ·Xi + bi (12)

Y = factive

 n∑
i=1

vi · fi + b′
 (13)

where n is a neuron in the hidden layer, and i is the number of input layers; wni, vi, bi, and b’ are
the weight coefficients and biases between the input layer, the hidden layer and the output layer
respectively; factive() is the activation function using the sigmoid function for the output of hidden layer.

factive(x) =
1

1 + e−x (14)

The output neuron is the IMU biases caused by temperature, and the output layer and the hidden
layer are connected by an activation function. The IMU biases are known when the single-axis RINS is
installed on the turntable, hence the training data can be collected and used to train the BP network.

5. Thermal Calibration and Verification Experiments

In this section, some experiments in the lab and field condition are designed to verify the two
proposed thermal calibration methods in practice. The lab navigation experiments and moving
vehicle experiments are carried out based on the single-axis RINS. The single-axis RINS consists of
a tri-axis fiber optic gyroscope, and tri-axis quartz accelerometer with precisions of 0.01◦/h and 0.01 mg
respectively. Firstly, the thermal calibration was performed based on the traditional method and
the two proposed methods, then the IMU calibration was done based on our previous work [29] to
transform the pulse output into the rotation rate and specific force.

5.1. Analysis of Thermal Calibtation and Cold Start Experiments

The thermal calibration experiments are conducted using three methods:

(1) The traditional thermal calibration method based on the polynomial sectional method.
(2) The multiple regression method descibed in Section 4.1.
(3) The BP neural netwok proposed in Section 4.2.

The experiments are performed on the two-axis turntable with a thermal chamber as shown in
Figure 5, and the performance of the thermal calibration equipment is shown in Table 2. The single-axis
RINS are installed on the turntable in the quasi-static state shown in Figure 6.
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The thermal chamber is set at seven temperature points as shown in Table 3. The single-axis RINS
maintains thermal insulation for 3 h before the cold start; when the temperature field is stable, the
single-axis RINS is turned on without the torque motor rotation at each temperature point. The IMU
raw outputs are collected and used to calibrate the IMU biases caused by temperature based on those
three methods.

5.1.1. The Thermal Calibration Experiments Based on Method 1

In method 1, the thermal model is a piecewise function:
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where Ti (i = 1, 2, . . . , 6) are the sectional temperature points. The thermal model in method 1 consists
of the temperature and temperature change rate but ignores the temperature gradient between the
work environment and single-axis RINS. The calibration results of x-axis IMU based on method 1 are
shown in Table 4. There are 7 × 7 = 49 coefficients for the accelerometer and 3 × 7 = 21 coefficients for
the gyroscope in the piecewise function model.

Table 4. The thermal calibration results of x-axis IMU based on method (1).

Symbol
Temperature Range (◦C)

TAx ≤ 4 4 < TAx ≤ 10 10 < TAx ≤ 17 17 < TAx ≤ 23 23 < TAx ≤ 30 30 < TAx ≤ 37 TAx ≥ 37

A0x 7071.18 7243.84 7607.06 8138.59 9129.55 8919.01 12,730.53
AT1x −7.09 −66.89 −112.95 −145.75 −217.33 −148.79 −388.56
AT2x 3.52 7.41 7.41 6.36 7.43 3.83 8.73
AT3x −0.32 −0.26 −0.16 −0.0915 −0.0842 −0.0324 −0.0650
A .

T1x 196.73 69.73 62.25 93.10 104.29 37.32 −31.43
A .

T2x −153.01 62.48 479.76 521.83 411.17 476.53 544.07
A .

T3x 389.25 273.51 −129.38 −188.77 −111.36 −98.80 −101.98

Symbol
Temperature Range (◦C)

TGx ≤ 3 3 < TGx ≤ 9 9 < TGx ≤ 16 16 < TGx ≤ 23 23 < TGx ≤ 29 29 < TGx ≤ 36 TGx ≥ 36

G0x 7367.37 7370.21 7363.00 7366.31 7370.28 7374.67 7355.78
GT1x 0.468 −0.478 0.322 0.115 −0.0574 −0.209 0.316
G .

T1x 34.99 5.47 36.58 24.21 36.96 24.13 36.03
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In order to verify the compensation effects in segment points, the experiment of repetition priming
is performed when the temperature of the thermal chamber is set at 25 ◦C. The x-axis IMU outputs
before and after compensation are shown in Figure 7. It is shown that: Firstly, the output of IMU
appears as a step-like pattern at the segment temperature point 23 ◦C, because the IMU biases change
in repeat starts and the constant thermal coefficients A0 and G0 are not appropriate for the new data at
the segment points.
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Secondly, the x-axis accelerometer output fluctuates at the beginning of the cold start, which
reflects that the calibration model based on method 1 should be developed. The temperature and
temperature change rate in the thermal model of method 1 are inadequate to reflect the temperature
field of single-axis RINS.

