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Abstract: The problem of uncertainty quantification (UQ) for multi-sensor data is one of the main
concerns in structural health monitoring (SHM). One important task is multivariate joint probability
density function (PDF) modelling. Copula-based statistical inference has attracted significant attention
due to the fact that it decouples inferences on the univariate marginal PDF of each random variable
and the statistical dependence structure (called copula) among the random variables. This paper
proposes the Copula-UQ, composing multivariate joint PDF modelling, inference on model class
selection and parameter identification, and probabilistic prediction using incomplete information,
for multi-sensor data measured from a SHM system. Multivariate joint PDF is modeled based on the
univariate marginal PDFs and the copula. Inference is made by combing the idea of the inference
functions for margins and the maximum likelihood estimate. Prediction on the PDF of the target
variable, using the complete (from normal sensors) or incomplete information (due to missing data
caused by sensor fault issue) of the predictor variable, are made based on the multivariate joint PDF.
One example using simulated data and one example using temperature data of a multi-sensor of a
monitored bridge are presented to illustrate the capability of the Copula-UQ in joint PDF modelling
and target variable prediction.

Keywords: copula; missing data; multivariate random variable; probability density distribution;
structural health monitoring

1. Introduction

The problem of uncertainty quantification (UQ) for multi-sensor data has been one of the main
concerns in nondestructive testing and structural health monitoring (SHM) over the years [1–9].
One important task is multivariate joint probability density function (PDF) modelling. Due to
irregularities of multi-sensor data, the joint PDF can be too complicated to be modelled by traditional
approaches. For example, traditional multivariate PDFs (such as a multivariate normal distribution)
cannot model the PDF with multiple peaks. The multivariate mixture PDFs (such as multivariate
normal mixture model), utilized in SHM and damage detection [10–13], rely on the proper choice
of the number and the type of the mixture distributions and an initial value of parameter vector in
optimization [14]. The Nataf distribution, utilized in SHM and structural reliability [15,16], relies on

Sensors 2020, 20, 5692; doi:10.3390/s20195692 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8358-6032
http://www.mdpi.com/1424-8220/20/19/5692?type=check_update&version=1
http://dx.doi.org/10.3390/s20195692
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 5692 2 of 18

the assumption that the transformed random variables, obtained from the marginal transformations of
the original random variables, are multivariate normal distribution [17].

In recent years, copula-based statistical inference has attracted significant attention due to the
fact that it decouples the inference on the univariate marginal PDF of each random variable and the
statistics dependence structure (called copula) among the random variables. In the areas of the SHM
and structural assessment, Zhang and Kim [18] investigated a way of detecting bridge damage for
the long-term health monitoring by using the copula theory. Fan and Liu [19] predicted the dynamic
reliability of a bridge system based on SHM data. Pan et al. [20] developed a copula-based approach
to model the structural health of an operational metro tunnel in a dependent system. Liu et al. [21]
considered the correlation between the fatigue equivalent stress and the stress cycle using the copula
function in the fatigue reliability assessment. Srinivas et al. [22] proposed the multivariate simulation
of dependent axle weights of different vehicle classes. Zhang et al. [23] investigated the specification of
long-term design loads for offshore structures considering multiple environmental factors.

Although the copula-based statistical inference has been widely applied, there are two limitations
in previous works related to the SHM and structural assessment. The first limitation is insufficient types
of probabilistic model candidates for univariate marginal PDF modelling. From the parametrization
point of view, there are parametric models and nonparametric models for PDF modelling. The former
type, assuming that sample data come from a distribution that has a fixed set of parameters, is suitable
for data with regular statistical pattern; the latter type, being not specified a priori but being
instead adaptively determined from data, is suitable for data with an irregular statistical pattern.
In the SHM, it is well known that the statistical regularities of data from multiple sensors can be
significantly different from each other. Thus, due to the complexity of real SHM data, only considering
one type of probabilistic model in PDF modelling bounds the solution space for UQ, leading to
incapability of capturing a statistical pattern of data. However, this important issue was not realized in
previous works, so parametric models and nonparametric models were not considered simultaneously.
For example, References [18–21,23] solely adopted parametric models, while Reference [22] solely
adopted nonparametric models for univariate marginal PDF modelling. Thus, this paper attempts
to break through this limitation by including sufficient types of probabilistic models as candidates.
The second limitation is negligence of probabilistic prediction using available information, especially
in the case of using the incomplete information of the predictor variable due to missing data caused by
a sensor fault issue. For the works of the research area of SHM using the copula [18–23], it had not
been realized that the joint PDF can be utilized for probabilistic prediction on the target variable using
the available information of the predictor variable. Even for the very recent work of another research
area using the copula [24], probabilistic prediction on the target variable is limited to the case using
the complete information of the predictor variable only. However, the case of incomplete information
of the predictor variable, due to missing data caused by a sensor fault issue, is critical and common
in the SHM. Thus, this paper attempts to break through this limitation by conducting computation
of marginalization and conditioning based on the copula-based joint PDF, for prediction on the PDF
of the target variable using the complete (from normal sensors) or incomplete information (due to
missing data caused by sensor fault issue) of the predictor variable.

