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Abstract: Vehicular ad-hoc Networks (VANETs) are recognized as a cornerstone of Intelligent
Transportation Systems (ITS) to enable the exchange of information among vehicles, which is
crucial for the provision of safety-related and entertainment applications. However, practical
useful realizations of VANETs are still missing, mainly because of the elevated costs and the lack of
a final standardization. In this regard, the feasibility of using smartphones as nodes in VANETs has
been explored focusing on small-scale deployments to mainly validate single-hop communication
capabilities. Moreover, existing smartphone-based platforms do not consider two crucial requirements
in VANETs, namely, multi-hop communication and the provision of security services in the message
dissemination process. Furthermore, the problem of securing message dissemination in VANETs
is generally analyzed through simulation tools, while performance evaluations on smart devices
have not been reported so far. In this paper, we aim to fill this void by designing a fully on-device
platform for secure multi-hop message dissemination. We address the multi-hop nature of message
dissemination in VANETs by integrating a location-based protocol that enables the selection of
relay nodes and retransmissions criteria. As a main distinction, the platform incorporates a novel
certificateless cryptographic scheme for ensuring data integrity and nodes’ authentication, suitable
for VANETs lacking of infrastructure.

Keywords: dissemination protocols; global positioning system (GPS); mobile platform; security;
vehicular ad-hoc

1. Introduction

As population densities increase in large cities around the world, the need of novel vehicular
traffic management solutions for assuring safety while maintaining congestion at acceptable levels
has become more evident. Intelligent transportation systems (ITS) are expected to fill this need,
relieving congestion and improving safety [1]. This is achieved by integrating advanced wireless
and wireline communication, sensor and processing technologies into transportation systems, and
into vehicles themselves, in order to develop a wide range of applications (e.g., crash prevention and
safety, freeway management, etc.). Such in-vehicle communication and computation capabilities are
expected to enable vehicles to autonomously cooperate among themselves to share information about
their surrounding [2]. Specifically, vehicular ad-hoc networks (VANETs) are seen as the appropriate
communication technology to wirelessly disseminate information among moving entities. This is
carried out by making use of the wireless communication channel as vehicles will be equipped with
an on-board unit (OBU) that performs transmissions/receptions to/from nodes in a given zone of
relevance. Depending on the communication paradigm, a vehicle can communicate to another vehicle,
to a road side unit, or to a pedestrian handling a portable device, assuming a vehicle-to-vehicle (V2V),
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vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), respectively. In this regard, data exchange
through V2V links is an attractive approach to disseminate safety information among vehicles by
means of multi-hop message dissemination protocols that operate on the network layer. In fact,
this infrastructure-less communication paradigm is expected to address around 80% of precrash
scenarios involving unimpaired drivers [3].

In this context, VANETs have been attracting attention in wireless communication and automotive
industries in the last decade. In order to be practical and due to the high mobility of vehicles and
the scarce deployment of VANETs’ infrastructure, WSNs (Wireless Sensor Networks) have been
integrated in VANETs to form a hybrid vehicular environment which ensure a permanent connectivity
between vehicles and favor timely detection of dangerous road conditions. Under this Hybrid Sensor
and Vehicular Networks (HSVNs) [4], sensor nodes are deployed along the two sides of a road to
assist VANET and provide better performance. Despite these trends and advances, VANETs market
penetration has been low due to factors like implementation costs or user distrust, as has happened
with other technologies like automated vehicles [5]. Such a low adoption rate of VANETs significantly
contrasts with disruptive technologies like smartphones. In what follows, we analyze the recent trends
and motivation of using smart devices in VANET scenarios to enable inter-vehicle communications,
which is the main focus of this work.

1.1. Smartphones in VANETs

Nowadays, smart devices constitute the cornerstone of context-aware sensing applications
on domains like m-health, smart-home, transportation, location-based services, etc. [6]. In such
applications, smart devices could perform data sensing, pre-processing, feature extraction, classification,
and processing. In this regard, the adoption of mobile edge computing solutions aims to take advantage of
the increasing computing power of smartphones. While this paradigm shift is promoting the deployment
of on-device processing capabilities in real-world mobile sensing systems, it remains a research challenge
the efficient use of energy in constrained devices like smartphones. In vehicular networking, there are
strong arguments that support the idea that the smartphone can become the platform enabling a fast
realization of safety-related applications. First, inter-vehicular communications strongly depend on the
successful development and market penetration of low-cost OBUs aligned to a wireless communication
standard (In VANETs, the IEEE 802.11p standard is the most prominent option to enable inter-vehicular
message dissemination). While the low-cost objective can be achieved by adopting off-the-shelf consumer
electronics hardware and open-source software [7], we argue that backward compatibility (with old
vehicles) should also be guaranteed. Hence, we believe that the adoption and the spread in large scale
scenarios of OBUs is not expected to take place in the near future. Second, instead of the design of
a fully specific device like OBUs, it is expected that smartphones play a key role in future vehicular
networking as they provide a complete set of embedded sensors (GPS, accelerometer, etc.), computation
and communication capabilities that enable and favor the deployment of VANET applications. Third,
the adoption of smartphone-based platforms are likely to boost the development of vehicular applications
as these devices are already widely used by the population [8,9]. This would allow to quickly realize safety
applications in VANETs by exploiting their already large commercial location-based and mobility-based
applications (e.g., Google Maps, WAZE, etc.) [10].

Due to this remarkable trend, the interest on the integration of smartphones into vehicles
is gaining momentum in the academia, car manufacturers, phone companies, and infotainment
system manufacturers, among others. For instance, smartphone-centric car connectivity solutions
enhanced with V2I communications are the focus of the Car Connectivity Consortium (CCC). Recently,
different research efforts have proposed the design of smartphone-based platforms to handle message
dissemination in VANETs. On the one hand, the few existing proposals have been mainly focused
on evaluating the feasibility of using smart devices to share information between two vehicles
(i.e., single-hop V2V communication). On the other hand, however, the design of such mobile platforms
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do not consider two crucial aspects: a) the provision of security services in the dissemination process,
and b) the feasibility of achieving the multi-hop dissemination process.

1.2. Related Work

The adoption of smartphones for the design of safety-related applications in VANETs is quite
recent. Apart from initial efforts aimed at demonstrating the feasibility of using smartphones for
vehicular networking purposes in simple communication scenarios [10–13], herein we concentrate on
mobile platforms that have been proposed to perform experimental evaluation of message exchange
through V2I and/or V2V communication paradigms in VANETs.

