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Abstract: This paper focuses on developing a particle filter based solution for randomly delayed
measurements with an unknown latency probability. A generalized measurement model that includes
measurements randomly delayed by an arbitrary but fixed maximum number of time steps along
with random packet drops is proposed. Owing to random delays and packet drops in receiving
the measurements, the measurement noise sequence becomes correlated. A model for the modified
noise is formulated and subsequently its probability density function (pdf) is derived. The recursion
equation for the importance weights is developed using pdf of the modified measurement noise
in the presence of random delays. Offline and online algorithms for identification of the unknown
latency parameter using the maximum likelihood criterion are proposed. Further, this work explores
the conditions that ensure the convergence of the proposed particle filter. Finally, three numerical
examples, one with a non-stationary growth model and two others with target tracking, are simulated
to show the effectiveness and the superiority of the proposed filter over the state-of-the-art.

Keywords: nonlinear estimation; particle filte; randomly delayed measurements; latency probability

1. Introduction

State estimation for nonlinear discrete-time stochastic systems has received considerable attention
from researchers because of its application in various fields of science, including navigation and
localization [1,2], surveillance [3], agriculture [4], econometrics [5], and meteorology [6], for example.
The Bayesian approach [7] gives a recursive relationship for the computation of the posterior probability
density functions (pdf) of the unobserved states. But the computation of the posterior pdf in case of
a nonlinear system is often numerically intractable, and hence suboptimal approximations of these
pdf are often used. The particle filter (PF) is a powerful sequential Monte Carlo method under the
Bayesian framework to solve nonlinear and non-Gaussian estimation problems by approximating
the posterior pdf empirically [8]. The particle filter often outperforms other approximate Bayesian
filters such as the extended Kalman filter (EKF) and the grid-based filters in solving nonlinear state
estimation problems [9]. However, most works on the EKF [10] and as well as on the traditional
PF [8,9,11] typically assume that measurements are available at each time step without any delay.
In practice, in many aerospace and underwater target tracking [12], control [13] and communication [14]
subsystems, random delays in receiving the measurements are inevitable. These delays, usually caused
by the limitations of the network channel, need to be accounted for while designing the state estimator.

In the literature, the random delays have been addressed in the context of linear estimators [15–20].
A linear networked estimator is proposed in Reference [21] to tackle irregularly-spaced and delayed
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measurements in a multisensor environment. On the other hand, the research on random delays
and packet drops in nonlinear state estimation is limited. In Reference [22] and Reference [23],
improved versions of the EKF and the unscented Kalman filter (UKF) are proposed for one-time
step and two-time step randomly delayed measurements. In Reference [24], quadrature filters have
been modified to solve nonlinear filtering problem with one-step randomly delayed measurements.
In Reference [25], the cubature Kalman filter (CKF) [26] is used to tackle one-step randomly
delayed measurements for nonlinear systems. In Reference [27], a methodology to solve nonlinear
estimation problems with multi-step randomly delayed measurements is proposed. However, all these
non-linear filters are restricted to Gaussian approximations. Moreover, they assume that the latency
probability of delayed measurements is known. In Reference [28] and Reference [29], a modified
PF that deals with one-step randomly delayed measurement with unknown latency probability
and a PF for multi-step randomly delayed measurements with a known latency probability are
presented, respectively. In References [30,31], the estimation of the unknown latency parameter with
one-step randomly delayed measurements is addressed using data log-likelihood function within the
Expectation-Maximization (EM) framework. However, none of these works considered the presence of
random packet drops. Further, H∞ filtering techniques are used to tackle network-induced delays and
packet drops in References [32–34].

The specific contributions of this paper to the state-of-the art, specifically over References [28–30]
are as follows: (i) We propose a new PF with an explicit expression for the importance weight for
randomly delayed measurements of any number of time steps with an unknown latency probability
and in the presence of packet drops. In Reference [29], the design of a PF with multi-step randomly
delayed measurements is addressed. However, the latency probability is assumed to be known and
packet drop is not considered while deriving the expression for the importance weight. (ii) The latency
parameter for the random delays and packet drops is assumed to be unknown and we present a
method to estimate it both in offline and online manners by maximizing the likelihood function.
The sequential Monte Carlo (SMC) method is used here to approximate the likelihood function in
the presence of randomly delayed measurements of any number of time steps and packet drops.
In References [28,30,31] the latency probability for the measurements with random delays of maximum
one step is estimated without considering packet drops. Moreover, while Gaussian approximation
is used in the E-steps of the EM framework in References [30,31], the SMC approximation is used
in Reference [28], but only for measurements with random delays of maximum one time step and
without considering any packet drops. (iii) Due to presence of random delays and packet drops,
the measurement noise sequence at different time steps becomes correlated. This work first formulates
the modified noise model and derives a general pdf for the modified noise. The proposed PF is then
developed using the pdf of the modified measurement noise. In References [25,35], randomly delayed
measurements with the correlated measurement noise for a nonlinear system is addressed. However,
they have considered a maximum delay of one time step and used the Gaussian approximation to
develop the filtering algorithm.