This paper proposes the copula-based UQ (Copula-UQ), composing multivariate joint PDF
modelling, inference on model class selection and parameter identification, and probabilistic prediction
using incomplete information, for multi-sensor data measured from a SHM system. The proposed
Copula-UQ contains two stages. The first stage is the copula-based multivariate joint PDF modelling.
It is based on the univariate marginal PDFs and the copula. The second stage is copula-based inference
and prediction. Inference, including determination of optimal parameters and selection of optimal
model classes, is made by combining the idea of the inference functions for margins (IFM) and the
maximum likelihood estimate (MLE). Prediction on the PDF of the target variable, using the complete
or incomplete information of the predictor variable, are made based on the copula-based multivariate
joint PDF.



Sensors 2020, 20, 5692 3 of 18

The structure of this paper is outlined as follows. Section 2 presents copula-based multivariate
joint PDF modelling, including model class candidates for univariate marginal PDFs and copula.
Section 3 presents copula-based inference and prediction, including inference on univariate marginal
PDFs and copula, and prediction on the target variable. Section 4 presents illustrative examples.
One example using simulated data and one example using temperature data of multi-sensor of a
monitored bridge are presented to illustrate the capability of the proposed Copula-UQ in joint PDF
modelling and target variable prediction.

2. Copula-Based Multivariate Joint PDF Modelling

Let p(x1, x2, · · · , xD) denote the joint PDF of D random variables (X1, X2, . . .XD), and X ∈ RD×N

denote the measured data matrix with its component Xd,i being the d-th dimension of the i-th data point,
with d = 1, . . . , D and i = 1, . . . , N. The copula-based multivariate joint PDF is to model p(x1, x2, · · · , xD)

based on the univariate marginal PDFs p(xd), d = 1, 2, . . . , D of each random variable and the statistics
dependence structure (called copula) among the random variables, given the measured data matrix X.

2.1. Univariate Marginal PDFs

For the d-th univariate random variable Xd, consider a set of NM model class candidates, namely,
M

md
d , md = 1, 2, . . . , NM. Each model class candidate represents a marginal PDF for Xd. It is

obvious that a larger solution space for uncertainty quantification can be achieved with larger NM.

Let p
(
xd

∣∣∣θmd
d ,Mmd

d

)
be the PDF of xd given the parameter vector θmd

d εRN(θ
md
d ) of model class candidate

M
md
d , whereN

(
θmd

d

)
is the number of parameters depending onMmd

d . As copula-based multivariate
joint PDF modelling is flexible on the models for univariate marginal PDFs of different dimensions,
a set of parametric and nonparametric models are introduced as model class candidates for selection
of marginal PDFs. It is worth noting that the introduction of both parametric and nonparametric
models simultaneously is necessary for breaking through the first limitation (i.e., insufficient types of
probabilistic model candidates) described in Section 1 because it provides a large solution space for
uncertainty quantification. This will be validated in Section 4–illustrative examples.

Parametric modeling methods assume that sample data come from a distribution that has a
fixed set of parameters. In this paper, the parametric model class candidates include: Normal
distribution, Lognormal distribution, Weibull distribution, Gamma distribution, Gumbel distribution
and Uniform distribution.

Nonparametric models differ from parametric models in that the model structure is not specified
a priori but is instead determined from data. The term nonparametric is not meant to imply that such
models completely lack parameters but that the number and nature of the parameters are flexible and
not fixed in advance. In this paper, the kernel density estimation method is used. Based on the d-th

dimensional measured data Xd =
[
Xd,1,Xd,2, . . . ,Xd,N

]T
, the nonparametric kernel density function is

adopted [25]:

p
(
xd

∣∣∣θmd
d ,Mmd

d

)
=

1
Nθmd

d

N∑
j=1

Kmd
d

xd − Xd, j

θmd
d

 (1)

where θmd
d is the bandwidth (θmd

d > 0) controlling the smoothness of the resulting probability density

curve, and Kmd(·) is the kernel smoothing function depending onMmd
d andXd. Let %md

d, j =
(
xd − Xd, j

)
/θmd

d .
Four kernel functions, including Normal kernel, Box kernel, Triangle kernel and Epanechnikov kernel,
are introduced as follows:

Normal kernel : Kmd
d

[
%md

d, j

]
=

1
√

2π
exp

{
−

1
2

[
%md

d, j

]2
}

(2)

Box kernel : Kmd
d

[
%md

d, j

]
=

1
2

1
|%

md
d, j |≤1

[
%md

d, j

]
(3)
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Triangle kernel : Kmd
d

[
%md

d, j

]
=

[
1− %md

d, j

]
1|%|≤1

[
%md

d, j

]
(4)

Epanechnikov kernel : Kmd
d

[
%md

d, j

]
=

3
4

{
1−

[
%md

d, j

]2
}

1
|%

md
d, j |≤1

[
%md

d, j

]
(5)

where 1
|%

md
d, j |≤1

[
%md

d, j

]
is the indicator function.