In [14], the authors deal with the design of a custom on-board unit based on a Raspberry Pi
hardware module that manages 3G and Wi-Fi connections to enable applications running on users’
smartphones to select a network communication interface. In particular, applications interact with the
hardware module through a REST API (application programming interface). The proposed platform is
validated using an application to stream video from a vehicle to another overtaking vehicle, and mainly
concentrating on transmission delay and throughput in the experimental scenarios. A similar approach
was followed in [15], where an Arduino hardware collects vehicle statistics (e.g., engine’s temperature
and revolutions, location) which are then processed and transmitted by a smartphone to a remote
storage entity via Wi-Fi or 3G wireless interfaces for traffic analysis purposes. Notice that both ref. [14]
and [15] mainly concentrate on data acquisition and processing from either a specific application or
sensors attached to the custom hardware. Also, both proposals use the smartphone to communicate
with an infrastructure and they do not provide any form of security mechanisms for such message
exchange in the considered V2V and V2I communications, respectively. In [16], location information
is collected from the native GPS sensor on a smartphone and disseminated in the vehicular network
using Wi-Fi Direct. That approach follows a broadcast approach for message exchange between
two surrounding entities (single-hop communication) but it does not support multi-hop message
dissemination, which is mandatory to provide larger coverage area for disseminating safety-related
information. Additionally, mechanisms for authentication and integrity validation are not supported.

A platform supporting a parking space finder application is presented in [17], based on an
architecture for mobile devices and a web site for the registration of users and advertisements.
This platform considers security aspects like the anonymity for users privacy by means of
a zero-knowledge proof mechanism for granting nodes authentication, as well as an aggregation
technique for signing alert messages in order to prevent sending false information. The experiments
with this platform focus on traffic congestion and parking spaces detection, as well as parked vehicle
finding and advertisement display. However, details about communications or security metrics are not
specified, leaving the open issue of quantifying the overhead in time and space of the security scheme.

Lastly, the work in [18] proposes a VANET-based dissemination system for emergency vehicles.
Among the defined design requirements, authors considered dissemination and security issues. This later
one is addressed with a public key infrastructure (PKI)-based authentication mechanism, where digital
signatures and their corresponding public key certificates are attached to each transmitted message.
A prototype is deployed using personal computers on emergency vehicles, which is mainly validated in
terms of how the system operates in real experiments. However, the impact of using the security service,
namely certificates validation in PKI, on the dissemination process is not evaluated. Hence, it is not
possible to determine the feasibility for deploying PKI approaches on mobile platforms for VANETs.

Table 1 summarizes the most representative approaches proposed in the literature for the
deployment of smartphone-based VANETs and the extent to which security and multi-hop message
dissemination has been considered. On the one hand, we can note from Table 1 that multi-hop message
dissemination has not been widely considered in the designs. However, since the transmission range
of nodes in a VANET is quite limited, multi-hop message dissemination protocols are essential to
extend coverage area and thus, to increase the amount of informed vehicles. In such protocols, it is
decided whether or not a message should be retransmitted based on a given dissemination criterion (e.g.,
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transmitted power, distance). Notice that inefficient message dissemination approaches could translate
into a reduced number of informed vehicles about a given traffic situation if messages are lost or delayed.

Table 1. Smartphone-based vehicular ad-hoc network (VANET) platforms in the literature.

Year Platform Purpose Disseminationn Communication Security Service

2017 [19] Smartphones (Android) Traffic event-based notifications V2I (single-hop) 3G Authentication
2016 [8] Smartphones, tablets (Android) Periodic message exchange V2V (single-hop) Wi-Fi None
2016 [20] Smartphones (Android) Periodic message exchange V2V (single-hop) Wi-Fi None
2016 [14] Smartphones (Android), Raspberry Pi Peer-to-peer video transmission V2V (single-hop) Wi-Fi None
2013 [17] Smartphones (Android) Traffic event-based notifications V2V (single-hop) Wi-Fi Authentication
2012 [15] Smartphones (Android), Arduino Traffic management V2I (single-hop) 3G None
2012 [16] Smartphone (Android) Periodic message exchange V2V (multi-hop) Wi-Fi Direct None
2009 [18] Laptops Emergency unit warning messages V2V, V2I (multi-hop) Wi-Fi Authentication
This work Smartphones (Android) Periodic message exchange V2V (multi-hop) Wi-Fi Authentication, integrity

On the other hand, the mechanism for granting the integrity of the transmitted messages and
the authenticity of nodes has been set as essential for proper operation in such an environment.
According to Table 1, security mechanisms for authentication and integrity have been covered mainly
through a PKI-based approach, which supposes the existence of a complex setting along the road to
support digital signatures by means of digital certificates. However, the PKI approach is far from
realistic in practical deployments of VANETs [21]. The most practical realization of VANETs in the
short-term is based on inter-vehicle (V2V) communication enabled by smartphones for example,
where infrastructure is generally not available and the existence of a PKI could not be guaranteed.
As a more feasible alternative, digital signatures to guarantee authentication and integrity of messages
in V2V could be better approached with a certificateless signature scheme (CSS) well suited for
infrastructure-less VANET scenarios.

1.3. Contributions

Taking into account the aforementioned context, this work provides the following contributions.

• A methodological approach for the design of a mobile platform for enabling the provision of
a novel certificateless security approach in a smartphone-based VANETs. In particular, the
platform is intended to disseminate sensitive information and as such authentication and integrity
checks are mandatory in our design.

• The construction in the asymmetric setting of a Certificateless Signature Scheme (ACSS), relying
on pairing-based cryptographic signatures, that ensures authenticity of nodes and integrity of
exchanged data among smartphones in VANETs. We present a novel construction of digital signing
algorithm based on pairing-based cryptography under the asymmetric setting. The asymmetric
property allows practical implementations for security levels compliant with current standards
(e.g., 128-bits or greater).

• For the first time, a proof-of-concept, deployment of the ACSS scheme in a smartphone-based
platform in VANETs is presented in the literature. We validate our platform over small-scale
deployments, using as a baseline a multi-hop message dissemination protocol. Nevertheless,
the platform can be used to deploy other message dissemination protocol as required.