Finally, with the help of three numerical examples, the effectiveness and the superiority of the
proposed PF are demonstrated in comparison with the state-of-the-art algorithms. Table 1 lists the
features of the previous works and of the proposed work.

Table 1. Features comparison for proposed work and previous works.

Work Random Delays Packet Drops Latency Estimation Filtering

[28] Single step × X SMC
[29] Multi-step × × SMC
[30] Single-step × X Gaussian
[31] Single-step × X Gaussian

Proposed work Multi-step X X SMC
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The rest of this paper is organized as follows. The problem statement is defined in Section 2.
In Section 3, the modified PF is proposed and its convergence is discussed. Section 4 deals with
the estimation of the unknown latency probability. In Section 5, simulation results are presented to
demonstrate the superiority of the proposed PF. Finally, in Section 6, some conclusions are discussed.

2. Problem Statement

Consider a nonlinear dynamic system that can be described by the following equations:

State equation: xk = fk−1(xk−1, k− 1) + qk−1, (1)

Measurement equation: zk = hk(xk, k) + vk, (2)

where xk ∈ <nx denotes the state vector of the system and zk ∈ <nz is the measurement at any discrete
time k ∈ (0, 1, · · · ), while qk−1 ∈ <nx and vk ∈ <nz are mutually independent white noises with
arbitrary but known pdf. Here, we consider the case where actual measurement received at a particular
time step may be a randomly delayed measurement from a previous time step. This delay (in number
of integer time steps) can be between 0 and N at the kth sampling instant. If any measurement gets
delayed by more than N steps, that measurement is discarded and no measurement is received at
the estimator. Here, N is the maximum (in number of integer time steps) delay that is determined as
discussed in Sections 3.2 and 3.3.

To model delayed measurements at the kth instant, we choose the independent and identically
distributed Bernoulli random numbers βi

k (i = 1, 2, · · · , N + 1) that take values either 0 or 1 with an
unknown probability P(βi

k = 1) = p = E[βi
k] and P(βi

k = 0) = 1− p, where p is the unknown latency
parameter. If yk is the measurement received at the kth instant [27], then

yk = (1− β1
k)zk + β1

k(1− β2
k)zk−1 + β1

kβ2
k(1− β3

k)zk−2 + · · ·+ ∏N
i=1 βi

k(1− βN+1
k )zk−N +

(
1− (1− β1

k)

−β1
k(1− β2

k)− · · · −∏N
i=1 βi

k(1− βN+1
k )

)
yk−1,

= ∑N
j=0 α

j
kzk−j +

(
1−∑N

j=0 α
j
k

)
yk−1; k ≥ 2,

(3)

where

α
j
k =

j

∏
i=0

βi
k(1− β

j+1
k ). (4)

Here, β0
k is considered to be 1. A measurement received at the kth time instant is j step delayed

if α
j
k = 1. Additionally, at time instant k, at most one of α

j
k(0 ≤ j ≤ N) can be 1. If all α

j
k are zeros,

the estimator buffer keeps the measurement yk−1 received at the previous step. This results in the
loss of a measurement (packet drop) when that measurement is delayed by more than N steps due to
buffer-size limitation.

Remark 1. Bernoulli random variable βi
k and its function α

j
k are used to represent the real-time randomness of

delays in measurements in practical systems [15]. Inclusion of the possibility that at a time step k no measurement
may be received (when the delay is longer than N steps) corresponds to the practical limit on the buffer size in
real systems. In our algorithm, if a received measurement matches with any of the measurements in the buffer,
it is discarded.

Remark 2. The latency parameter of received measurements, p, that is, the mean of random variable βi
k is

unknown in real systems. Contrary to the assumption of single-step delay in Reference [28], the unknown
latency probability in this paper is for arbitrary step delays along with the packet drops due to buffer limitation.

Further, since both the ideal measurement and the measurement noise are modified in (3),
yk needs to be rewritten for its subsequent use in characterizing the densities. Hereafter in this
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article, hk(xk, k) and fk(xk, k) will be written as hk(xk) and fk(xk) respectively, for brevity. Then, (3) can
be restructured as

yk = G1k

(
hk−j(xk−j), α

j
k

)
+ G2k

(
G1k−1(·), α

j
k, G2k−1(·)

)
+ v′k; k ≥ 2 and 0 ≤ j ≤ N. (5)

Here, G1k

(
hk−j(xk−j), α

j
k

)
and G2k

(
G1k−1(·), α

j
k, G2k−1(·)

)
denote the ideal measurement parts

(without any noise) of yk from the non-delayed measurements zk−N:k and the previous step
measurement yk−1, respectively, and are defined as