2.2. Copula

Let P
(
xd

∣∣∣θmd
d ,Mmd

d

)
denote the marginal cumulative distribution function (CDF) of Xd based on

θmd
d andMmd

d . The probability umd
d of Xd ≤ xd can be obtained as:

umd
d = P

(
xd

∣∣∣θmd
d ,Mmd

d

)
(6)

Applying the probability integral transform to Xd, the univariate random variable Umd
d can

be obtained:
Umd

d = P
(
Xd

∣∣∣θmd
d ,Mmd

d

)
(7)

where Umd
d follows standard uniform distribution on the interval [0,1].

The copula of (X1, X2, . . .XD) is defined as a joint CDF of
(
Um1

1 , Um2
2 , · · · , UmD

D

)
[26]:

C
(
um1

1 , um2
2 , · · · , umD

D

)
= P

(
Um1

1 ≤ um1
1 , Um2

2 ≤ um2
2 , . . . , UmD

D ≤ umD
D

)
(8)

That is C : [0, 1]D → [0, 1] is a D-dimensional copula if C is a joint CDF of a D-dimensional
random vector on the unit hypercube [0, 1]D, with the marginal PDF of each component of the random
vector following the standard uniform PDF on the interval [0,1]. The copula C describes exactly the
dependence structure among the random variables.

Consider the joint CDF of (X1, X2, . . .XD):

P(x1, · · · , xD) = P(X1 ≤ x1, . . . , XD ≤ xD) (9)

Sklar’s theorem states that there exists a D-dimensional copula, such that [27]:

P(x1, · · · , xD) = C
(
um1

1 , · · · , umD
D

∣∣∣ψ)
= C

(
P(x1

∣∣∣θm1
1 ,Mm1

1 ), · · · , P(xD
∣∣∣θmD

D ,MmD
D )

∣∣∣ψ)
(10)

where ψ is the parameter vector of the copula. If P
(
xd

∣∣∣θmd
d ,Mmd

d

)
are continuous, the copula is unique;

otherwise, it is uniquely determined on the Cartesian product of the ranges of the marginal CDFs.
Sklar’s theorem clearly indicates that the joint CDF of random variables can be characterized by a
copula in terms of the marginal CDFs.

Thus, the joint PDF, p(x1, x2, · · · , xD), can be derived from its joint CDF, P(x1, x2 · · · , xD),
of Equation (10):

p(x1, x2, · · · , xD) = c
(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
·

D∏
d=1

p(xd|θ
md
d ,Mmd

d ) (11)

where c
(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
is the copula density function:

c
(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
=
∂DC

(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
∂um1

1 ∂um2
2 · · · ∂umD

D

(12)

and p(xd
∣∣∣θmd

d ,Mmd
d ) is the marginal PDF of Xd.
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In this paper, the multivariate Gaussian copula and the associated copula density function are
introduced as follows [28]:

C
(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
= Φρ(ζ)(ζ) (13)

c
(
um1

1 , um2
2 , · · · , umD

D

∣∣∣ψ)
=

∣∣∣ρ(ζ)∣∣∣− 1
2 exp

{
−

1
2
ζT

[
ρ(ζ)−1

− I
]
ζ

}
(14)

ζ =
[
Φ−1

(
um1

1

)
, Φ−1

(
um2

2

)
, · · · , Φ−1

(
umD

D

)]T
(15)

where Φ−1(·) is the inverse CDF of the univariate standard normal distribution function, Φρ(ζ)(·) is
the joint CDF of a D-dimensional normal distribution with mean vector zero and covariance matrix
equal to the correlation coefficient matrix ρ(ζ) of ζ defined in Equation (15), the parameter vector ψ is
the collection of the off-diagonal elements of the upper triangular part of ρ(ζ) and I is a D-dimensional
identity matrix.