The rest of this paper is organized as follows. Section 2 presents an overview of security aspects
related to VANETs. In Section 3 the design and main building blocks of the proposed platform are
described. Section 4 presents the proposed certificateless digital signing approach. In Section 5 the
implementation process of the platform in Android-powered devices is detailed. Then, Section 6
presents the methodology and results of the experiments to validate the proposed smartphone-based
platform. Finally, Section 7 concludes this work.

2. Security in Vehicular Networking

Security services in VANETs are of paramount importance, mainly because of the inherent nature
of the communication channel where any malicious user could manipulate a given message leading to



Sensors 2020, 20, 330 5 of 21

a malfunction of the network or to compromising the operation of safety-related applications [22,23].
Notice that the manipulation of life-critical information (e.g., from satefy-applications) in VANETs
could lead to life-threatening situations. From a message-centered security viewpoint, attacks in
VANETs by a malicious node (internal or external) include: record messages and later injection
(Replay), message modification before forwarding (Change), message destruction after reception
(Delete), and creation of fake messages and their injection in the network (Manufacture). The attacker
could mislead other vehicles or impersonate road side units (RSU) to spoof false service advertisements
or safety hazard warnings. Thus, securing the dissemination process in VANETs is crucial [22].

Most of the known attacks in VANETs are likely to be executed by an insider attacker, a malicious
node that does not follow the protocol or that impersonates legitimate nodes, and transmitting
false information to contaminate the communication network [24,25]. To overcome common attacks,
the IEEE 1609.2 working group (https://standards.ieee.org/findstds/standard/1609.2-2016.html)
recommends to implement digital signatures by means of PKI and particularly, Elliptic Curve
Cryptography [26] to ensure authentication and integrity of the data interchanged by vehicles. The PKI
is responsible for creating, distributing, and managing the public/private keys of vehicles in the
VANET by means of digital certificates. A signed message will contain a signature that can only be
generated by some private key that the sending node (vehicle) possesses, while allowing any node
receiving the signed message to be able to verify the signature with public key included in the message
(mathematically related to the secret key).

It is worth noting, however, that the PKI approach is far from realistic in practical deployments of
VANETs due to the high cost implied to install RSU [21]. Therefore, digital signatures without relying
on a PKI are needed to guarantee authentication and integrity of messages in V2V scenarios. In this
regard, a CSS approach for VANETs security in V2V communications is proposed in [27], assuming
that road-side infrastructures are not available. The CSS realization in that work avoid the inherent
key escrow problem of identity-based signature. Furthermore, the CSS scheme [27] considers the
interaction of vehicles equipped with OBUs and RSUs, as well as a Trusted Authority (TA). The vehicles
participating in the scheme must be enrolled and the cryptographic material (keys) is generated and
distributed by the TA. Once the scheme is prepared and vehicles adhere to a VANET, each one is able
to generate the signature for a warning message previous to its transmission and to verify the signature
of a received message. This way, nodes in the VANET can guarantee that the exchanged messages
have not been modified and hence to legitimate the source. However, the CSS approach, as presented
in [27], is defined over cryptographic pairings limited to the symmetric setting. Symmetric pairings
have the disadvantage that they are only viable for practical implementations using obsolete security
levels (for example, 80-bit) [28].

3. Smartphone-Based Platform Design

Taking into consideration the previous analysis, we present a smartphone-based platform based
on two main pillars, namely security provision and multi-hop message dissemination for V2V scenarios.
Unlike existing work (see Table 1), we consider these two aspects pivotal to develop an integrated
platform to allow the design, deployment, and evaluation of secure message dissemination approaches
in V2V experimental scenarios.

3.1. Platform Requirements

In this work, the smartphone-based platform design is driven by the following functional and
non-functional requirements (FR and NFR, respectively).

• FR1: Message dissemination. The platform must behave either as a source node that starts
the transmission of a message or as a relay that rebroadcasts a received message whenever
a dissemination criterion is fulfilled.

https://standards.ieee.org/findstds/standard/1609.2-2016.html


Sensors 2020, 20, 330 6 of 21

• FR2: Security. The platform must provide authentication and integrity security services in
a per-packet basis.

• FR3: Location-awareness. The platform must retrieve the current location of the device by means
of a native location provider or any Bluetooth-enabled GPS device. While the first option is
generally adopted, because the convenience and ease of use, the second alternative can be helpful
in experiments aimed to contrast precision of location information from different providers.
It should also be able to adjust intervals for location requests, which could be useful for deploying
energy- and context-aware oriented mechanisms in VANET mechanisms and applications.

• FR4: Performance metrics. The platform must monitor and store relevant metrics related to
message dissemination (e.g., delay, losses) and security services (e.g., execution time, memory
usage). The collected metrics should be stored locally, and global statistics should be accessible by
the user.

• FR5: Packet management. The platform must support a flexible packet management mechanism
to enable the definition of application specific packet formats.

• NFR1: Passiveness. The user should not be aware of the underlying operation mechanisms
on the smartphone-based platform for secure message dissemination. Moreover, minimal user
involvement should be required for the configuration of basic elements.

• NFR2: Modifiability. The platform components should be organized to ease the understanding
of its functional principles and interaction among components, allowing the integration of
new functionalities.

• NFR3: Energy. The platform should provide the means for deploying mechanisms to drive
a trade-off between energy efficiency and data transmission.

• NFR4: Network management. A given node running the platform should create, discover, and
connect to the VANET without the intervention of any managing entity or infrastructure.

3.2. Platform Modules Definition

Figure 1 illustrates the modules of the proposed smartphone-based platform for secure message
dissemination in VANETs. The smartphone-based platform provides a user space layer to configure
the core security and dissemination parameters being taken into account in a given experimental V2V
scenario. More specifically, such settings are performed to configure the GPS provider for location
updates, to select the statistics of interest to be recorded, and to define security parameters. A practical
interpretation of the smartphone-based platform operation is as follows.

• Once the initial parameters have been introduced, the platform firstly creates the required sockets
for message transmission and reception. This is because in our design a smart device deploying
the platform could behave either as a source or as a relay node. A source node is the one that
starts broadcasting a warning message to inform about a given event inferred from its sensed
context. A relay node is expected to extend coverage transmission by rebroadcasting an incoming
message. Although in this case no additional payload would be added to the received message,
the node would require its contextual information (e.g., location, power, etc.) to determine if the
considered dissemination criterion is fulfilled.

• At the application framework layer, the packet management module provides the functionality
of packet generation according to a predefined packet format as illustrated in Table 2. Although
the packet format could be easily modified to prevent large overhead amounts, the packet
management component could also support power-aware strategies to drive trade-off between
transmission packet delay and overhead-payload ratio. Each generated packet triggers an event
at the storage module that records outgoing/ingoing packets processed by the platform.

