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Abstract: Quality monitoring is important for farmland protection. Here, high-resolution remote
sensing data obtained by unmanned aerial vehicles (UAVs) and long-term ground sensing data,
obtained by wireless sensor networks (WSNs), are uniquely suited for assessing spatial and temporal
changes in farmland quality. However, existing UAV-WSN systems are unable to fully integrate the
data obtained from these two monitoring systems. This work addresses this problem by designing
an improved UAV-WSN monitoring system that can collect both high-resolution UAV images and
long-term WSN data during a single-flight mission. This is facilitated by a newly proposed data
transmission optimization routing protocol (DTORP) that selects the communication node within a
cluster of the WSN to maximize the quantity of data that can be efficiently transmitted, additionally
combining individual scheduling algorithms and routing algorithms appropriate for three different
distance scales to reduce the energy consumption incurred during data transmission between the
nodes in a cluster. The performance of the proposed system is evaluated based on Monte Carlo
simulations by comparisons with that obtained by a conventional system using the low-energy
adaptive clustering hierarchy (LEACH) protocol. The results demonstrate that the proposed system
provides a greater total volume of transmitted data, greater energy utilization efficiency, and a larger
maximum revisit period than the conventional system. This implies that the proposed UAV-WSN
monitoring system offers better overall performance and enhanced potential for conducting long-term
farmland quality data collection over large areas in comparison to existing systems.

Keywords: wireless sensor network; unmanned aerial vehicles; scheduling algorithms; integrated
design

1. Introduction

Farmland is a basic resource required for ensuring human survival. However, the quality of
farmland dictates the quantity and quality of the extracted crops, which, in turn, affect the quality and
health of human life [1,2]. As such, farmland quality monitoring is a key task required for farmland
protection [3]. Presently, farmland quality monitoring is predominantly conducted via laboratory
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analyses. However, the development of science and technology has provided new monitoring methods
uniquely suited for assessing temporal and spatial changes in farmland quality. Among these,
high-resolution remote sensing data obtained by unmanned aerial vehicles (UAVs) and long-term
ground sensing data obtained by wireless sensor networks (WSNs), like soil moisture data obtained
from three different depths, meteorological data and so on, are two key monitoring methods with
substantial potential for conducting farmland quality monitoring [4–7]. Moreover, the respective
spatial and temporal benefits provided by these separate methods has generated considerable interest
in the integration of the data collected by these two types of monitoring systems into a single farmland
quality monitoring system [8–14].

One key component required for effectively integrating the data collected by UAVs and WSNs is
the development of a suitable method for transmitting the data collected by a WSN to the UAV as it
passes over the monitored region. Currently, three data transmission methods have been developed for
this purpose, which include point-to-point transmission, the flat routing protocol, and the clustering
routing protocol.

Point-to-point data transmission utilizes a static star topology, where the sensor nodes of the
WSN located on the ground do not communicate with each other, but rather send their data to a sink
node in a passing UAV directly [15–22]. This data transmission method adopts a simple network
structure that is easy to build. However, the UAV must traverse every sensor node in the WSN to
collect all the available data, which results in an irregular UAV flight route that increases flight time
and consumes a greater proportion of available battery energy. Moreover, the irregular flight route
can result in the wasteful overlap of remote sensing images, which further reduces the monitoring
efficiency. Accordingly, point-to-point data transmission is only suitable for use under conditions
where the density of sensor nodes is low.

The flat routing protocol is a dynamic routing protocol in which all sensor nodes in the WSN are
treated as equivalent and serve the same function [23]. Here, sensor nodes send their data to route
nodes at fixed locations according to a number of possible flat routing protocols, such as directed
diffusion (DD) or sensor protocol for information via negotiation (SPIN), and then only the route
nodes send their data to the sink node in the passing UAV directly [24–26]. This method has been
employed to good effect in a number of UAV-WSN applications. For example, João et al. [27] adopted
the flat routing protocol in a UAV-WSN system designed to monitor isolated vineyards separated
by substantial distances. Here, several sensor nodes and a single route node were deployed in each
vineyard based on the flat routing protocol. Hence, the UAV was required to fly over the route nodes
of the isolated vineyards only. While this method can greatly streamline the flight path of a UAV,
and thereby reduce its flight time and energy consumption, the sensor nodes of the WSN suffer from
unbalanced energy consumption during data transmission, owing to their varying distances from the
single route node. Moreover, the streamlined flight route of the UAV over the route nodes only reduces
the coverage of UAV imaging. Accordingly, the flat routing protocol is most suitable for conditions
where the sensor nodes are separable into several groups.