3. Copula-Based Inference and Prediction

3.1. Inference on Univariate Marginal PDFs and Copula

This stage is to make inference on Θ =
{
θm1

1 , . . .θmD
D

}
(parameters of the marginal PDFs),

M =
{
M

m1
1 , . . . ,MmD

D

}
(model class candidates of the marginal PDFs) and ψ (parameters of the

multivariate Gaussian-copula), based on the measured data matrix X ∈ RD×N and the probability

matrix U ∈ RD×N, with its component Ud,i = P
(
Xd,i

∣∣∣∣Θ, M
)
. Under the idea of the inference functions

for margins (IFM) [29], Θ (along with M) and ψ can be determined separately.
For the univariate marginals, the optimal parameter values can be obtained by the MLE:

θ̂md
d = argmax

θ
md
d

log
{
Lp

(
Xd

∣∣∣θmd
d ,Mmd

d

)}
, d = 1, . . . , D (16)

Lp
(
Xd

∣∣∣θmd
d ,Mmd

d

)
=

N∏
i=1

[
p
(
Xd,i

∣∣∣∣θmd
d ,Mmd

d

)]
(17)

where log{·} is the logarithmic function. For most of the parametric models, analytical forms for the
optimal parameters can be derived (for example, see Reference [30]). For nonparametric models,
the optimal value, θ̂md

d (bandwidth), can be obtained by considering the asymptotic mean integrated
squared error solution [31]:

θ̂md
d =

4σ̂5
d

3N

−
1
5

(18)

σ̂d =
Qd(0.75) −Qd(0.25)

1.349
(19)

where Qd(0.75) and Qd(0.25) are the 75% and 25% quantiles of Xd.

The optimal marginal PDFs (
^

M =
{
M̂1, . . . ,M̂D

}
) are selected by comparing the optimal likelihood

values of different md:

M̂d = argmax
M

md
d

Lp
(
Xd

∣∣∣θ̂md
d ,Mmd

d

)
, md = 1, · · · , NM, d = 1, . . . , D (20)

After selecting
^

M, the optimal parameters associated with
^

M are denoted as
^
Θ =

{
θ̂1, . . . θ̂D

}
.

Based on
^

M and
^
Θ, the component of the optimal probability matrix Ûd,i = P

(
Xd,i

∣∣∣∣∣ ^
Θ,

^
M

)
can be obtained.
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The optimal values of the parameters of the multivariate Gaussian-copula ψ̂ can be determined by
considering the optimization on Lc

(
Û
∣∣∣ψ)

:

ψ̂ = argmax
ψ

log
{
Lc

(
Û
∣∣∣ψ)}

(21)

Lc
(
Û
∣∣∣ψ)

=
N∏

i=1

[
c
(
Û1,i, Û2,i, · · · , ÛD,i

∣∣∣ψ)]
(22)

where c
(
Û1,i, Û2,i, · · · , ÛD,i

∣∣∣ψ)
is obtained by substituting Û1,i, Û2,i, · · · , ÛD,i into Equation (14). For the

multivariate Gaussian copula, the optimal parameter ψ̂ is the collection of the off-diagonal elements of
the upper triangular part of ρ(ζ), with each component being Pearson’s correlation coefficient.

3.2. Prediction on the Target Variable Given Complete or Incomplete Information (Due to Missing Data Caused
by a Sensor Fault Issue)

Let p
(
x1, x2, · · · , xD

∣∣∣∣∣ψ̂,
^
Θ,

^
M

)
denote the multivariate joint PDF obtained by substituting ψ̂,

^
Θ,

^
M

into Equation (11). Let the target variable be the set containing the selected components of X1, X2, . . .XD

for prediction, and the predictor variable be the complement of the target variable. As the joint PDF
contains all the statistical information about the random variables (X1, X2, . . .XD), prediction on the
PDF of the target variable can be obtained using the complete or incomplete information of the predictor
variable. Let xta, xo and xuo denote the target variable, observed predictor variable and unobserved
predictor variable, respectively. It is worth noting that the existence of unobserved predictor variable
xuo is very common in the SHM as it represents missing data of the corresponding channels of fault
sensors. However, the very recent work of copula-based prediction [24] was still incapable of tackling
the existence of xuo in its prediction phase. Here, by conducting computation of marginalization and
conditioning on the copula-based multivariate joint PDF, the prediction on the PDF of xta based on the
observation xo = x̃o only (that is, available information only) can be obtained by:

p(xta
∣∣∣xo = x̃o) =

p(xta, xo = x̃o)

p(xo = x̃o)
=

∫
p
(
x1, x2, · · · , xD

∣∣∣∣∣ψ̂,
^
Θ,

^
M

)∣∣∣∣∣∣
xo=x̃o

dxuo

s
p
(
x1, x2, · · · , xD

∣∣∣∣∣ψ̂,
^
Θ,

^
M

)∣∣∣∣∣∣
xo=x̃o

dxuodxta

(23)

where p
(
x1, x2, · · · , xD

∣∣∣∣∣ψ̂,
^
Θ,

^
M

)∣∣∣∣∣∣
xo=x̃o

is the copula-based multivariate joint PDF with substituting

xo = x̃o. The predicted PDF p(xta
∣∣∣xo = x̃o) contains all the statistical information about xta based on

the information xo = x̃o. Accordingly, the predicted value (mean) and the associated uncertainty
(standard deviation) of xta can be obtained.