• The wireless interface manager location at the application framework layer aims to control the
interaction with the location providers. Unlike existing works that mainly rely on native GPS
receiver, depending on energy constraints and location accuracy, our platform is designed to
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acquire location data from a native GPS sensor or an external GPS logger device accessed via
Bluetooth. Regardless of the location provider, when the node deploying the platform needs to
disseminate a message, at the TX module the location information is appended on each generated
packet. On the contrary, when a message is received (RX module) it is verified and registered and
then it is passed to the dissemination protocol module. This latter one decides whether the received
message should be retransmitted to the next hop or not, taking into account a distance criterion.

• Upon the transmission or reception of a packet, a record of its payload is saved in a file.
The information stored in the file conforms the Packet fields registry, which is maintained in the
main storage directory of the device. The file (i.e., registry) contains the data of each packet that is
part of an existing communication. A text string containing the payload’s fields is obtained from
the object modeling the packet. The resulting file is available for statistical analysis offline at the
end of the test trials.

User

Configuration 
interface

Transmission Reception

Packet 
management

Creation of Tx/Rx sockets

Packet 
reconstruction

Packet 
verification*

Packet fields 
registration

RX

Separation of 
accumulated 
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Native/external 
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Peer-to-peer 
(P2P) network 
management
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Location 
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Packet 
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enabling

User interaction with mobile app

Additional features selection

Native GPS

Location acquisition

Figure 1. Building blocks of the smartphone-based platform for secure message dissemination.
The platform is intended to support both the transmission (TX) and reception (RX) roles to enable
a given node behave as source for packet generation, relay for disseminating messages, or as destination
node. Specific functions (marked with *) at the TX/RX modules are optional, and should be enabled at
the user space (i.e., configuration interface).

Table 2. Fields of the generated packets in the platform.

Field Name Data Type Size (bytes)

Packet identifier String 7
Message type Char 2
MAC address String 17
IP address Byte 4
Time stamp String 23
Latitude Double 8
Longitude Double 8
Speed Double 8
Security flag Char 2



Sensors 2020, 20, 330 8 of 21

3.3. Security Services in the VANET Platform

The smartphone-based VANET proposed in this work uses digital signatures to guarantee the
authentication and integrity services in message dissemination. As argued before, our digital signature
scheme does not follow the IEEE 1609.2 recommendation. The main reason is that the IEEE 1609.2
standard assumes the existence of an infrastructure for deploying a PKI-based security solution for
secure message exchange in VANETs [29–31]. In this context, we demonstrate that digital signatures
without relying on a PKI are possible to deploy in a smartphone-based solution as the one proposed
in our work. We follow that approach and extend the CSS scheme proposed by Malip et al. [27] to
construct a novel certificateless scheme, referred to as ACSS (to highlight the asymmetric property),
which is intended to provide integrity and authentication services for messages disseminated in the
smartphone-based VANET proposed in this paper. The proposed ACSS is based on the generation of
the necessary keys and related material for the signature and verification operations in an offline stage.
Global parameters are generated by a Trusted Authority or TA (car manufacturer, vehicle registration
office, etc.). Later, in an online stage, the scheme allows signature and verification operations over the
messages exchanged by the nodes (vehicles) of a VANET. Details of the novel ACSS scheme are given
in the next section.

4. Asymmetric Certificateless Signature Scheme (ACSS)

In this section we firstly provide background information regarding certificateless public key
cryptography, focusing on the existing CSS scheme [27]. Then, we detail the proposed ACSS to provide
integrity and authentication secure message dissemination in the proposed smartphone-based VANET.
Specifically, we provide details of a new construction for certificateless digital signatures based on the
CSS scheme reported in [27], but realized in the asymmetric setting, which enables using different
(higher) security levels and explore performance-security tradeoffs.

4.1. Preliminaries

Certificateless public key cryptography [32] is a model intermediate between traditional PKI and
Identity-based cryptography (IBE) [33], where an identity public value (vehicle identification number,
license plate number, etc.) serves as public key. In this sense, Figure 2 illustrates the CSS scheme [27]
and the interaction among its actors.

:TA

CSSenrolTA()

:Vehicle

CSSenrolV()

CSSsign()

:Vehicle

CSSverify()

Setup
CSSparams
CSSenrol()

Partial private key

Signed warning message

Aware of a
traffic situation

Unaware of a
traffic situation

Online
phase

Offline
phase

Aware of a
traffic situation

Figure 2. Sequence diagram of the certificateless signature scheme (CSS) scheme.

The CSS scheme operation consists of two phases. The first one (offline) involves the TA running
the setup() procedure for a security level k. This procedure generates the system parameters (params)
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and partial private keys, which are distributed offline to all the nodes (vehicles). A vehicle must execute
the enroll() procedure with the TA, sending public values. With this information, the TA executes a local
computation (enrollTA()) in order to generate and send (securely) to the vehicle a private key. With this
information, the vehicle executes a local computation (enrollv()) to generate its final credentials and
material for secure communication in the VANET.

The second phase occurs during message exchange in the VANET (online). With the material
generated in the offline phase, vehicles will be able to sign (sign()) and verify (verify()) the outgoing or
incoming messages, respectively.

The original CSS scheme [27] is constructed over symmetric bilinear pairings defined over groups.
Pairings computation constitutes the critical operation that strongly affects both the efficiency and
security of all pairing-based cryptographic schemes [34], including the CSS scheme. Let G and GT be
cyclic groups of prime order r [35]. A bilinear symmetric pairing or bilinear mapping is an efficient
computable function e : G×G→ GT , such that

1. ∀a, b ∈ Zr, e(ga, gb) = e(g, g)ab, with g a generator in G.
2. e(g, g) 6= 1

In a group G with generator g and order r, y = ga means to accumulatively apply the group
operation to g, a− 1 times, having y ∈ G again, for any positive integer a. From this, the discrete
logarithm problem states that given g and ga, for enough large order r, it is infeasible to compute a [35].
Under this problem, a public key cryptosystem can be built, using {a, ga} as a key pair for encryption
or digital signatures: a is the private key and ga is the public one.