The clustering routing protocol is another dynamic network protocol where variable clusters of
sensor nodes only communicate with specifically selected head nodes [28]. Here, only the head nodes
of the presently configured clusters directly send their data to the sink node in a passing UAV, and the
changing position of the UAV is accommodated by reconfiguring the individual clusters of the sensor
nodes in the WSN and reselecting the respective head nodes after each data transmission in order to
avoid overtaxing the battery resources of the selected head nodes [29–33]. Research focused on the
development of UAV-WSN systems based on the clustering routing protocol has featured a number
of methods for configuring sensor node clusters, such as particle swarm optimization (POS) or the
weighted K-means clustering algorithm [34–38], and the head nodes are selected by other methods,
such as the low-energy adaptive clustering hierarchy (LEACH) protocol or the hybrid energy-efficient
distributed (HEED) clustering approach [39–41]. Finally, the optimal flight route of the UAV over
the head nodes is typically planned using a number of approaches, such as the traveling salesman
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problem (TSP) or simulated annealing (SA) [29,30,42–46]. This method has also been employed to good
effect in a number of UAV-WSN applications. For example, Huiru et al. [37] deployed a UAV-WSN
system based on the clustering routing protocol over a large area for the purpose of environmental
monitoring. The weighted K-means algorithm was employed for sensor node clustering, the LEACH
protocol was employed to select the head node of each cluster, and SA was employed to plan the flight
route. According to its operational mode, the clustering routing protocol has a strong capability for
balancing the energy consumption of sensor nodes in a WSN. However, like the flat routing protocol,
the streamlined flight route of the UAV, flying over the head nodes only, reduces the coverage of UAV
imaging. Moreover, the changing head node locations of the clustering routing protocol induces an
additional disadvantage, in that the images collected during different flight missions cannot be readily
compared due the corresponding changes in the flight route. Therefore, the clustering routing protocol
is best suited for conditions where the monitored area and the density of sensor nodes are both large.

The common disadvantage of the data transmission protocols discussed above for use in UAV-WSN
system applications is that they do not provide sufficient flexibility to UAVs for the collection of
remote sensing data due to the constraints associated with the collection of ground sensor data [47–50].
Presently, this necessitates that the UAV must fly over a study area twice, where one flight path is
planned for visiting each communication node in the WSN (i.e., the sensor nodes, route nodes, or
head nodes, depending on the protocol in use) and another is planned for collecting high-resolution
remote sensing data. However, the combined collection of both ground sensor and remote sensing
data over a single-flight path by an integrated UAV-WSN system would greatly reduce the flight
time and energy usage of UAVs during farmland quality monitoring operations, while also enabling
the simultaneous collection of high-resolution remote sensing data. Therefore, the facile and flexible
integration of ground sensor and high-resolution remote sensing data in a UAV-WSN system requires
the development of a new data transmission protocol specifically designed for this purpose. As such,
the designed protocol must accommodate the flexible routing of UAVs and adhere to the principles of
aerial photogrammetry while enabling the efficient collection of ground sensor data.

These issues are addressed in this work by developing an integrated UAV-WSN system based on a
newly proposed data transmission optimization routing protocol (DTORP). In the following, Section 2
presents the design of the improved UAV-WSN system. Section 3 presents the DTORP. Section 4 applies
Monte Carlo simulations to analyze the performance of our proposed system in comparison with the
performance obtained using a conventional system based on the LEACH protocol. Finally, conclusions
are presented in Section 5.

2. Improved UAV-WSN System Design

Like most existing UAV-WSN systems, the WSN of the improved UAV-WSN system proposed
in this study is composed of sensor modules, communication modules, control modules, and power
supply modules. Similarly, the UAV is an unmanned drone craft, carrying a camera or imaging
spectrometer to capture images or spectral data for the study area and a sink node for collecting ground
sensor data from the WSN.

As discussed, the working process of most existing UAV-WSN systems is to plan the flight path
of the UAV according to the positions of communication nodes in the WSN. However, the working
process of our proposed UAV-WSN system facilitates the simultaneous collection of ground sensor
and high-resolution remote sensing data by planning the UAV flight path independent of the WSN,
according to the principles of aerial photogrammetry, which ensures that the images or spectral data
can be used to produce an aerial view using standard remote sensing products, such as digital surface
models. Then, sensor node clustering is conducted for the WSN according to the selected UAV flight
path, and every sensor node is considered a potential communication node to ensure that the UAV
can connect to any node of a sensor node cluster as the UAV passes over a given region of the study
area from any direction. The individual nodes in the sensor node clusters are connected with the
sink node of the UAV by a newly proposed fast broadcast routing protocol (FBRP) that facilitates the
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collection of all available sensor node data by the UAV. Finally, the UAV applies the proposed DTORP
for conducting data transmission within each sensor node cluster.