G1k

(
hk−j(xk−j), α

j
k

)
=

N

∑
j=0

α
j
khk−j(xk−j); k ≥ 2 (6)

G2k

(
G1k−1(·), α

j
k, G2k−1(·)

)
=

1−
N

∑
j=0

α
j
k

(G1k−1(·) + G2k−1(·)
)

; k ≥ 2, (7)

where G11(·) = h1(x1) and G21(·) = 0. Again, v′k is the additive measurement noise in (3) defined as

v′k =
N

∑
j=0

α
j
kvk−j +

1−
N

∑
j=0

α
j
k

 v′k−1; k ≥ 2, (8)

where v′k−1 is the noise received along with observation yk−1 and v′1 = v1.
Now, the objective is to develop a PF algorithm for the system in (1) with measurement model (3)

that assumes the knowledge of latency probability p. Additionally, we propose offline as well as online
algorithms to estimate p.

3. Modified Particle Filter for Randomly Delayed Measurements

3.1. Particle Filter

In a sequential importance sampling filter, the posterior probability density function P(x0:k|z1:k)

is replaced by its equivalent series of weighed particles, which can be represented as [9]

P̂(x0:k|z1:k) =
Ns

∑
i=1

wi
kδ[x0:k − xi

0:k], (9)

where particles {xi
0:k}

Ns
i=1 are drawn from a proposal density q(x0:k|z1:k) and then the weights of the

particles are chosen using the importance principle. The unnormalized importance weight of the ith
particle is given by

wi
k =

P(xi
0:k|z1:k)

q(xi
0:k|z1:k)

. (10)

The recursive weight update at each time step is given by

P(x0:k|z1:k) =
P(zk|x0:k)P(x0:k|z1:k−1)

P(zk|z1:k−1)

∝ P(zk|xk)P(xk|z1:k−1),
(11)

where P(zk|z1:k−1) is a normalizing constant. Similarly, the proposal density is assumed to be
decomposed as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1). (12)
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Assuming that the state vector xk follows the Markov process, the importance weight of (10),
with the help of (11) and (12), can be written as

wi
k ∝

P(zk|xi
k)P(xi

k|x
i
k−1)P(xi

k−1|z1:k−1)

q(xi
k|x

i
0:k−1, z1:k)q(xi

0:k−1|z1:k−1)

= wi
k−1

P(zk|xi
k)P(xi

k|x
i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

,

where the predicted density P(xi
k|x

i
k−1) and the likelihood density P(zk|xi

k) can be evaluated
using the system model, previously estimated posterior P(xi

k−1|z1:k−1) and the joint noise density
P(qk−1, vk|xi

k−1) [7].

3.2. Modified PF for Randomly Delayed Measurements

A recursive computation of the importance weights can be obtained for a nonlinear system
with measurement model of (3). From (3), it can be seen that yk is stochastically dependent on the
non-delayed measurements zk−N:k and the previous step measurement yk−1 and, therefore, we need
to relax the standard assumption of P(zk|x1:k, z1:k−1) = P(zk|xk) as discussed below.

Assumption 1. The received measurement yk, conditionally on xk−N:k and yk−1, is independent of the state
vectors x1:k−N−1 and the measurements y1:k−2, that is, P(yk|x1:k, y1:k−1) = P(yk|xk−N:k, yk−1).

Lemma 1. Recursion equation of the importance weight wi
k for model (1) and (3), can be obtained as

wi
k = wi

k−1
P(yk|xi

k−N:k, yk−1)P(xi
k|x

i
k−1)

q(xi
k|x

i
0:k−1, y1:k)

, (13)

where xi
k is drawn from the proposal density q(xk|xi

0:k−1, y1:k).

Proof. Using the Bayes’ theorem and assuming that the states do not depend on the future
measurements, the proposal density can be decomposed as

q(x0:k|y1:k) = q(xk|x1:k−1, y1:k)q(x1:k−1|y1:k−1). (14)

Particles xi
k and xi

1:k−1 can be sampled from q(xk|x1:k−1, y1:k) and q(x1:k−1|y1:k−1), respectively.
Again, using the Bayes’ rule, the joint pdf, P(x1:k, y1:k), can be decomposed as follows:

P(x1:k, y1:k) = P(yk|xk, x1:k−1, y1:k−1)P(xk, x1:k−1, y1:k−1)

= P(yk|xk, x1:k−1, y1:k−1)P(xk|x1:k−1, y1:k−1)P(x1:k−1, y1:k−1).
(15)

By Assumption 1 and the first-order Markov property of the state vectors, (15) can be rewritten as

P(x1:k, y1:k) = P(yk|xk−N:k, yk−1)P(xk|xk−1)P(x1:k−1, y1:k−1). (16)

Using (14) and (16), the importance weight can be written as

wk =
P(yk|xk−N:k, yk−1)P(xk|x1:k−1)

q(xk|x0:k−1, y1:k)

P(x1:k−1, y1:k−1)

q(x0:k−1|y1:k−1)

= wk−1
P(yk|xk−N:k, yk−1)P(xk|x1:k−1)

q(xk|x0:k−1, y1:k)
.