Although the CSS scheme as proposed in [27] is recommended for VANETs security, its definition
in the symmetric setting limits its applicability in real scenarios such as smartphones and other smart
devices. According to practical realizations of pairing-based encryption [28,36,37], the symmetric
pairing is realized by using type A elliptic curves, only efficient for obsolete security levels (80-bit
security level or less) according to standards such as NIST [38]. Currently, the recommended security
levels are for 112, 128, 192, or 256 bits.

A way to use increased security levels in pairing-based cryptography is to use the asymmetric
setting, usually realized with type F elliptic curves. In [28], the asymmetric setting for pairings was
proposed and evaluated in the context of data security in cloud storage. The results achieved showed
the efficiency of using asymmetric pairings, in terms of higher security and lower overhead in running
time and memory requirements. Thus, we re-define the original CSS scheme and provide a new
construction named ACSS in the asymmetric setting.

4.2. Description of Our ACSS

Details of the ACSS scheme are given hereafter. A bilinear pairing in the asymmetric setting is
defined as follows: Let G1 , G2, and GT be cyclic groups of prime order r, with G1 different to G2.
The asymmetric bilinear pairing is the efficient computable function e : G1 ×G2 → GT , such that

1. ∀a, b ∈ Zr, g1 ∈ G1, g2 ∈ G2, e(ga
1, gb

2) = e(g1, g2)
ab

2. e(g1, g2) 6= 1

G1, G2 are subsets of elliptic curve groups defining an additive group. The asymmetric pairing
can be transformed in the symmetric one by taking G1 = G2 and g1 = g2, however, the opposite is not
straightforward.

The new ACSS scheme is composed of the procedures ACCSSsetup(), ACSSenrol(), ACSSenrol(),
ACSSsign(), and ACSSverify(), which are defined in the following.

The ACSSsetup() procedure creates e for enough large groups G1, G2, GT , and Zr, so the
discrete logarithm problem be hard to compute. From G1 and G2, generators g1 and g2 are selected.
Three cryptographic hash functions H1, H2, H3 are selected, each one mapping from {0, 1}∗ to G1. An integer
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s is uniformly selected at random from the set Z∗r and used as the system master secret key. Finally, the setup
procedure computes gpub = (g2)

s as the system master public key. The ACSSsetup() procedure outputs
[s, ACSSparams =< e, r, g1, g2, gpub, H1, H2, H3 >]. The master secret key is kept confidential whereas the
tuple ACSSparams is published as the public system parameters, shared by all participants.

The enrollment algorithm is executed by both the TA and the vehicle v to be enrolled. Thus,
this protocol consists of two parts: ACSSenrollTA(IDv), where IDv ∈ {0, 1}∗ is the vehicle unique
identifier and ACSSenrollv(xv), where xv is the vehicle partial private key generated by the TA.
The ACSSenrollTA(IDv) procedure is executed as follows:

- IDv is the vehicle unique identifier (e.g., license plate).
- Compute h1 = H1(IDv) (in G1).
- Compute xv = (h1)

s. xv is the partial private key for the vehicle v (in G1).

The partial private key xv is actually a signature on the vehicle ID, and the vehicle v can check its
correctness by checking whether e(xv, g2) = e(h1, gpub).

By the side of the vehicle, the ACSSenrollv(xv) procedure is as follows:

- xv is the vehicle partial private key.
- Choose a random value a in Z∗r (the set {1, 2, ..., r− 1}).
- Assign the tuple {xv, a} as the private key of v.
- Assign the value (g2)

a as the public key of v.

A summary of the messages and actions performed by the vehicle and the TA during the
enrollment phase is depicted in Figure 3.

:Vehicle

Vehicle private
key generation

:TA

Vehicle identifier
hash calculation

Vehicle identifier

Vehicle partial
private key
generation

Vehicle partial private key

Vehicle public
key generation

Figure 3. Sequence diagram of the enrollment process in the CSS (and asymmetric CSS [ACSS]) scheme.

Finally, in the second phase of the scheme only the vehicles are involved, performing the signature
generation and signature verification operations. Vehicles inform others about a traffic situation, mainly
through warning messages dissemination. These messages must be signed by the transmitter, then
a receiver of the message verifies its signature. For signing, a vehicle executes the following operations:

- M is the message to be signed by v.
- IDv is v’s identifier.
- SKv = {xv, yv} is v’s private key.
- pkv is v’s public key.
- v chooses a random value a in Z∗r (the set {1, 2, ..., r− 1}).
- v computes u = (g2)

a (in G2).
- v computes h1 = H2(M, IDv, pkv, u)
- Compute h2 = H3(M, IDv, pkv)
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- Compute t = xv + (h1)
a + (h2)

yv , where ’+’ is the group operation in G1.
- The digital signature of M by v is σ(M)v = (t, u).

A vehicle v2 receiving the signature σ(M)v, v′s public key, and v’s ID will be able to verify the
authenticity and integrity of M by executing the following steps:

- M is the received message and its signature is σ(M)v = (t, u).
- IDv is v’s identifier.
- pkv is v’s public key.
- Compute h1 = H1(IDv) (in G1).
- Compute h2 = H2(M, IDv, pkv, u) (in G1).
- Compute h3 = H3(M, IDv, pkv, ) (in G1).
- If e(t, g2) equals to e(h1, gpub)× e(h2, u)× e(h3, pkv), the signature is valid and the message is

considered authentic. If not, the message should be discarded. Here, the ’×’ operator is the group
operation in GT.

The correctness of the above scheme can be verified from the fact that xv = (h1)
s. That is:

e(t, g2) = e((h1)
s, g2)× e((h2)

a, g2)× e((h3)
yv , g2)

= e(h1, (g2)
s)× e(h2, (g2)

a)× e(h3, (g2)
yv)

= e(h1, (gpub)
s)× e(h2, u)× e(h3, pkv)

(1)

Figure 4 summarizes the signature generation and verification processes between two
participant vehicles.

:Sender

Message
digest
calculation

:Receiver

Sender vehicle
identifier digest
calculation

Message
signature
verification

Message
signature
generation

Signed message

Figure 4. Sequence diagram of the Sign-Verify process in the CSS (and ACSS) scheme.