The FBRP is similar to a flooding protocol in principle. The sink node in the UAV continuously
broadcasts a group order. The first sensor node in a cluster to receive the order from the sink node in
the UAV broadcasts the order to its neighboring sensor nodes. Then, each of the neighboring sensor
nodes broadcasts the order to their neighboring sensor nodes. This process continues until each sensor
node in the cluster has received the order. Once a sensor node receives the order from a neighboring
sensor node, it will ignore the order later transmitted from any other neighboring node. After receiving
the order, each sensor node transmits its data quantity, battery status, and neighboring nodes to the
sink node in the UAV along the same route by which the order arrived from the sink node to the
sensor node. In contrast to most existing data transmission protocols, which are designed to reduce
energy consumption or balance the consumption of battery energy, the proposed protocol is designed
to reduce the overall time required for collecting all available sensor node data.

3. Data Transmission Optimization Routing Protocol

The DTORP was developed to increase the volume of data transmission and decrease and balance
battery consumption in the improved UAV-WSN system. The working principle of the DTORP consists
of two primary components, namely, computing the efficient communication distance and scheduling
data transmission, where data transmission scheduling is separated into three separate algorithms for
promoting efficient scheduling over short, medium, and long distances.

3.1. Efficient Communication Length Computation

Each sensor node in a cluster of the WSN has an associated efficient communication range that
allows for the maximum transmission of ground data to the sink node of the UAV. Here, the efficient
communication range in the flat of height h is characterized by a radius, rh, which is based on the
known transmission power of the node and the altitude h of the UAV, which can be determined by the
spatial resolution of the remote sensing image acquired according to the camera parameters of the UAV.
However, the length of the UAV flight path through the efficient communication range of each sensor
node will be different because the planned flight path of the UAV is independent of the sensor node
locations. This length will determine the time period allowed for efficient communication between the
UAV and a sensor node according to the known speed, v, of the UAV, and therefore determines the
maximum quantity of data that can be efficiently transmitted from a sensor node to the UAV. Therefore,
the selection of the communication node within a cluster must be conducted to maximize the quantity
of data that can be efficiently transmitted. Accordingly, an efficient communication length algorithm
was developed to compute the maximum amount of data that can be transmitted to the UAV by each
sensor node in a cluster, based on the efficient communication length and v.

The DTORP uses turning points to segment a flight path into m straight lines. Hence, m = 1 for
a perfectly straight flight path. For n sensor nodes on the ground, the perpendicular distance from
each sensor node to each line segment i in the UAV flight path is denoted as di,j, where i = 1, 2, . . . ,
m and j = 1, 2, . . . , n. It is easily determined that a line segment, I, cannot pass through the efficient
communication area of sensor node j unless di,j < rh. Therefore, only line segments for which di,j < rh
are considered for further analysis.

The six conditions illustrated in Figure 1 were considered for further analysis based on rh and
the distances from sensor node j to the first and second turning points of line segment i, which are
herein denoted as Li−1,j and Li,j, respectively. Here, the six cases are divided according to whether
the two turning points of a line segment are on different sides of the sensor node or on the same side
and according to the values of Li–1,j and Li,j, relative to rh. We also must note that the line segments
in Figure 1 have all been rendered with horizontal orientations for simplicity, although these line
segments can travel in any arbitrary direction. Defining the length of line segment i in the efficient
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communication range of sensor node j as si,j, its value can be determined for the different and same
side cases as follows: If both Li−1,j and Li,j are greater than rh, then si,j is defined as follows:

si, j =

 2×
√

r2
h − d2

i, j

0

Di f f erent side
Same side

. (1)

If either Li−1,j or Li,j is greater than rh and the other is less than rh, then si,j is defined as follows:

si, j =


√

r2
h − d2

i, j +
√
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2
− d2

i, j√
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h − d2
i, j −

√
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Di f f erent side
Same side

(2)

If both of Li−1,j and Li,j are less than rh, then si,j is defined as follows:

si, j =


√

L2
1 − d2

i, j +
√

L2
2 − d2

i, j∣∣∣∣∣ √L2
1 − d2

i, j −
√

L2
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Same side
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Finally, the maximum amount of data, Qj, that can be efficiently transmitted to the UAV by sensor
node j can be calculated based on the data transmission rate, T, of the node as follows:

Q j =

T ×
m∑

i=1
si, j

v
. (4)
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3.2. Data Transmission Scheduling

The data transmission scheduling adopted in the DTORP was developed to address differences
between the maximum amount of data Q that can be efficiently transmitted to the UAV and the volume
of data storage in each sensor node by adjusting the characteristics of data transmission within a sensor
node cluster based on the neighboring node list of each sensor node. The algorithm seeks to obtain an
optimal tradeoff between the volume of data transmission for each sensor node and the entire cluster,
and the energy consumption of the WSN.

To this end, all sensor nodes in a cluster are divided into three node types, namely, either demand
nodes, support nodes, or route nodes. A demand node has a value of Q that is less than its volume
of data and must therefore transmit some of its data to other sensor nodes. A support node has
a value of Q that is greater than its volume of data, and therefore has the capacity to receive data
for demand nodes. Finally, route nodes have a value of Q that is equal to their volume of data and
assist in transmitting data from demand nodes to support nodes when a demand node is unable to
communicate directly with support nodes. The fundamental purpose of our algorithm is to facilitate
the identification of suitable support nodes for enabling the necessary sharing of data storage resources
among the available nodes in the WSN.

The proposed protocol further reduces energy consumption by combining the scheduling algorithm
and routing algorithm employed for conducting data transmission between the nodes in a cluster
over three distance scales, including short, medium, and long distances. These separate combined
scheduling and routing algorithms are presented in the following subsections.

3.2.1. Short Distance Scheduling: Unit Data Polling Scheduling and the Maximum Remaining Energy
Routing Algorithm

The conditions of short distance scheduling occur when the demand nodes require only one
jump or two for transmitting data to the support nodes. Here, single-jump transmission represents a
condition where the demand nodes can transmit data to the support nodes directly, while two-jump
transmission represents a condition where the demand nodes require another sensor node as a relay
for transmitting data to the support nodes.

The Algorithm 1 adopts unit data polling scheduling, which functions similarly to the round robin
scheduling employed in cloud computing technology. Here, one unit of data is assigned in each round
of the scheduling process to the support node lying within the shortest distance from each demand
node. The assignment process ends when all the data transmission tasks of the demand nodes have
been assigned or all the support nodes have no remaining data requiring transmission. The routes
from the demand nodes to the support nodes are selected to maximize the remaining energy of the
relay nodes.

In this case, all demand nodes have the same probability of distributing their data to each support
node lying within the shortest distance. The algorithm can maximize the volume of data transmission
and make full use of the support nodes to reduce the energy consumption of the data transmission
process between demand nodes and support nodes.

3.2.2. Medium Distance Scheduling: Maximum Data Greedy Scheduling and the Maximum
Remaining Energy Routing Algorithm

The conditions of medium distance scheduling occur when the demand nodes require three or
four jumps for transmitting data to the support nodes. As such, the data routes pass through two or
three different sensor nodes which serve as route nodes.
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Algorithm 1. Unit Data Polling Scheduling and the Maximum Remaining Energy Routing Algorithm.

1: Initialize: The complete list N of sensor nodes and the number of sensor nodes n, list D of demand nodes
and the number of demand nodes ndn, list S of support nodes and the number of support nodes nsn, and
the list of data sending DS and data receiving DR for all sensor nodes.

2: While ndn > 0, nsn > 0 and support nodes exist within a one- or two-jump distance from the demand
nodes, do

3: For each Di, i ∈ ndn and Sj, j ∈ nsn, do
4: If Di and Sj lie within a single jump distance, then
5: Record the route and accumulate DSi and DRj
6: Update the quantity of data transmitted for Di and Sj
7: End if
8: If Di and Sj lie within a two-jump distance, then
9: Find all routes from Di to Sj, and select the route Nk that has the greatest remaining energy
10: Record the route and accumulate DSi, DRj, DSk, and DRk
11: Update the quantity of data transmitted for Di and Sj
12: End if
13: End for
14: End while
15: Compute the energy consumption using DS and DR.
16: Update the remaining energy for all nodes.

The Algorithm 2 adopts maximum data greedy scheduling, which is a dynamic allocation
algorithm that is similar to the greedy algorithm. Here, the demand node having the highest data
transmission load assigns its data to the supply node within a distance of three or four jumps that
has the greatest additional data transmission capacity. The list of demand nodes is then reorganized
after each round of assignment according to the quantity of transmitted data from largest to smallest.
As was adopted for short distance scheduling, route planning is conducted over medium distances
using the maximum remaining energy routing algorithm as well.