(17)

Now, with the help of (17), wi
k can be finally written as (13).
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Now, the predicted density P(xi
k|x

i
k−1) and the likelihood density P(yk|xi

k−N:k, yk−1) can be
characterized using the joint noise density P(qk−1, v′k|xk−1) [7,36]. As given in Section 2, qk−1 and vk
are independent noise processes with E[qk−1−i(vk−j)

>] = E[qk−1−i]E[vk−j] = 0, for all integer values
of i and j. Hence, using the independence property and (8), it can be shown that qk−1 and the modified
measurement noise v′k are also independent. Therefore, assuming qk−1 and v′k are independent of the
previous state xk−1, we can decompose the joint noise density as P(qk−1, v′k|xk−1) = P(qk−1)P(v′k).
Moreover, given that the pdf of qk−1 is known, P(xi

k|x
i
k−1) can be evaluated, whereas the pdf of v′k is

unknown and needs to be calculated for the evaluation of the likelihood.
Further, for the computation of the likelihood density P(yk|xk−N:k, yk−1), the probability related

to the number of random delays in the received measurement needs to be evaluated. Note that
the probability of a received measurement being delayed by j time steps, at any instant k, is [27]
P(αj

k = 1) = pj(1− p), 0 ≤ j ≤ N. Note that as the number of delay steps (j) increases, the associated

probability (P(αj
k = 1)) decreases. The probability that the estimator receives yk−1 at the kth instant of

time is [27] P(∑N
j=0 α

j
k = 0) = pN+1. It can be observed that for a high value of p, N should be kept

sufficiently large to reduce the probability of a packet being lost.

Lemma 2. The likelihood density P(yk|xi
k−N:k, yk−1) can be computed recursively as

P(yk|xi
k−N:k, yk−1) =

N

∑
j=0

pj(1− p)Pvk−j(yk − hk−j(xi
k−j)) + pN+1P(yk−1|xi

k−1−N:k−1, yk−2), (18)

where Pvk−j(·) represents the pdf of the measurement noise vk−j.

Proof. Let γk be a Bernoulli random variable that denotes the event that a measurement is received
(with a step delay between 0 and N). The probability that a measurement is received with a delay less
than or equal to N steps, is

P(γk = 1) = P
( N

∑
j=0

α
j
k = 1

)
=

N

∑
j=0

pj(1− p). (19)

The probability that no measurement is received and the estimator keeps measurement yk−1, is

P(γk = 0) = P
( N

∑
j=0

α
j
k = 0

)
= pN+1. (20)

Now, as the modified likelihood density should be characterized by the pdf of the modified
measurement noise v′k, using (5), we have

P(yk|xk−N:k, yk−1) = Pv′k
(yk − G1k(hk−j(xk−j), α

j
k)− G2k(G1k−1(·), α

j
k, G2k−1(·))), (21)

where Pv′k
(·) denotes the pdf of v′k. Further, assuming that v′k, conditionally on vk−N:k and v′k−1, is an

independent noise sequence over time, it can be calculated using the known pdf of vk−N:k and the
intermediate Bernoulli random variable γk as follows:
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P(v′k) =
∫

P(v′k, γk)dγk

=
1

∑
γk=0

P(v′k|γk)P(γk)

= P(v′k|γk = 1)P(γk = 1) + P(v′k|γk = 0)P(γk = 0)

(using (19) and (20))

=
N

∑
j=0

pj(1− p)× P(v′k|γk = 1) + pN+1 × P(v′k|γk = 0).

(22)

Using the expression for v′k in (8), if γk = 1 (i.e., α
j
k = 1 for any j), we can write v′k = vk−j and

P(v′k|γk = 1) = P(vk−j). (23)

Similarly, when γk = 0 (i.e., ∑N
j=0 α

j
k = 0), the measurement noise v′k = v′k−1 and we have

P(v′k|γk = 0) = P(v′k−1). (24)

Substituting (23) and (24) into (22) and then, (22) and (21) results in

P(yk|xk−N:k, yk−1) =
N

∑
j=0

pj(1− p)Pvk−j((yk − G1k(hk−j(xk−j), α
j
k)− G2k(G1k−1(·), α

j
k, G2k−1(·)))|γk=1)

+ pN+1Pv′k−1
((yk − G1k(hk−j(xk−j), α

j
k)− G2k(G1k−1(·), α

j
k, G2k−1(·)))|γk=0).