5.1.2. The Thermal Calibration Experiments Based on Method 2

The Root Mean Square (RMS) is introduced in order to evaluate the calibration error, and it is
defined as

RMS =

√√√√ n∑
i=1

(
Ŷi −Yi

)
n

(16)

where n denotes the sample number of IMU output; Ŷi denotes the estimation of IMU output, while Yi
denotes the IMU output.

In method 2, the relationship between the order of the temperature variables in the thermal model
and the RMS of the calibration error is shown in Table 5. The order of, T,

.
T, and ∆T are p, q, and s

respectively as shown in Equation (10).

Table 5. The relationship between the model in method 2 and the RMS of calibration error.

Accelerometers Model
RMS (Pulse)

Gyroscopes Model
RMS (Pulse)

Ax Ay Az Gx Gy Gz

P = 1, q = 1, s = 1 35.61 36.39 41.85 P = 1, q = 1, s = 1 24.36 22.06 14.10
P = 2, q = 2, s = 2 34.41 34.79 41.68 P = 2, q = 2, s = 2 24.36 22.05 14.10
P = 3, q = 3, s = 3 34.00 32.99 39.37 P = 3, q = 3, s = 3 24.36 22.04 14.09
P = 4, q = 4, s = 4 33.93 32.93 39.18 P = 4, q = 4, s = 4 24.35 22.04 14.08

Table 4 shows that: Firstly, the RMS of calibration error decreases while the order of temperature
variables increases. However, the differences between the 3rd order model and 4th order model for
accelerometers are small. Secondly, the RMS of error for gyroscopes are almost unchanged, which
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means that the thermal model with p = 1, q = 1 and s = 1 is fit for the gyroscopes. Hence, the thermal
models are set: p = 3, q = 3, s = 3 for the accelerometers and p = 1, q = 1, s = 1 for the gyroscopes. The
calibration results based on method 2 are shown in Table 6.

Table 6. The thermal calibration results based on method 2.

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value

A0x 7411.39 AT1x −8.52 AT2x 0.180 AT3x −1.84e-3 A .
T1x 92.22

A .
T2x 256.82 A .

T3x −148.15 A∆T1x −533.16 A∆T2x 280.29 A∆T3x −45.09
A0y 7051.03 AT1y 3.41 AT2y 0.0575 AT3y −1.73e-3 A .

T1y 94.10
A .

T2y 118.68 A .
T3y −18.01 A∆T1y −407.06 A∆T2y 191.04 A∆T3y −27.73

A0z 465,231.31 AT1z −10.31 AT2z 0.122 AT2z −2.61e-4 A .
T1z −128.82

A .
T2z −23.17 A .

T3z −1.41 A∆T1z −290.31 A∆T2z 163.01 A∆T3z −25.43

G0x 7361.77 GT1x −0.0175 G .
T1x 40.48 G∆T1x 3.87

G0y −3.56 GT1y −0.0158 G .
T1y 14.85 G∆T1y 0.592

G0z 3617.88 GT1z −0.0419 G .
T1z 4.82 G∆T1z 0.397

There are only 10 thermal parameters for the accelerometer and four thermal parameters for the
gyroscope. The thermal model of method 2 is more concise compared to method 1. The IMU outputs
before and after compensation based on method 2 are shown in Figure 8. It can be seen that the biases
of IMU caused by the temperature can be compensated well. In addition, in the repetition priming
experiment, the IMU outputs are continued without step-like appearance and there is no fluctuation
for the accelerometer at the beginning of the cold start. Besides, the IMU output is nearly constant
with the temperature change during the cold start, which agrees with the premise that the IMU biases
do not change during each rotation cycle. Hence, the position error caused by the IMU biases can be
modulated as shown in Equations (8) and (9), and the effects of modulation lead to restraining the
accumulation of position error caused by the IMU biases.
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5.1.3. The Thermal Calibration Experiments Based on Method 3

In method 3, 70% of the IMU raw outputs shown in Figure 3 are utilized to train the BP neural
network and 30% for validation and testing. In order to choose the number of neurons in the hidden
layer, the simulations are performed, and the relationships between the number of neurons and the
RMS of calibration error are shown in Table 7. It shows that compared with Table 6, the RMS of
the calibration error for accelerometers decrease, while there is little change for gyroscopes because
the gyroscope’s outputs are less sensitive to the temperature field. Besides, the RMS of calibration
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error decreases while the number of neurons increases, but it is not changed basically when n ≥ 6
for accelerometers and n ≥ 2 for gyroscopes. It is well known that the more neurons there are, the
more computational complexity there is for BP neural networks. Hence, considering both accuracy
and computational complexity, the number of neurons of hidden layer is set as n = 6 and n = 2 for
accelerometers and gyroscopes, respectively.