4.3. Security Assumptions

The ACSS scheme proposed in the previous section was verified to be correct. In order for the
scheme to be secure, the following assumptions must be met:

a. The order r for the groups G1, G2, and GT must be compliant with recommended values in
standards (i.e., recommended security levels in [38]). The security settings for the asymmetric
pairing provided in [28] are a reference point.

b. The hash functions H1, H2, and H3 must be secure, collision free. Algorithms for mapping
bit-strings to groups showed to be secure must be used, for example [36,37].

c. The master private key must be kept secure and the transport of partial private keys from the
TA to the vehicles during the enrollment process must be secure, for example, using a SSL-enabled
connection. Another alternative is the car manufacturer to install the key material in the vehicle offline.
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5. Android Implementation

The smartphone-based VANET solution was implemented as a middleware for the Android
platform, which provides a flexible development environment for accessing and controlling sensors’
information. However, the design principles defined in Section 3 are valid for experimenting with
other mobile platforms, which is out of the scope of this work. In the following, we describe the
deployment of the proposed solution on the Android software stack.

5.1. Wi-Fi Peer-to-Peer (P2P)

The message dissemination is performed between smartphones without the need of a network
infrastructure, using the Wi-Fi P2P APIs for Android. This enable smartphones to discover nearby
available peers (mobile devices) and to establish connectivity for information exchange. We also use
the Wi-Fi P2P Manager class, which returns a channel that connects our VANET platform to the Wi-Fi
P2P framework. This makes it possible to initiate the discovery of available peers to start the connection
using a set of available function calls for managing a list of neighboring mobile devices. Moreover,
we set up a BroadcastReceiver to listen to broadcast intents and to manage notifications regarding
the connection state, new available devices, disconnections, etc. In particular, the notifications of
default methods of the Wi-Fi P2P Manager class are managed by the BroadcastReceiver .

In the deployed P2P scheme, each smartphone is able to act as a server listening for new received
messages, or as a client generating and transmitting messages to another device. In order to properly
manage such communication roles in our VANET platform, the following classes were implemented:

• The Server class, to create objects that listen on a port for newly received messages. This object
keeps listening in the same port for new messages, and dispatch each one in a separated thread.

• The ServerTasks extends from the AsyncTask class and operates in the background. This class
processes every received packet and obtains the reception timestamp. In addition, the message
content fields are then stored in a file for future analysis and statistics extraction.

• The Client class has the main function of sending packets and appending them relevant data,
such as GPS position and a unique identifier. This class also extends from AsyncTask, with the
purpose of performing its operations in the background.

5.2. Packet Management

The information exchange between the client and server classes is assumed to be based on
a per-packet basis. A packet is composed by a payload and its corresponding overhead. We implement
the Packet class as a serializable interface to allow both, the transfer of a complete object and working
at byte level during the transfer. As defined in Table 2, the payload of each packet contains information
related to the message type to be disseminated among nodes. It also includes the following fields:
identifier, MAC address, and IP address of the device, timestamp of packet creation, latitude, longitude,
and speed of the node. The packet uses a field to indicate whether or not security services are enabled
(i.e., message signature is appended or not). Moreover, the overhead of each packet is defined in terms
of the amount of data required to provide security services to each packet (message signature).

In the MAC address, the 1st to 3rd octets define the Organisationally Unique Identifier (OUI),
whereas the 4th to 6th octets correspond to the Network Interface Controller (NIC) Specific. In order to
provide uniqueness to generated packets, the three octets of the NIC from the device’s MAC address
and the system’s time (in nsec) are used as input to a hash function. From the resulting digest, we use
the first seven characters as the packet identifier.

5.2.1. Packet Aggregation Mechanism

Energy-efficient data transmissions are crucial in energy resource constraints devices like
smartphones. Thus, we define a packet aggregation mechanism aimed to control the payload and
overhead ratio. This mechanism reduces, to some extent, the impact of data transfers on the energy
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consumed by the devices at the expense of an increased packet latency. The trade-off between latency
and aggregation level is application specific, and can be managed in the aggregation mechanism by
tuning the queue length (L) (see Figure 1). Hence, the proposed mechanism aggregates N ≤ L packets
before the signature’s generation and transmission process occur. For this, it is required to get the
bytes of each packet object to concatenate it. Once N is reached, the resulting aggregated message is
passed to the signature operation and then transmitted.

5.2.2. Packet Records

The packets that are transmitted or received are registered into files saved in the device’s local
storage. Each file contains a row for each packet along its fields and the corresponding timestamps of
generation and reception nodes. The Java OutputStreamWriter and the BufferedWriter classes are
used to create the file and to write on the output file, respectively. Hence, we obtain a string with the
payload of the object that models the packet in our smartphone-based VANET platform.

5.3. GPS Location Readings

A core requirement in our proposal is to provide location-awareness. The location updates
are accessed using the LocationManager class provided in the Android API. This class provides
the getLastKnownLocation method that returns a Location object with the location information.
The method requestLocationUpdates of the class LocationManager is invoked to start the reading
acquisition process and a Listener is used to update the values of latitude, longitude, and speed each
time a location event occurs.

The location readings in the platform deployed in Android could be either acquired from the
native GPS embedded in the mobile device or from an external GPS receiver connected to the
smartphone via Bluetooth. We explored how an alternative location provider with high location data
granularity could impact the behavior of message dissemination in VANETs. To this end, an external GPS
receiver can be linked to the device through a Bluetooth connection from high resolution location updates.
The location updates from an external GPS receiver can be managed from its known universal identifier
(UUID). Such updates are processed by the platform by converting from the source format (NMEA) to
geographic coordinates (latitude, longitude) to then keep them available for the rest of the modules.

5.4. The Security Scheme

The deployment of the ACSS scheme in each node was done using the jPBC library [37].
jPBC allows performing the mathematical operations underlying the ACSS scheme directly in Java.
The elliptic curve and asymmetric pairing parameters for different security levels were taken from the
settings previously reported by Morales et al. [28].

At the beginning, all the nodes to be participant in the VANET execute the offline phase, to ensure
the cryptographic keys and related parameters in the ACSS scheme for a given security level are
properly established in advance.

6. Experimental Results

In this section we describe the experimental settings and the obtained results aimed to validate the
proposed smartphone-based VANET platform. To this end, we concentrate on the following aspects:

• Message dissemination evaluation. The aim of these experiments is to validate the platform’s
feasibility for continuous packet generation, transmission, and reception in multi-hop conditions.
Then, we also evaluate the performance of a location-based message dissemination protocol to
determine the influence of the location provider’s precision on the message dissemination process
for selecting the next relay node.

• Security services. We analyze the impact of deploying the proposed ACSS security scheme on our
smartphone-based VANET platform in terms of delay and packet loss under different security levels.
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• Packet aggregation. We determine the benefits of deploying packet aggregation mechanisms.