(25)

By definition, γk = ΣN
j=0α

j
k. Again, using (6), we can write (yk − G1k(·) − G2k(·))|γk=1

= yk − hk−j(xk−j), 0 ≤ j ≤ N. Similarly, using (3) and (7), we have (yk − G1k(·)− G2k(·))|γk=0 =

yk−1 − G1k−1(·)− G2k−1(·). Now, rewriting (25) for particle i, we have

P(yk|xi
k−N:k, yk−1) =

N

∑
j=0

pj(1− p)Pvk−j(yk − hk−j(xi
k−j)) + pN+1Pv′k−1

(yk−1 − G1k−1(·)− G2k−1(·)),

(applying (21) for k := k− 1 to the second term on the right hand side)

=
N

∑
j=0

pj(1− p)Pvk−j(yk − hk−j(xi
k−j)) + pN+1P(yk−1|xi

k−1−N:k−1, yk−2).

Remark 3. Note that (18) is similar to the sum of the product densities used in the probabilistic data association
(PDA) algorithm [37,38]. Further, it can be observed that if there are no random delays and packet drops in
the received measurements (i.e., N = 0 and p = 0), (18) reduces to Pvk (zk − hk(xi

k)), the expression for the
likelihood density of the standard PF.

In this work, to mitigate the effect of degeneracy on the importance weights of particles,
the resampling is carried out at each step. A general proposal density q(xk|x0:k−1, y1:k) obtained from a
nonlinear filter such as the EKF or the UKF [39], can be used to draw samples. However, the predicted
density P(xk|xk−1) is a common choice to implement the sequential importance resampling (SIR)
PF [9] despite the fact that the current measurement is not used to locate new samples. Note that the
current measurement in this work is randomly delayed and is unaccounted for in the proposal density,
which may not necessarily push the sampled particles towards higher likelihood regions. On the other
hand, P(xk|xk−1) includes the measurements up to the last time-step that have been corrected with
the modified importance weight. The steps to implement a standard SIR filter [9] with the modified
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importance weight for this work are outlined in Algorithm 1. It uses a standard resampling technique,
for example, multinomial [40] or, systematic [9] to suppress the particles with negligible weight. A flow
diagram to obtain the modified PF estimate is shown in Figure 1.

Algorithm 1 Modified particle filter.

[{xi
k, wi

k}
Ns
i=1] := SIR[{xi

k−N:k, wi
k−1}

Ns
i=1, p̂, yk]

• for i = 1 : Ns

– Draw xi
k ∼ q(xk|xi

0:k−1, y1:k)
– Compute the importance weight wi

k according to (13) and (18)
– Normalize the importance weight: wi

k := wi
k/SUM[{wi

k}
Ns
i=1]

• end for
• Resample the particles at each step

– [{xi
k, wi

k}
Ns
i=1] := RESAMPLE[{xi

k, wi
k}

Ns
i=1]

Figure 1. Flow diagram for PF with the modified importance weight.

3.3. Convergence of the PF for Randomly Delayed Measurements

In this subsection, we explore the conditions for the convergence of the modified PF derived
for randomly delayed measurements. A PF is said to be converging if its empirical approximation
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follows a mean square error of order 1/Ns at each step of filtering [8]. The prime requisite for simple
convergence is that likelihood function P(zk|·) should be upper bounded, that is, ‖P(zk|·)‖ < ∞, for all
xk ∈ <nx [8]. The following lemma is an extension of the results in Reference [8] for our case.

Lemma 3. If the likelihood function

‖P(yk|xk−N:k, yk−1)‖ < ∞, ∀xk−N:k ∈ <nx and yk ∈ <nz , (26)

then, ∀k ≥ N, there exists ck/k independent of Ns, such that for any Φ ∈ B(<nx×(k+1))

E

( 1
Ns

Ns

∑
i=1

Φ(xi
0:k)−

∫
Φ(x0:k)P(dx0:k|y1:k)

)2
 ≤ ck/k

‖Φ‖2

Ns
, (27)

where xi
0:k are the unweighted particles obtained using the modified PF algorithm.

Proof. Attributing to the random delays and packet drops in measurements, we investigate the impact
of the modified likelihood density on the simple convergence of the particle filter that is otherwise
converging with non-delayed measurements. That is, ‖P(zk|xk)‖ < ∞, ∀xk ∈ <nx and zk ∈ <nz ,
is given. Now, using (2), we can write

P(zk|xk) = Pvk (zk − hk(xk)).

Thus, the pdf of noise vk, that is, Pvk (zk − hk(xk)), is bounded for all its real-valued inputs.
Rearranging the terms of (18) on the both sides, we have

P(yk|xk−N:k, yk−1)− pN+1P(yk−1|xk−1−N:k−1) =
N

∑
j=0

pj(1− p)Pvk−j(yk − hk−j(xk−j)). (28)

As vk is a stationary process, its pdf is not affected by time shift, that is, if Pvk (·) is bounded,
Pvk−j(·) must also be bounded. Again, since pj(1− p) < 1 for all values of j, we can write

N

∑
j=0

pj(1− p)Pvk−j(yk − hk−j(xk−j)) ≤ (N + 1)Pvk−j(yk − hk−j(xk−j)). (29)

Given that N is a finite number, (28) and (29) can be used to establish (26). Now, results of
Reference [8] can be used to verify (27).