The primary advantages of this algorithm are that it reduces the number of assignments to reduce
energy consumption during data transmission and that it balances the remaining energy of nodes over
the cluster.

Algorithm 2. Maximum Data Greedy Scheduling and the Maximum Remaining Energy Routing Algorithm.

1: Initialize: The complete list N of sensor nodes and the number of sensor nodes n, the list D of demand
nodes, the quantity of data DD that must be transmitted, and the number of demand nodes ndn, list S of
support nodes, the quantity of data SD available for support, and the number of support nodes nsn.

2: Sort D according to DD and S according to SD in descending order
3: If ndn > 0, nsn > 0 and support nodes exist within a three- or four-jump distance, then
4: For each Di, I ∈ ndn and Sj, j ∈ nsn, do
5: If Di and Sj lie within three or four jumps distance, then
6: If DDi ≥ SDj then
7: DDi = DDi − SDj
8: SDj = 0
9: Else
10: DDi = 0
11: SDj = SDj − DDi
12: End if
13: Find all routes from Di to Sj
14: Select the route having the greatest remaining energy
15: Record the route and the amount of data transmitted
16: End if
17: End for
18: End if



Sensors 2020, 20, 336 8 of 15

3.2.3. Long-Distance Scheduling: Maximum Data Greedy Scheduling and the Diffusion Route
Finding Algorithm

The conditions of long-distance scheduling occur when the demand nodes require more than four
route nodes for transmitting data to the support nodes. Under this condition, the demand nodes and
support nodes can be located anywhere within the cluster.

The Algorithm 3 also adopts maximum data greedy scheduling, except that the distance between
the demand node and the support node is neglected in the assignment process. It can reduce the
computational time of the whole algorithm and reduce the number of routes required for conducting
data transmission. Route planning is conducted over long distances using the diffusion route finding
algorithm to obtain the minimal number of jumps required for data transmission from the demand
nodes to the support nodes.

The primary advantages of this algorithm are that it requires a relatively short computational
time, reduces the number of routes required for conducting data transmission, and also reduces the
required number of jumps in each route. Thus, the energy consumption of the entire cluster can be
reduced during data transmission over long distances.

Algorithm 3. Maximum Data Greedy Scheduling and the Diffusion Route Finding Algorithm.

1: Initialize: The complete list N of sensor nodes and the number of sensor nodes n, the list D of demand
nodes, the quantity of data DD that must be transmitted, and the number of demand nodes ndn, the list S
of support nodes, the quantity of data transmission SD available for support, and the number of support
nodes nsn.

2: While ndn > 0 and nsn > 0, do
3: Sort D according to DD and S according to SD in descending order
4: If DDl ≥ SDl, then
5: DDl = DDl − SDl
6: SDl = 0
7: nsn = nsn − 1
8: Else
9: DDl = 0
10: SDl = SDl − DDl
11: ndn = ndn − 1
12: End if
13: While Sl has not been found, then
14: For all nodes lying one more jump away from Dl, do
15: If Sl is found in these nodes, then
16: Record the route
17: Break
18: End if
19: End for
20: End while
21: End while

4. Simulations

The performance of the improved UAV-WSN system and the DTORP proposed in this study was
assessed for a WSN composed of a single cluster using Monte Carlo simulations for different spatial
resolution images captured by a UAV based on comparisons with the performance obtained for a
conventional UAV-WSN system employing the LEACH protocol.