4. Illustrative Examples

One example of simulation data and one example of real SHM data are demonstrated. For the
simulation data example, the design of it is to validate the following three critical issues: (1) the necessary
introduction of both parametric and nonparametric models for breaking through the first limitation
(i.e., insufficient types of probabilistic model candidates), (2) the capability of the multivariate joint PDF
modelling of the proposed Copula-UQ (as the true joint PDF is known) and (3) the performance of the
proposed Equation (23) for prediction on the target variable given complete or incomplete information
(due to missing data caused by a sensor fault issue). For the real SHM data example, the performance
of the proposed Copula-UQ for prediction on the target variable under complete (normal sensors) or
incomplete (fault sensors) information is further validated by considering the following two cases:
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(1) the test dataset is identical to the training dataset, and (2) the test dataset is different from the
training dataset.

4.1. Simulation Data

This example applies the proposed Copula-UQ for multivariate joint PDF modelling and prediction
of five-dimensional random variables, X = [X1, . . . , X5]

T. First, five uncorrelated random variables,
Z = [Z1, . . . , Z5]

T, with different marginal PDFs are constructed (see Table 1). Then, the random
variables X = [X1, . . . , X5]

T are obtained by applying an affine transformation X = AZ with A given as:

A =


0.5 0.2 0 0.2 0.1
0 0.6 0 0.2 0.2
0 0 1 0 0

0.3 0 0 0.7 0
0 0.3 0 0 0.7


(24)

Thus, the analytical form of the joint PDF of X is:

pX(x) =
pZ

(
z = A−1x

)
det|A|

(25)

where pZ
(
z = A−1x

)
is the joint PDF of Z with z = A−1x. Figure 1 shows the scatter plot of the simulated

data for X1 to X5 (N = 500). The correlation coefficient matrix for X is:

corr(X, X) =


1 0.6935 0.0322 0.8028 0.1451

0.6935 1 −0.0185 0.7096 0.4532
0.0322 −0.0185 1 0.0118 −0.0184
0.8028 0.7096 0.0118 1 −0.0155
0.1451 0.4532 −0.0184 −0.0155 1


(26)

Figure 1. Scatter plot of the simulated data of X1 to X5 (N = 500).
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High correlation (for example, between x1 and x4), medium correlation (for example, between x2

and x5) and low correlation (for example, between x1 and x3) can be found in this case.
Table 2 shows the maximum log-likelihood value of different univariate marginal PDFs of X1 to

X5. Using Equation (20), the optimal univariate marginal PDF of each dimension can be determined,
and they are indicated by “_” (underline) in Table 2. The optimal PDFs of X1 to X5 are Normal kernel,
Triangle kernel, Lognormal distribution, Lognormal distribution and Triangle kernel, respectively.
In order to compare the fitting capacities of different PDFs shown in Table 2, Figure 2 shows the
univariate marginal PDFs of X1 to X5. Each subplot shows the data histogram, the top ranking
PDF (that is, the optimal marginal PDF in Table 2; line style as “dash-dot line"), an intermediate
ranking PDF (that is, an intermediate ranking PDF in Table 2; line style as “dashed line") and a low
ranking PDF (that is, a low ranking PDF in Table 2; line style as “dotted line"). From each subplot,
it can be reconfirmed that the optimal marginal PDF of each dimension in Table 2 is the best model
for uncertainty quantification of the corresponding component of X. It is worth noting that, from
Table 2, even though X is a linear mapping of Z only composing very regular types of distributions
described in Table 1, the optimal univariate marginal PDFs of X are not only from parametric but
also from nonparametric models. This result shows that the introduction of both parametric and
nonparametric models is necessary for breaking through the first limitation (i.e., insufficient types of
probabilistic model candidates) described in Section 1 because it provides a large solution space for
uncertainty quantification.

Table 1. Probability density functions (PDFs) of Z1 to Z5 (Simulation data).

Random Variable Distribution Type PDF

Z1 Normal f (z1) =
1

√
2πσ1

e
−

(z1−µ1)
2

2σ1
2 , µ1 = 3, σ1 = 1

Z2 Normal f (z2) =
1

√
2πσ2

e
−

(z2−µ2)
2

2σ2
2 , µ2 = 2, σ2 = 0.8

Z3 Lognormal f (z3) =


0 z3 < 0

1
√

2πσ3z3
e
−

(ln z3−µ3)
2

2σ3
2 z3 ≥ 0

, µ3 = 0, σ3 = 0.5

Z4 Gamma f (z4) =

0 z4 ≤ 0
β4
α4 x(α4−1)e−β4z4

Γ(α4)
z4 > 0

, α4 = 2, β4 = 2

Z5 Uniform f (z5) =

0 z5 ≤ a5, z5 ≥ b5
1

b5−a5
a5 < z5 < b5

, a5 = 0.5, b5 = 3.5

Table 2. The maximum log-likelihood value of different univariate marginal PDFs of X1 to X5.