Theorem 3 of Reference [8] suggests that ck|k is independent of the number of particles Ns,
but represents the dependency of mixed dynamics of the system on the initial conditions or past values.
That is, if the optimal filter associated with the system dynamics has a long memory, ck|k will continue
to increase the mean square error with each step. In our case, the filter does have a memory due to
arbitrary delays in measurements. Therefore, to avoid the large mean square error of convergence,
the value of N should be kept small. On the other hand, to counter the increase in the value of ck|k,
number of particles Ns needs to be large.

4. Identification of Latency Probability

In practice, when a set of randomly delayed measurements is given, we may not know channel
properties and its random parameters. Hence, the latency probability that is required to design the
filter may be unknown. Here, we use the ML criterion to identify the unknown latency probability for
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received measurements. This method involves the maximization of the joint density Pp(y1:m) of the
received measurements, which is a function of latency parameter p represented by [28]

p̂ = arg max
p∈[0,1]

Pp(y1, · · · , ym), (30)

where m is the number of measurements used for the identification of parameter p and p̂ is the
estimated value of p. Now, we assume that the first received measurement y1 is independent
of parameter p and is equal to z1. Again, using the Bayes’ theorem the above joint pdf can be
reformulated as

Pp(y1, · · · , ym) = P(y1)
m

∏
k=2

Pp(yk|y1:k−1). (31)

For computational simplicity the above maximization of likelihood is expressed in terms of the
log-likelihood (LL). The LL of (31) can be formulated as

Lp(y1:m) = log Pp(y1:m)

= log P(y1) +
m

∑
k=2

log Pp(yk|y1:k−1),
(32)

where Lp(y1:m) is the LL function of the received measurements. Now, to solve the maximization
problem of (31), first the computation of likelihood Pp(yk|y1:k−1) and then the maximization of Lp(y1:m)

need to be carried out.

4.1. Computation of Likelihood Density

State likelihood can be used to compute Pp(yk|y1:k−1) with the help of the SMC approximation [41].
We can express the likelihood density Pp(yk|y1:k−1) as the marginal density of a joint pdf that
includes delayed measurement and previous states that are correlated using the Bayes’ theorem
and Assumption 1 as follows:

Pp(yk|y1:k−1) =
∫
· · ·

∫
Pp(yk, xk−N:k|y1:k−1)dxk · · · dxk−N

=
∫
· · ·

∫
Pp(yk|xk−N:k, y1:k−1)Pp(xk−N:k|y1:k−1)dxk · · · dxk−N

=
∫
· · ·

∫
Pp(yk|xk−N:k, yk−1)Pp(xk−N:k|y1:k−1)dxk · · · dxk−N .

(33)

Using Bayes’ rule, the joint state prior Pp(xk−N:k|y1:k−1) can be decomposed as

Pp(xk−N:k|y1:k−1) = Pp(xk|xk−N:k−1, y1:k−1)Pp(xk−N:k−1|y1:k−1)

Since the state vectors follow the first-order Markov property, using the chain rule and (9), we can
write the joint pdf as

Pp(xk−N:k|y1:k−1) = P(xk|xk−1)Pp(xk−1|xk−2, yk−1) · · · Pp(xk−N |xk−N−1, yk−N),

≈ 1
Ns

Ns

∑
i=1

δ[xk − xi
k]δ[xk−1 − xi

k−1] · · · δ[xk−N − xi
k−N ],

(34)

where xi
k−N , xi

k−N+1, · · · , and xi
k are the unweighted particles and drawn from

Pp(xk−N |xk−N−1, yk−N), Pp(xk−N+1|xk−N , yk−N+1), · · · , and P(xk|xk−1), respectively. The accuracy of
the SMC approximation in this case depends on the choice of the proposal density, the number of
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particles and the value of N. This would be equivalent to that of the modified SIR as discussed in
Section 3.3. Now, substituting (34) into (33), Pp(yk|y1:k−1) can be computed as

P̂p(yk|y1:k−1) =
1

Ns

Ns

∑
i=1

Pp(yk|xi
k, · · · , xi

k−N , yk−1), (35)

where Pp(yk|xi
k−N:k, yk−1) is given in (18). Algorithm 2 illustrates the steps to compute the LL function.

Algorithm 2 Computation of log-likelihood function.