4.1. Simulation Setup

We used the C# programming language and Visual Studio 2017 to program an emulator for the
UAV-WSN system, using SQL Server 2017 to manage the emulator data.
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The area of the simulated region was 500 × 500 m. The number of sensor nodes in the cluster
was 10. The parameters of the sensor nodes and the sink node were based on those of the CC2530
(Texas Instruments, Inc., Dallas, TX, USA) second generation system-on-chip (SoC) solution for Low
Rate Wireless Personal Area Network (LR-WPAN), Zigbee, and RF4CE applications, which is one
of the most commonly employed communication modules in WSNs. To ensure accuracy, numerous
node parameters were considered, such as the communication rate, sending current, and receiving
current. Each sensor node was set to record four values as a single unit of data and save 12 units of
data every day. All the heights of the nodes were set to be 0 m. The aircraft and camera parameters
of the simulated UAV were based on the DJI Phantom 3 Advanced drone, which is a quadcopter
with a complementary metal oxide semiconductor (CMOS) sensor for vertical photograph capture.
The primary parameters include a maximum UAV speed of 16 m/s, a maximum flight time of about
23 min, and an image size of 4000 × 3000 pixels. The side overlap of the images captured by the drone
was 60%. The speed of the drone was held at a constant 8 m/s and the flight height of the drone was
held when in the planned flight path. The spatial resolutions of the images varied from 0.5 × 0.5 cm to
4 × 4 cm in increments of 0.5 cm. The altitude of the drone and the density of the flight lines were
determined according to the spatial resolutions of the images and other parameters. We conducted
1000 simulations with the 10 sensor nodes of the WSN randomly deployed in the simulated region for
each spatial image resolution considered. The sensor node deployment was constrained to ensure
that every sensor node was able to communicate with at least one other sensor node in the WSN.
In addition, the total coverage area of UAV imaging is always greater than the area of the farmland,
and various flight paths can be adopted to effectively image the selected region. Therefore, 10 flight
paths that appropriately imaged the farmland area were randomly configured within the simulations.
Accordingly, 1000 × 10 simulations were conducted for each spatial resolution considered. Three
performance indicators were adopted for evaluating system performance. These included the total
volume of data transmitted by the ground cluster of the WSN and the sink node of the UAV, the energy
efficiency, and the maximum revisit period. Here, the energy efficiency represents the efficiency of
energy utilization for each system, including the energy used for sending and receiving data to and
from ground sensor nodes and the sink node of the UAV, and was defined as the energy required for
the transmission of one kB of data. Accordingly, the efficiency of energy utilization of a UAV-WSN
system decreases as the energy efficiency value increases. The maximum revisit period was defined as
the maximum time (days) allowed for the UAV-WSN system to re-visit the sensor nodes on the ground
to collect a given amount of data. As such, this indicator refers to the frequency of revisits required to
collect the data from the sensor nodes, and therefore reflects the long-term monitoring efficiency of the
system. For a given amount of data, the frequency of revisits increases, and the allowed maximum
revisit period decreases as the volume of data transmitted by the system decreases.

4.2. Performance of the Improved UAV-WSN System

The relationship between the total volume of data transmitted by the cluster and the spatial
resolution of UAV images is given in Figure 2. We note that the total volume of the transmitted data
decreased as the spatial resolution of the UAV images became increasingly coarse for both systems.
This is because the altitude of the UAV and the distance between the neighboring flight paths increases
with increasing pixel size. This increases the distance between the sink node in the UAV and the sensor
nodes on the ground, which reduces the area of the effective communication range of the ground
sensors, and thereby decreases the time available for effective communication between the sink node
and the sensor nodes.

These results demonstrate that the total volume of data transmitted in the improved UAV-WSN
system using the DTORP was much greater than the existing UAV-WSN system using the LEACH
protocol. Here, the improved UAV-WSN system collected more data from the ground sensor node
cluster for each flight mission than the existing UAV-WSN system, specifically, by a factor of seven,
irrespective of the spatial image resolution. This is because the DTORP in the improved UAV-WSN
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system considers every sensor node in the WSN as a potential communication node that can transmit
data to the sink node of the UAV. Thus, the DTORP increases the maximum quantity of data that can
be transmitted by the nodes, because the sink node can receive data whenever the UAV flies over
the communication range of the overall sensor node cluster. Meanwhile, the LEACH protocol in
existing UAV-WSN systems uses only the head node in the cluster for data transmission. Therefore,
the improved UAV-WSN system can greatly increase the data transmission efficiency of the existing
UAV-WSN system.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 

 

system considers every sensor node in the WSN as a potential communication node that can transmit 
data to the sink node of the UAV. Thus, the DTORP increases the maximum quantity of data that can 
be transmitted by the nodes, because the sink node can receive data whenever the UAV flies over the 
communication range of the overall sensor node cluster. Meanwhile, the LEACH protocol in existing 
UAV-WSN systems uses only the head node in the cluster for data transmission. Therefore, the 
improved UAV-WSN system can greatly increase the data transmission efficiency of the existing 
UAV-WSN system. 

 
Figure 2. Total volume of data transmitted by the 10 sensor nodes in the wireless sensor network 
(WSN) clusters, with respect to the spatial image resolution of the unmanned aerial vehicle (UAV). 
LEACH: Low-energy adaptive clustering hierarchy. DTORP: Data transmission optimization routing 
protocol. 