PDF X1 X2 X3 X4 X5

Normal kernel −553.3514 −532.5992 −349.9818 −965.5745 −480.0222
Uniform kernel −556.9401 −535.5691 −354.8022 −969.9313 −481.3604
Triangle kernel −553.4045 −532.4293 −349.6769 −965.5385 −479.7110

Epanechnikov kernel −555.2073 −534.0821 −351.9858 −967.8933 −480.6938
Normal distribution −566.1014 −538.0549 −445.3173 −1045.1071 −494.6102

Lognormal distribution −560.4108 −546.4166 −349.4094 −960.0402 −517.6582
Weibull distribution −574.5840 −538.9670 −393.3779 −990.7425 −488.3424
Gamma distribution −556.5564 −535.3848 −361.7671 −968.1071 −501.1078
Gumbel distribution −638.5664 −600.1647 −623.2454 −1177.3065 −521.1552
Uniform distribution −713.8654 −685.9265 −743.3989 −1217.4954 −574.5622

1 “_” indicates the optimal univariate marginal PDF.
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Figure 2. Univariate marginal PDFs of X1 to X5.

The multivariate joint PDF of X is determined by Equation (11) with substituting the optimal

marginal PDFs
^

M along with the associated optimal parameters
^
Θ and the optimal parameter ψ̂ of the

multivariate Gaussian copula. Figure 3 shows the projections of the multivariate joint PDF of X1 to X5.
Each subplot represents the projection of the multivariate joint PDF between two specific components
of X. The black contour is the true PDF of Equation (25) while the green contour is the joint PDF by the
proposed Copula-UQ. It can be shown that, even though the shape of the true PDF is irregular, the
proposed Copula-UQ is capable of describing the statistical dependency structure.

Figure 3. Projections of the multivariate joint PDF of X1 to X5.
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Figure 4 shows the comparisons of observed values and predicted values of X2 to X5. The 45-degree
reference line represents that the observed values and predicted values are identical. Each subplot
shows the predicted value of the target variable, determined based on Equation (23), using the
incomplete information (yellow dots) and complete information (blue dots) of the predictor variable.
For example, for the yellow dots of the subplot in the upper left (for x2), the target variable, observed
predictor variable and unobserved predictor variable are xta = x2, xo = x1, xuo = {x3, x4, x5},
respectively. For the blue dots of the subplot in the upper left (for x2), xta = x2, xo = {x1, x3, x4, x5},
xuo is an empty set. By comparing the scatter plots of yellow and blue dots, one can observe the
evolution of the predicated value changes with respect to the amount of information given by the
predictor variable. It can be anticipated that the predicted values can be improved (that is, the dots
distributing closer to the 45-degree reference line) when given more information from the predictor
variable. This conclusion can be confirmed from the subplots in the upper left (for x2), lower left (for
x4) and lower right (for x5) of Figure 4. Note that there is insignificant improvement of the predicted
values of the subplots located in the upper right (for x3), this is because of low correlations between x3

and other components, shown in Equation (26). This result shows that the proposed formulation of
Equation (23), breaking through the second limitation (i.e., negligence of probabilistic prediction using
available information) by conducting computation of marginalization and conditioning, is capable of
making predictions even though the information of the predictor variable is incomplete.

Figure 4. Comparisons of observed values and predicted values of X2 to X5.
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4.2. Temperature Data of Multi-Sensor of a Monitored Bridge

Temperature is a critical loading factor for structures [32]. Variation of temperatures in structures
significantly influences the material properties (for example, Young’s modulus [32]), static characteristics
(for example, deflection and deformation [32]), dynamic characteristics (for example, structural
frequencies [33–35], damping ratios and mode shapes [36]) and boundary conditions [37]. Temperatures,
including ambient air temperature and structural component temperature, of a multi-sensor of a
structure are uncertain due to the fact that they are affected by not only the ambient factors, including
air temperature variation, solar radiation intensity, humidity and wind speed, but also the complex
processes of heat transfer [38]. Practically, UQ in temperatures are conducted based on temperature
data measured from multiple sensors installed in different locations of a monitored structure [38–42].
As these works utilized traditional PDF modelling approaches, and modelling of temperature-related
random variables was limited to two-dimensional. Here, due to the capacity of the multivariate joint
PDF modelling of the proposed Copula-UQ, the dimension can be extended to D-dimensional, where D
is the number of temperature sensors selected in the analysis.