[Lp, {xi
k, wi

p,k}
Ns
i=1] := LL[Lp, {xi

k−N:k−1, wi
p,k−1}

Ns
i=1, yk]

• for (i = 1 : Ns)

– Draw xi
k ∼ q(xk|xi

0:k−1, y1:k)
– Assign particle a weight:

wi
p,k = wi

p,k−1
Pp(yk|xi

k−N:k, yk−1)P(xi
k|x

i
k−1)

q(xi
k|x

i
0:k−1, y1:k)

• end for
• Compute the LL function:

Lp := Lp + log

(
1

Ns

Ns

∑
i=1

Pp(yk|xi
k−N:k, yk−1)

)
• for (i = 1 : Ns)

– Normalize the importance weight: wi
p,k := wi

p,k/SUM[{wi
p,k}

Ns
i=1]

• end for
• Resample the drawn particles at each step:

[{xj
k, wj

p,k}
Ns
j=1] := RESAMPLE[{xi

k, wi
p,k}

Ns
i=1]

4.2. Maximization of Log-Likelihood Function

Substituting (35) into (32), we can rewrite the LL function in (32) as

L̂p(y1:m) =
m

∑
k=2

log

(
1

Ns

Ns

∑
i=1

Pp(yk|xi
k−N:k, yk−1)

)
, (36)

where y1 is independent of parameter p and can be neglected in the maximization of the likelihood
density. Equation (36) can be maximized numerically over p ∈ [0, 1].

There are two options for the numerical search of the latency parameter: offline and online
identification. In the offline method, we can use more measurements for higher parameter estimation
accuracy. A higher value of m and smaller steps (sl) for p can yield a more accurate estimate of the
latency probability, at the expense of higher computational burden. The offline algorithm can only be
started after the first m measurements and it can be repeated with further measurements to improve
the estimate. Algorithm 3 outlines the steps for offline identification.

In case of online identification, the latency probability is estimated at each time step and the
estimated value of the parameter is used in the proposed PF algorithm. The running average of the
estimated values at each step can be evaluated to improve the accuracy of the identified parameter.
Algorithm 4 outlines the online method.
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Algorithm 3 Offline identification of latency probability.

[Lmax, p̂] := OFFLINE[{xi
k−N:k, wi

k−1}
Ns
i=1, y1:m]

• Select the values for sl and m
• for (p = 0 : sl : 1)

– Set Lp = 0
– for (k = 1 : m)

– [Lp, {xi
k, wi

p,k}
Ns
i=1] := LL[Lp, {xi

k−N:k, wi
p,k−1}

Ns
i=1, yk]

– end for
– Initialization: if p = 0

– Lmax = Lp and p̂ = p
– Update: else

– If Lp > Lmax

- Lmax = Lp and p̂ = p
• end for

Algorithm 4 Online identification of latency probability.

[Lmax, p̂] := ONLINE[{xi
k−N:k, wi

k−1}
Ns
i=1, y1:k]

• Select the value for sl
• for (p = 0 : sl : 1)

– Set Lp = 0
– for (t = 1 : k)

– [Lp, {xi
t, wi

p,t}
Ns
i=1] := LL[Lp, {xi

t−N:t, wi
p,t−1}

Ns
i=1, yt]

– end for
– Initialization: if p = 0

– Lmax = Lp and p̂ = p
– Update: else

– If Lp > Lmax

- Lmax = Lp and p̂ = p
• end for

4.3. Computational Complexity

Attributing to the use of numerical search method to maximize the likelihood, the estimation
of latency parameter is a computationally involved process. However, once the latency parameter
is estimated, the computational cost of the proposed PF algorithm is not substantially higher than
that of the standard PF. In the offline mode of identification, the proposed particle filter will run
1/sl times slower than the standard PF, where sl (0 < sl < 1) is the step length used for the search
algorithm. That is, if the standard PF isO(Nsn2

x) [42], then proposed PF in offline mode isO(Nsn2
x/sl).

Similarly, for online identification, the modified particle filter will beO(Nsn2
xk), where k is the time step.

5. Simulation Results

To demonstrate the superiority of the proposed PF over the standard PF and the state-of-the-art
algorithms for randomly delayed measurements, three different types of filtering problems are
simulated. Although any general proposal density [39] can be chosen for the implementation of the
proposed PF, in our simulations, the transitional prior density P(xk|xk−1) is used as the proposal density
for its simplicity. The latency probability of delayed measurements is first identified by maximizing (36)
over p ∈ [0, 1] with the help of the proposed PF algorithm. Subsequently, the estimated probability
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p is used to implement the proposed PF for the given problems. To ensure a fair comparison of the
proposed PF with the other state-of-the-art algorithms, two sets of simulation are carried out for each
problem based on the measurement model used in the chosen filtering algorithm. In the first set of
simulations, the proposed PF with estimated latency probability is compared against the standard
PF and the cubature Kalman filter for the randomly delayed measurements (CKF-RD) [27] by using
the randomly delayed measurements with packet drops. The proposed PF with other than the true
value of N is also implemented to investigate the impact of selecting a wrong value for the maximum
number of delay steps. The performances of all filters are compared in terms of the root mean square
error (RMSE). Note that the proposed PF with the wrong value of N and the CKF-RD are implemented
with the true value of the latency probability. In the second set of simulations, the proposed PF
with the estimated latency probability is compared against the PF for multi-step randomly delay
measurements (PF-MD) [29] by using the set of randomly delayed measurements with no packet drops.
To demonstrate the importance of the latency estimation, PF-MD is implemented with both the true
latency probability and the incorrect latency probability. Further, recognizing the practical limitation
on the buffer-length and to avoid the large convergence error as discussed in Section 3.3, the true value
of the maximum step delay is taken as N = 2. However, the simulation work can be carried out with
the larger value of N as shown for Problem 1. For brevity, the case with the larger N for other problems
is not included in the paper.