The relationship between the energy efficiency of the UAV-WSN systems for data transmission 
and the spatial resolution of UAV images is given in Figure 3. We note that the energy efficiency 
values of the conventional UAV-WSN system employing the LEACH protocol indicate that the 
energy consumed by this system in data transmission was very stable. This is because the LEACH 
protocol adopts a uniform scheduling rule for transmitting data. However, its energy efficiency at 
each spatial image resolution was considerably less than that obtained for the improved UAV-WSN 
system employing the proposed DTORP. We further note that the energy consumption of the 
improved UAV-WSN system was also quite stable, at least until the image pixel size was greater than 
2 × 2 cm, and that the energy consumption of the system generally increased with increasing pixel 
size thereafter. This is the result of applying three different scheduling protocols in the DTORP for 
small, medium, and large distances between demand nodes and support nodes. However, the lower 
energy consumption confirms the benefits of this process as the spatial image resolution becomes 
increasingly coarse. 

These results demonstrate that the energy efficiency value of data transmission obtained using 
the DTORP was much smaller than that obtained using the LEACH protocol. Here, the DTORP 
consumed less than one-fifth of the energy consumed by the conventional LEACH protocol when the 
pixel size of the image was not more than 3.5 × 3.5 cm. Moreover, the energy consumption of data 
transmission obtained by the DTORP for a spatial image resolution of 4 × 4 cm remains two-fifths of 
that consumed by the LEACH protocol. The benefits of the three-step data scheduling process 
employed by the DTORP for reducing energy consumption during data transmission are particularly 
evident as the spatial image resolution becomes increasingly coarse and the data transmission load 
increases. Here, a coarse spatial image resolution is obtained when the UAV is at a high altitude, and 
a relatively large number of sensor nodes must transmit their data to other sensor nodes to 

Figure 2. Total volume of data transmitted by the 10 sensor nodes in the wireless sensor network (WSN)
clusters, with respect to the spatial image resolution of the unmanned aerial vehicle (UAV). LEACH:
Low-energy adaptive clustering hierarchy. DTORP: Data transmission optimization routing protocol.

The relationship between the energy efficiency of the UAV-WSN systems for data transmission and
the spatial resolution of UAV images is given in Figure 3. We note that the energy efficiency values of
the conventional UAV-WSN system employing the LEACH protocol indicate that the energy consumed
by this system in data transmission was very stable. This is because the LEACH protocol adopts a
uniform scheduling rule for transmitting data. However, its energy efficiency at each spatial image
resolution was considerably less than that obtained for the improved UAV-WSN system employing the
proposed DTORP. We further note that the energy consumption of the improved UAV-WSN system
was also quite stable, at least until the image pixel size was greater than 2 × 2 cm, and that the energy
consumption of the system generally increased with increasing pixel size thereafter. This is the result
of applying three different scheduling protocols in the DTORP for small, medium, and large distances
between demand nodes and support nodes. However, the lower energy consumption confirms the
benefits of this process as the spatial image resolution becomes increasingly coarse.

These results demonstrate that the energy efficiency value of data transmission obtained using the
DTORP was much smaller than that obtained using the LEACH protocol. Here, the DTORP consumed
less than one-fifth of the energy consumed by the conventional LEACH protocol when the pixel size of
the image was not more than 3.5 × 3.5 cm. Moreover, the energy consumption of data transmission
obtained by the DTORP for a spatial image resolution of 4 × 4 cm remains two-fifths of that consumed
by the LEACH protocol. The benefits of the three-step data scheduling process employed by the
DTORP for reducing energy consumption during data transmission are particularly evident as the
spatial image resolution becomes increasingly coarse and the data transmission load increases. Here,
a coarse spatial image resolution is obtained when the UAV is at a high altitude, and a relatively large
number of sensor nodes must transmit their data to other sensor nodes to accommodate the relatively
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small effective communication ranges involved. Accordingly, all the steps of the DTORP can be fully
applied to optimize the data transmission process and reduce the corresponding energy consumption.
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The relationship between the maximum revisit period of the UAV-WSN systems and the spatial
resolution of UAV images is given in Figure 4. We note that the maximum revisit period of the
proposed UAV-WSN system was, in fact, greater than one year for pixel sizes less than 2.5 × 2.5 cm,
and it decreased continuously as the spatial resolution became increasingly coarse. Here, in the
Figure 4, the max value of the y-axis was limited to 365 days to clearly illustrate this decreasing trend.
The conventional UAV-WSN system exhibited a similar decreasing trend for the maximum revisit
period, except with much smaller values than the proposed system, which is mainly the result of
the much smaller total volume of transmitted data (Figure 2). This indicates that the conventional
UAV-WSN system requires a much higher frequency of revisits to collect the data from the sensor
nodes than the proposed system for a given study area and spatial image resolution.
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Overall, the one-year maximum revisit period obtained by the improved system when the spatial
image resolution is finer than 2 × 2 cm indicates that this consideration is not a significant issue when
revisiting is scheduled for the improved UAV-WSN system.
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The above results obtained for the three performance indicators demonstrate that the DTORP can
greatly improve the data transmission efficiency and reduce the energy consumption of the improved
UAV-WSN system relative to those of a conventional UAV-WSN system employing the widely used
LEACH protocol. These results, when taken together, demonstrate that the improved UAV-WSN
system can be expected have a longer lifetime and be adaptive for long-term monitoring applications.