Table 7. The relationships between the model in method 3 and the RMS of calibration error.

Accelerometers
Neurons Number

RMS (Pulse) Gyroscopes
Neurons Number

RMS (Pulse)

Ax Ay Az Gx Gy Gz

n = 4 32.91 32.22 38.97 n = 1 24.85 22.14 14.09
n = 5 32.86 32.45 38.82 n = 2 24.21 22.02 14.07
n = 6 32.61 32.20 38.68 n = 3 24.14 22.00 14.04
n = 7 32.60 32.19 38.67 n = 4 24.13 22.02 14.03
n = 8 32.59 32.21 38.67 n = 5 24.14 22.01 14.04

The calibration results for x-axis IMU based on method 3 are shown in Table 8. There are
31 coefficients for the accelerometer and 11 coefficients for the gyroscope. Although the coefficients are
more than those in method 2, it is shown that the thresholds and weight coefficients between the three
layers connect the temperature variables together and introduce the coupled items into the thermal
calibration model. Hence, the RMS of calibration error based on method 3 is smaller than that based
on method 2, which means that the IMU output is more approximate to constant and the IMU biases
can be modulated into a period signal in order to decrease the position error of single-axis RINS.

Table 8. The calibration results of x-axis IMU based on method 3.

Accelerometers Gyroscopes

Symbol Value Symbol Value Symbol Value Symbol Value

w11 −1.36 w13 8.01 v1 −0.0327 w11 −1.25
w21 −7.24 w23 1.16 v2 0.0927 w21 0.228
w31 −0.316 w33 0.562 v3 3.87 w12 0.414
w41 −0.137 w43 0.227 v4 −10.00 w22 0.355
w51 −2.038 w53 1.10 v5 0.632 w13 −0.588
w61 −17.37 w63 5.06 v6 0.116 w23 0.124
w12 −4.14 b1 6.55 b′ 1.35 b1 1.40
w22 −0.540 b2 −1.01 b2 −1.54
w32 −0.153 b3 −0.356 v1 7.84 × 10−3

w42 −0.0919 b4 0.0561 v2 0.148
w52 −0.490 b5 1.56 b′ 0.125
w62 −1.24 b6 −12.13

5.2. Analysis of Thermal Verification Experiment

In order to verify the proposed thermal calibration method, the navigation experiments of
single-axis RINS in lab and the vehicle experiments are performed.

5.2.1. Navigation Experiments in Lab

In this step, the navigation experiment is performed in the two-axis turntable with the thermal
chamber at first. The temperature of the thermal chamber is set from−2 ◦C to 50 ◦C with the temperature
rate of 0.2 ◦C/min. The position errors of single-axis RINS in the quasi-static state based on three
methods are shown in Figure 9. It is shown that the position error based on method 1 is smaller than
the uncompensated error, however, it may increase in some segment points. Compared with method
1, the position error based on method 2 is more steady and does not increase at the segment points.
Besides, the position error based on method 3 is the smallest among the three methods. It is verified
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that the proposed methods (method 2, 3) improved the position accuracy of single-axis RINS in a large
temperature range.
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Figure 9. The position error of single-axis RINS in the thermal verification experiment.

In order to verify the position accuracy based on three thermal calibration methods during the
cold start, the self-alignment and navigation experiments are performed in lab. The single-axis RINS is
installed on the three-axis turntable shown in Figure 10, which offers the rotation rates and angles of
single-axis RINS as reference. The single-axis RINS cold starts in the quasi-static state and the swing
state as shown in Table 9, where Heading, Pitch and Roll denote the rotation axis of the turntable.Sensors 2020, 20, x FOR PEER REVIEW 14 of 19 
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Table 9. The quasi-static and swing condition of the turntable.

Turntable Condition
The Quasi-Static State The Swing State

Amplitude (◦) Frequency (Hz) Amplitude (◦)

Heading 45 2 3
Pitch 0 2 3
Roll 0 8 5

The position errors of single-axis RINS based on three thermal calibration methods in the
quasi-static state and the swing state are shown in Figures 11 and 12 respectively. Method 1–3 are
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described in Section 5.1. It is obvious that the position errors of method 1 fluctuate at the beginning of
the cold start, and they are larger compared to those position errors of the proposed method 2. Besides,
the position errors of method 3 are the smallest and the most steady among the three methods.
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Figure 12. The position error of single-axis RINS in the swing state.