This study utilized the proposed Copula-UQ to analyze temperature data of the multi-sensor of
the Dowling Hall Footbridge [36]. The bridge, located on the Medford campus of Tufts University,
has a two-span continuous steel frame (each spam is 22 m) and a reinforced concrete deck. Temperatures
of different locations are monitored using the type T thermocouples manufactured by Omega Engineering
(measurement ranging from –250 to +350 ◦C). Multi-sensor layout for temperature monitoring can be
referred to in Figure 7 of Reference [43]. There are in total ten temperature sensors and they can be
divided into two sensor clusters according to their locations: the west span cluster and the east span
cluster. The west span cluster includes sensors for pier temperature (C1), bridge deck temperature (C2),
steel temperature at the south side (S1), steel temperature at the north side (S3) and air temperature (A1).
The east span cluster includes sensors for pier temperature (C4), bridge deck temperature (C3), steel
temperature at the south side (S2), steel temperature at the north side (S4) and air temperature (A2).

The temperature data can be accessed from Reference [44]. Figure 5 shows time histories of
ten temperature sensors beginning on January 5 2010 and ending on May 2 2010. In each subplot,
two sensors monitor the same type of temperature, but these two sensors belong to the west span cluster
and the east span cluster, respectively. For example, in the first subplot, both C1 and C4 monitored pier
temperature, but C1 and C4 belong to the west span cluster and the east span cluster, respectively. It can
be observed that there is insignificant difference in measurement between two sensors monitoring the
same type of temperature even though they belong to two different clusters. It is worth noting that
there is difference between the steel temperature at the south and north sides of the bridge. The reason
is due to the fact that the effects of sunlight to the south and north side are different. During the
daytime hours, the sensor on the south side (S1 and S2) was significantly warmer than the sensor on
the north side (S3 and S4) [36]. Therefore, temperature data of five sensors from the west span cluster
(C1, C2, S1, S3, A1) are utilized for UQ. The corresponding correlation coefficient matrix is:

corr =


1 0.9049 0.8698 0.9601 0.9691

0.9049 1 0.8748 0.9345 0.9212
0.8698 0.8748 1 0.9522 0.9357
0.9601 0.9345 0.9522 1 0.9952
0.9691 0.9212 0.9357 0.9952 1


(27)

Table 3 shows the maximum log-likelihood value of the univariate marginal PDFs of C1, C2, S1, S3

and A1. It can be observed that the optimal PDFs of C1, C2, S1, S3 and A1 are distributed as the
nonparametric model with the Normal kernel. Figure 6 shows the univariate marginal PDFs of
C1, C2, S1, S3 and A1. It is obvious that in each subplot, the top-ranking model fits the frequency
histogram better than the intermediate- and low-ranking models, reconfirming the model class selection
results in Table 3. Figure 7 shows the projections of the multivariate joint PDF of C1, C2, S1, S3 and A1.
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It can be shown that the contours by the Copula-UQ are capable of quantifying the uncertainty of the
multivariate temperature data.

Figure 5. Time histories of ten temperature sensors beginning on January 5 2010 and ending on
May 2 2010.

Figure 6. Univariate PDFs of C1, C2, S1, S3 and A1.



Sensors 2020, 20, 5692 13 of 18

Table 3. The maximum log-likelihood value of the univariate marginal PDFs of C1, C2, S1, S3 and A1.

PDF C1 C2 S1 S3 A1

Normal kernel –8355.3340 –8216.0978 –8968.6926 –8737.8576 –8635.4290
Uniform kernel −8359.5995 −8246.7759 −8979.0882 −8750.4474 −8645.4155
Triangle kernel −8355.4031 −8222.3736 −8968.8041 −8738.2284 −8635.7345

Epanechnikov kernel −8358.0363 −8232.9844 −8973.6371 −8743.8474 −8640.5933
Normal distribution −8442.4746 −8790.1815 −9149.7283 −8813.6539 −8691.3643
Gumbel distribution −8752.8354 −9405.0940 −9648.7378 −9218.5528 −9072.9188
Uniform distribution −9210.6580 −9614.1435 −10,153.6737 −9855.9299 −9716.0754

1 “_” indicates the optimal marginal PDF.

Figure 7. Projection of the multivariate joint PDF of C1, C2, S1, S3 and A1.