4.3. Discussion

The improved UAV-WSN system employing the DTORP proposed in this study has demonstrated
its potential for using sensor nodes on the ground to monitor changes in the environment directly
at sampled locations while simultaneously using drones to monitor the entire region. As such, in
addition to farmland quality monitoring, the proposed system is equally applicable to many different
activities that seek to utilize UAV-based remote sensing images and WSN-based ground sensing for
monitoring data simultaneously, such as environmental monitoring, pollution control, flood condition
monitoring, and emergency response. The combination of the time-varying characteristics obtained
from long-term WSN sensing data and the spatially-varying characteristics obtained from high spatial
resolution remote sensing images can lead to the development of accurate spatiotemporal models for
the variables of interest in these applications.

5. Conclusions

This study addressed the shortcomings of conventional UAV-WSN systems for conducting
long-term farmland quality monitoring by designing a monitoring system that facilitates the integrated
and simultaneous collection of high-resolution remote sensing and long-term ground sensing data
based on a newly proposed DTORP. In contrast to existing UAV-WSN systems that plan UAV flight
paths according to the locations of communication nodes in the WSN, the proposed system conducts
flight planning independently of the node positions by considering every sensor node in a cluster to be a
potential communication node that can transmit data to the sink node of the UAV. The proposed DTORP
selects the communication node within a cluster of the WSN to maximize the quantity of data that
can be efficiently transmitted based on an efficient communication length algorithm. In addition, the
proposed protocol combines the scheduling algorithm and routing algorithm employed for conducting
data transmission between the nodes in a cluster over three distance scales, including small, medium,
and long distances, in order to reduce the energy consumption incurred during the data transmission
process. The performance of the improved UAV-WSN system employing the DTORP was assessed for a
WSN composed of a single cluster using Monte Carlo simulations for different spatial resolution images
captured by a UAV, based on comparisons with the performance obtained for a conventional UAV-WSN
system employing the LEACH protocol. The simulation results demonstrated that (1) the proposed
system had better overall performance for all three performance indicators than the conventional
system, (2) that the DTORP facilitated the transmission of a much greater total volume of data than the
LEACH protocol, (3) that the DTORP utilized sensor node energy for data transmission with much
greater efficiency than the LEACH protocol, (4) and that the DTORP provided a much larger maximum
revisit period than the LEACH protocol. While the proposed UAV-WSN system has achieved several
improvements compared with conventional UAV-WSN systems, further studies should be conducted.
In the future, we will conduct more research on improved UAV-WSN systems based on DTORP to
increase the volume of transmitted data and reduce energy consumption and apply it for the monitoring
of the dynamics of farmland quality using a mobile farmland quality monitoring laboratory. Future
efforts could be directed in various directions. Firstly, a sleep strategy for sensor node clusters could be
introduced to further reduce energy consumption. Secondly, a redundant backup or storage algorithm
must be introduced, because sensor nodes may breakdown and data may be lost prior to revisitation.
Finally, we note that actual UAV flight paths do not always conform to the straight lines formulated in
the planning stage because of numerous factors, such as strong winds and errors in the GPS coordinates
of the drone. Also, the packet losses of the WSN are not 0%, because of the influence of various
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factors such as vegetation and buildings. All these influencing factors are regarded as uncertainties
that should be considered. To this end, an adaptive UAV flight speed adjustment method should
be developed to ensure that the UAV can collect all pertinent data under any condition encountered
during applications. Furthermore, we will investigate the benefits of adopting different types of UAVs
and different communication methods, such as Wi-Fi and Long Range (LoRa) in different applications.
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