Other navigation experiments in the lab condition are performed to verify the two proposed
methods. The maximum position errors and the time of each experiment are shown in Figure 13.
Experiments 1–5 are in the quasi-static state while experiments 6–10 are in the swing state. Compared
with method 1, the position accuracy based on the proposed method 2 can be improved up to 46.30%
in the quasi-static state and 47.41% in the swing stare. Besides, compared with method 2, the position
accuracy based on the proposed method 3 can be improved up to 17.24% in the quasi-static state and
17.66% in the swing stare. It is because the proposed method 2 makes the regression without using the
piecewise function and considering the temperature gradient, that it plays a key role in describing
the temperature field of single-axis RINS. In addition, the proposed method 3 introduces the coupled
items of the temperature variables, which can reflect the complex temperature field thoroughly.
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5.2.2. Moving Vehicle Experiments Results

In order to verify the proposed calibration methods in practice, the moving vehicle experiments
are carried out three times using the three calibration results. The vehicle used in the experiment is
shown in Figure 14, which is a human-operated automobile equipped with a GPS receiver, a single-axis
RINS and a computer for data visualization. The single-axis RINS is installed inside the vehicle and
cold starts in the route including movements of uphill, downhill, turning, acceleration, and deceleration
within 1.9 h.
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The trajectories of GPS output and the single-axis RINS navigation results based on the thermal
calibration coefficients of method 1–3 are shown in Figure 15. The position errors of single-axis RINS
based on three methods are compared with the GPS output as shown in Figure 16. It is shown that
the navigation accuracy of method 3 is the highest, while that of method 1 is the lowest. As the
temperature gradient and the coupled items of temperature variables are introduced to the thermal
calibration model, and the IMU biases caused by the temperature field of single-axis RINS are fully
compensated, this results in the changeless IMU biases in one rotation cycle of the torque motor. Hence,
the navigation accuracy based on the proposed method 3 is improved by modulating the changeless
IMU biases.
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In order to verify the proposed methods thoroughly, two more vehicle navigation experiments
are performed, and the maximum position errors of all three experiments are shown in Table 10. It is
shown that the position error of method 3 can be decreased by 65.11% maximally compared to that of
method 1. Besides, the results of three moving vehicle experiments show that the maximum position
error can be reduced by 56% on average. Compared with the lab experiments, the improvements of
the navigation accuracy in the vehicle experiments are even better, because the temperature change
is more significant and the temperature gradient is more obvious. Hence, the proposed thermal
calibration methods are superior to the traditional method in describing the temperature field of the
work environment and improving the position precision.

Table 10. The maximum position errors of the vehicle navigation experiment.

Experiment Number Method 1 Method 2 Method 3 The Decreased Percentage 2

Experiment 1 0.556 n mile 1 0.277 n mile 0.194 n mile 65.11%
Experiment 2 0.724 n mile 0.343 n mile 0.296 n mile 59.11%
Experiment 3 0.495 n mile 0.316 n mile 0.282 n mile 43.03%

1 1 n mile (nautical mile) ≈ 1.852 km.2 The decreased percentage of maximum position error between method 3 and
method 1.



Sensors 2020, 20, 384 17 of 18

6. Conclusions

This paper presents a study on the thermal calibration method based on multiple regression
and BP neural networks for single-axis RINS. The effects of the change of IMU biases caused by the
temperature are analyzed, and it is proven that the change of IMU biases should be considered in order
to improve the position accuracy of single-axis RINS. A thermal calibration model is established with
the temperature variables including the temperature, the temperature change rate and the temperature
gradient, and the regression method is designed based on the relationship between the order of the
thermal model and the RMS of calibration errors. To describe the complex temperature field thoroughly,
the BP neural network with consideration of the coupled items between the temperature variables are
introduced, and in addition, the number of neurons in the hidden layer are analyzed to improve the
accuracy of estimation with the least computational complexity. Finally, experiments are conducted
to test the performance of the two proposed methods. The results of navigation experiments in lab
and field based on the traditional thermal calibration, the multiple regression method and BP neural
network are compared. It is shown that the IMU outputs are continued without step-like appearance
for the two proposed methods, and the RMS of calibration errors are less than that in the traditional
thermal calibration method, because the temperature gradient and the coupled temperature items are
considered in the model. It is concluded that the proposed thermal calibration methods can compensate
the change of biases caused by temperature, which leads to the improvement in position accuracy of
single-axis RINS.
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