Figure 8, in the same fashion as Figure 4, shows the comparisons of observed values and predicted
values of C1, C2, S1 and S3 (training dataset: full monitoring dataset, test dataset: full monitoring
dataset). Again, for each subplot, it can be observed that the predicted values can be improved when
given more information of the predictor variable. Note that the yellow dots correspond to incomplete
information of the predictor variable due to a sensor fault. For example, for the yellow dots of the
subplot in the upper left (for C1), the target variable, observed predictor variable and unobserved
predictor variable are xta = C1, xo = A1, xuo = {C2, S1, S3}, respectively. That is, the yellow dots
show the predicted value of the target variable C1 using the information from the observed variable of
normal sensor A1, but without using the information from the unobserved variable of fault sensors C2,
S1, S3 because of the fault status of these three sensors. For the blue dots of the subplot in the upper
left (for C1), xta = C1, xo = {A1, C2, S1, S3}, xuo is an empty set. From the four subplots of Figure 8,
although the sensor fault issue enlarges the fluctuation of the yellow dots, the proposed Copula-UQ
gives satisfactory results as the available information of sensor A1 is properly utilized for making
predictions on the target variable.
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Figure 8. Comparisons of observed values and predicted values of C1, C2, S1, S3 (training dataset: full
monitoring dataset, test dataset: full monitoring dataset). 2 Note that the yellow dots correspond to
incomplete information of the predictor variable due to missing data caused by a sensor fault issue.

For further validating the prediction capacity of the proposed Copula-UQ under data missing
by sensor fault issue, a new computation is conducted as follows: (1) the monitored dataset was
divided into the training dataset (data covering first 90% of days out of total monitoring period) and
the test dataset (complement of the training dataset), (2) the marginal PDF along with the copula
model was inferred based on the training dataset and (3) the prediction capacity of the trained copula
model was validated based on the test dataset with or without data missing by sensor fault issue.
Figure 9, in the same fashion as Figure 8, shows comparisons of observed values and predicted values
of C1, C2, S1 and S3 (training dataset: dataset of first 90% of total number of the monitoring days,
test dataset: complement of training dataset). It can be observed that the fluctuations of both the blue
dots (corresponding to complete information from normal sensors) and the yellow dots (corresponding
to incomplete information due to data missing by sensor fault issue) are acceptable. Therefore, it can
be concluded that even though the training dataset is different from the test dataset, the proposed
Copula-UQ still gives satisfactory results in multivariate PDF modelling and target variable prediction.
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Figure 9. Comparisons of observed values and predicted values of C1, C2, S1, S3 (training dataset: data
covering first 90% days out of total monitoring period, test dataset: complement of training dataset).
2 Note that the yellow dots correspond to incomplete information of the predictor variable due to
missing data caused by a sensor fault issue

Figure 10 shows the predicted joint PDFs between S1 and S3 under incomplete information with
different given values of A1 only, and without observing information of fault sensors C1 and C2. That is,

the joint PDF p
(
S1, S3

∣∣∣∣A1 = Ã1
)

shows how the steel temperatures of the south and north sides evolve

with changing the air temperature. As Ã1 increases, the optimal values of p
(
S1, S3

∣∣∣∣A1 = Ã1
)

increased
accordingly. It can be observed that the differences between the steel temperature (S1 or S3) and the
air temperature (Ã1) become more significant as Ã1 increases. The reason is as follows: higher Ã1

associates with higher solar radiation intensity. Given that the specific heat capacity of steel is higher
than that of air, the increase of temperature of steel is more significant than that of air. It can also be
observed that the temperature of S3 is lower than that of S1. This result coincides with the on-site
situation of sunlight of the Dowling Hall Footbridge, in that the sunlight intensity to the north side
(S3) is lower than that to the south side (S1) [36]. The predicted joint PDFs among the temperature of
different locations of the structure are important pieces of information for uncertain thermal loading
and can be utilized for thermal-induced structural response assessment.
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Figure 10. Predicted joint PDFs between S1 and S3 under incomplete information with given different
values of A1 only, and without observing information of fault sensors C1 and C2.

5. Conclusions

This paper proposed the Copula-UQ for multivariate joint PDF modelling, inference on model
class selection and parameter identification, and probabilistic prediction using incomplete information,
and presented one example using simulated data and one example using temperature data of a
multi-sensor of a monitored bridge. For inference on univariate marginal PDFs, the results show
that, in general cases, the optimal univariate marginal PDFs of different dimensions are different,
so the introduction of both parametric and nonparametric models is necessary because it provides
a large solution space for uncertainty quantification. For prediction on the target variable using the
complete (from normal sensors) or incomplete information (due to missing data caused by a sensor
fault issue) of the predictor variable, the proposed Copula-UQ is capable of obtaining the PDF of the
target variable. The proposed methodology can be extended to tackle different multivariate joint PDF
modelling problems in SHM with emphasizing the prediction purpose under incomplete information
with a sensor fault issue. This important piece of information of the PDF of the target variable can be
utilized for uncertainty propagation in further analysis.
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