In the outdoor experiments, we deployed the proposed platform in three Android-powered
devices: two Samsumg Galaxy Note 10.1 tablets and one Samsung Galaxy Grand Prime smarpthone.
The main technical specifications of these devices are summarized in Table 3. We also use three Qstarz
BT-Q1000eX GPS logger units in the experiments for acting as external GPS receiver connected to each
mobile device via Bluetooth. The GPS loggers provide GPS fixes with a sampling frequency of 10 Hz,
allowing us to contrast the impact of more accurate GPS fixes on the message dissemination process.
Additionally, in the offline phase performed for tuning the security services, we use a laptop Lenovo
Thinkpad Edge 14 which acts as the Trusted Authority in the security scheme.

As explained in Section 3, the initial parameters should be properly defined through the
configuration interface before each experimental trial. This is the case when selecting the GPS provider,
dissemination criterion, security scheme, and aggregation technique. It is worth noting that we assume
that inter-vehicle communication takes place by means of the mobile devices running our platform.
However, the link between the proposed platform and its usability in vehicles for enabling intra-vehicle
communication is not analyzed in our experiments.

Table 3. Specifications of the devices used in the evaluation.

Feature/Device Samsumg Galaxy Note 10.1 Samsumg Galaxy Grand Prime

System on Chip (SoC) Exynos 4412 Snapdragon 410
CPU Quad-core 1.4 GHz Cortex-A9 Quad-core 1.2 GHz Cortex-A53
GPU Mali-400 Mali-400
Memory 2 GB RAM 1 GB RAM
Internal storage 64 GB 8 GB
Battery capacity 7000 mAh 2600 mAh
Android OS Ice Cream Sandwich (4.0.3) KitKat (4.4.4)
Wi-Fi 802.11 a/b/g/n, Wi-Fi Direct, 802.11 a/b/g/n, Wi-Fi Direct
Bluetooth 4.0 4.0

6.1. Message Dissemination Evaluation

We firstly consider a scenario were the two Samsung tablets have been used for message
transmission-reception in a single-hop scenario. The distance between devices was set to d =

{10, 20, 50, 100}m. For each case, one device was configured to continuously generate and transmit
dummy packets with an interarrival packet time of 5 s during a period of around 5 h (3720 packets
were sent). Then, we analyze the behavior of the transmissions in terms of the Round Trip Time (RTT)
and packet loss metrics. The RTT delay measures the elapsed time between packet’s transmission and
the reception of its respective ACK packet. The RTT metric was preferred over the delay in one hop
to prevent any biasing factor related to the devices’s clocks (i.e., inaccuracies due to synchronization
errors). Table 4 shows a trend of increased values as the separation distance of the devices increases,
for both observed metrics. This is an expected behavior because of the power signal reduction
(attenuation) during transmissions as the travel distance increases.

Table 4. Round time trip (RTT) and packet loss.

Distance (m) RTT (ms) Packet Loss (%)

10 106.56 33.89
20 111.15 27.14
50 112.55 45.65
100 114.92 48.12

The previous experiment allows us to validate the platform’s feasibility in simple single-hop
conditions. We define the feasibility as the ability of the platform for continuous packet generation,
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transmission, and reception in the mobile devices without premature finalization caused by CPU and
memory consumption usage issues.

The second experiment is aimed at validating the message dissemination functionality of our
platform in practical trials. Taking into account that distance between nodes has become the “de facto”
standard in the design of broadcast dissemination protocols in VANET, we select the Urban Multi-hop
Broadcast (UMB) protocol, proposed by Korkmaz, et al. [39], which is a location-based protocol.
Note that the modular design of the platform makes possible the deployment of other message
dissemination protocol as required. Figure 5 illustrates the protocol’s operation. Under the UMB
protocol, when a node aims to transmit a new message, it must firstly send a Request To Broadcast
(RTB) message containing its location. A node receiving the RTB then computes its distance to the
sender. Then, the receiver transmits a Black Burst signal during a time period that is function of the
transmitter-receiver distance. Once that time is reached, the receiver senses the channel looking for
other nodes’ Black Burst signal. When the receiver does not detect any signal whatsoever, that implies
that such receiver is the farthest away from the sender, so it becomes the retransmitter in charge of
sending the next message beyond the coverage range of the original sender and it responds the sender
with a Clear To Broadcast (CTB) message.

TRANSMITTER

1

Request
To
Broadcast

A

Clear	To	Broadcast

3

Phase	1:	UMB	protocol

0	m 25	m 30	m...
Phase	2:	Message	transmission

TRANSMITTER
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A
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RECEIVER
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Figure 5. Relay node identification (phase 1) and transmissions behavior (phase 2) with the Urban
Multi-hop Broadcast (UMB) message dissemination protocol.

The devices used in the second experiment were a Samsung smartphone (node A), two Samsung
tablets (nodes B and C), and three GPS logger units. Node A acts as the transmitter that continuously
sends packets towards nodes B and C. The distance between the transmitter and each receiver is
dA−B = 25 m and dA−C = 30 m. We assume no mobility. In order to evaluate the performance of the
UMB protocol, we concentrate in four representative metrics:

• Successful reception ratio. Ratio of the total number of nodes and the number of nodes that
correctly received the packets.

• Generated load per-broadcast packet. Ratio of the average of total transmitted bits and the total
number of broadcast packets received.

• Relay error selection. The average times the protocol selects an erroneous relay node for
broadcast purposes.

• Packet loss ratio. The percentage of packets lost per number of packets transmitted.
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The results of this experiment are summarized in Table 5. The reception levels are acceptable,
with values close to 100% successful, especially due to the reduced number of nodes used in the
tests (only three receivers were used), so when one of them did not receive a message, the value
for this metric was reduced considerably. On the other hand, the average dissemination speed has
been quantified in the farthest node (retransmitter), which has been located 30 m away from the
transmitter. A very close value was observed in all cases, since the delay factor variation was not
significant. As expected, higher load values are observed in cases where security is considered at the
cost of reduced reception ratio. That is, the packet loss is higher when the ACSS scheme is considered
due to the increase in the size of the transmitted packets.

Table 5. Successful reception ratio (Rx Ratio) and load generated per packet (Gen. Load) for the UMB
protocol, with and without enabling security services in the platform.

Security GPS Rx Ratio (%) Gen. Load (bits)

Not enabled Native 79.13 1754.49
External 90.36 1722.13

Enabled Native 57.94 10,264.78
External 85.21 10,820.89

Additionally, metrics that allow evaluating the performance of the platform have been analyzed,
namely, the error percentage that occurs in the selection of the relay node and the packet loss in
different segments of the network. As it is graphically shown in Table 6, in the case where location
readings of the external GPS were considered, a lower error rate was presented. This is attributed
to the distance calculation that is required to get the time duration of the Black Burst transmission
according to the UMB dissemination protocol. This indicates that the accuracy of the external GPS
receiver has been proven to be higher than the one with native sensor. We also observe that packet
loss presents the highest values in the transmission from node C to node A, followed by those from
node A to node B, while those from node B to node C have the lowest values. This is attributed to the
separation distance between nodes, 30, 25, and 5 m, respectively.

Table 6. Relay error selection and packet loss ratio for the UMB protocol, with and without enabling
security services in the platform.

GPS Provider Security Relay Selection Error (%) Packet Loss A–B (%) Packet Loss B–C (%) Packet Loss C–A (%)

Native Not enabled 53.13 19.41 17.22 25.97
Enabled 84.38 17.13 12.80 21.24

External Not enabled 40.63 8.18 7.42 13.32
Enabled 65.63 6.12 4.78 33.46

6.2. Impact of the Security Scheme

The implemented ACSS security scheme can perform bilinear pairings under the symmetric
(using G1 = G2) and asymmetric settings. Furthermore, the security level set for the overall scheme
provides different configurations for a trade-off between higher security and time invested for the scheme
operations. Table 7 presents the size for the groups involved in the security operations. Observe how the
asymmetric setting uses groups of less size if compared with the symmetric one. This is an important
aspect because the size of the signature attached in the messages exchanged by the vehicles is shorter.
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Table 7. Fields elements size (in bits) in different configurations for the ACSS scheme.

Sec. Level/Groups Size
Sym Asym

G1 G2 GT G1 G2 GT

80 1024 1024 1024 320 640 192
112 2048 2048 2048 448 896 2688
128 3072 3072 3072 512 1024 3072

The implications of the ACSS scheme for the platform are presented in the processing time for the
signature generation and signature verification operations in addition to the tasks of the communication
platform itself, resulting in an intra-nodal delay preceding the transmissions. Therefore, we have
quantified the processing time for each operation in the platform varying the security level (80–128 bits)
using the asymmetric bilinear pairing setting in the ACSS scheme. Tables 8 and 9 present the obtained
results for the transmitter and receiver, respectively. The signature generation process impacts the most
on the transmitter (99% of the processing time), while the rest of the operations have a processing time
almost negligible. This behavior is also observed in the signature verification operation at the receiver
node. It is also shown that using a higher security level increases the time invested in the ACSS operations.
Thus, the implications of a higher security level must be considered by the application in turn.

Table 8. Processing time (ms) for transmitter operations.

Operations
Security Level (bits)

80 112 128

Message generation 5.22 4.88 5.00
Parsing to bytes 0.65 0.53 0.52
Signature regeneration 1231.01 1628.67 1894.17
Output to interface 0.53 0.51 0.54
Other 2.85 2.70 3.15
Total 1240.26 1637.29 1903.38

Table 9. Processing time (ms) for receiver operations.

Operations
Security Level (bits)

80 112 128

Message reconstruction 7.18 6.62 8.08
Signature regeneration 329.07 443.71 453.48
Other 0.03 0.03 0.03
Total 336.28 450.36 461.59

The results presented in Tables 8 and 9 regarding the impact of the ACSS scheme in our proposed
VANET realization are presented only as a reference. This is done because in the literature, such
a scheme in the context of security of smartphone-based VANET has not been previously reported.
In [18], the security approach is PKI-based, which is opposed to the one we propose to avoid the use
of PKIs. Furthermore, that work did not measure the cost of cryptographic operations to provide
authentication and integrity checks as we did in our work. This is the same case for the works [17,19]
that provide a kind of authentication security service. In [19] for example, a PKI approach is followed
and the only timing results presented are for data transfers from the smartphone to the cloud provider,
cloud server data processing, and data transferred form the cloud server to the smartphone, but no
specific timing results are presented for the security services. In [17], the authors presumably had
provided the authentication security service through the use of digital signatures and certificates,
however there are no details on how those signatures are applied in the data flow, nor implementation
results about the cost of security operations.
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6.3. Packet Aggregation Evaluation

The deployment of the security scheme comes at the cost of increased data flowing along the
network due to the size of packets. Therefore, we implemented a data management mechanism
for improving the smartphone battery usage by reducing the overhead to payload ratio. For this,
we have implemented a data aggregation technique which can be useful for delay tolerant applications.
This technique consists of the accumulation of N new generated packets in a buffer of length L.
When N is reached, the accumulated data buffer is signed (ACSS scheme) and then transmitted. This
way, only one signature is required for N accumulated packets, relieving the node from processing
signature and verification operations for every packet and reducing the amount of data flowing though
the network. Figure 6 shows that without any aggregation technique the data generated used is
significantly higher. In fact, with the use of the aggregation technique, the data generated is close to
the case without security scheme.
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Figure 6. Total transmitted data for using and not using the aggregation technique.

7. Concluding Remarks

In this paper, we have presented the design, development, and validation of a novel
smartphone-based platform for secure multi-hop message dissemination in VANETs. For evaluation
purposes, we have narrowed down the experimental trials to mainly validate the impact of the
proposed ACSS scheme on the performance of the message dissemination process. In this sense,
this paper has demonstrated that certificateless cryptographic schemes are a potential solution for
ensuring data integrity and nodes’ authentication in VANETs. The platform supports the deployment
of energy-efficient mechanisms to reduce, to some extent, the impact of the overhead introduced by
the cryptographic schemes. In our experimental trial we used simple yet valid data aggregation-based
and message dissemination approaches, which makes tractable the validation of the modules of
the platform. However, more sophisticated energy efficient approaches and message dissemination
protocols can be adopted in the platform due to its modular design and functional and non-functional
requirements considered. The potential future work includes an exhaustive study about latency and
energy consumption due to their importance in high priority messages. Similarly, we envision the
evaluation of the key threats to security in VANETs by means of experimental trials with the proposed
platform. We hope the ideas presented in this paper will encourage researchers and practitioners to
develop more security-oriented approaches to enhance the reliability of VANET applications, which is
an aspect that has remained almost unexplored in the area.
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