MATLAB 2017a software is used to carry out the simulation work. No in-built subroutine for the
PF is used and all the figures presented in this work are generated by running the standard instructions
in MATLAB following the Algorithms 1–4. Both the truth and measurements are generated prior to
filter implementation. The filtering algorithm uses the software generated measurement values for the
PF to implement.

5.1. Problem 1

We consider a time-varying growth model that is widely used in literature because
of its non-stationary property for validation of performances by nonlinear filters [9,23,43,44].
Nonlinear dynamics of the system are as follows:

xk = 0.5xk−1+25
xk−1

1 + x2
k−1

+ 8 cos(1.2k) + qk−1,

zk = x2
k/20 + vk,

(37)

where qk−1 and vk are independent zero mean Gaussian processes with E[q2
k ] = 10 and E[v2

k ] = 1,
respectively. The initial state x0 ∼ N (0, 1), and the received measurements, y1:k are generated by
using (37) and (3) with N = 2. The distribution of the initial estimated state P(x̂0) ∼ N (0, 1) and the
number of particles used for the simulation of this problem is, Ns = 1000.

Offline estimation of the latency probability is carried out by using Algorithm 3 with sl = 0.01 and
m = 500. The latency probability (p) at the end of each ensemble is calculated and plotted in Figure 2a.
For this case, when the true value of p is 0.5, the mean of the estimated latency probability over 100
ensembles is calculated as 0.481. Online estimates of the latency probability are shown in Figure 2b.
Here, the estimated probability at each time step is the running average of the estimated probabilities.

The proposed PF is implemented with N = 1 and N = 2 on the measurements as described above,
and the results are compared against that of the CKF-RD and the standard PF. To compare the results,
the RMSE calculated over 100 Monte Carlo (MC) runs are plotted over 50 time steps in Figure 3a.
It can been seen that the proposed PF with N = 2 outperforms the other three filters. Moreover, it is
interesting to observe that the performance of the proposed PF with the wrong value of the maximum
number of step delay (N = 1) is closer to that of the proposed PF with N = 2.
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Figure 2. Estimation of the latency probability (a) Offline estimation (b) Online estimation (problem 1).

Further, the average RMSE calculated over 50 time steps for different values of true latency
probability is shown in Figure 3b. As expected, for a higher probability value where packet drop is
more likely, filter designed for N = 2 performs better than the other filters.
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Figure 3. (a) RMSE vs. time steps considering p = 0.5 (b) Avg RMSE vs. probability (Problem 1).

To observe the impact on the performance of the proposed filter when the maximum number
of step delay is increased, we take a case of N = 3. Figure 4 shows the RMSE for the different filter
while considering the true latency, p = 0.50. The average RMSE of the proposed filter in Figure 3a with
N = 3 is 8.79 whereas that in Figure 4 with N = 2 is 7.48. The increase in the length of memory for the
proposed filter explains the increase in the RMSE.

For simulation with the set of randomly delayed measurements without any packet drops,
the RMSE value for PF-MD with the true latency (PF-MD(TL)), the proposed PF and PF-MD with the
incorrect latency (PF-MD(IL)) are plotted in Figure 5. It can be observed that the RMSE value of the
proposed PF and PF-MD(TL) remain almost the same whereas the filtering performance of PF-MD
degrades when the latency probability is unknown and considered an incorrect value.
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Figure 4. RMSE of different filters for N = 3 and p = 0.50 (problem 1).
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Figure 5. RMSE of different filters for measurements with no packet drops considering p = 0.50
(problem 1).

Table 2 shows the comparison of the computational burden for the different filters. To make the
computational comparison independent of the software and clock speed used for simulation, we have
calculated the relative computational time for each filter. All computational time is calculated with
respect to the computational time of the standard PF algorithm. Note that the given computational
time for the proposed PF is after the estimation of the latency parameter. However, the estimation of
the latency parameter requires 1/sl times running of the proposed PF algorithm.

Table 2. Relative computational time for different algorithms.

Algorithms Relative Computational Time

CKF-RD 0.42
Standard PF 1

PF-MD 1.59
Proposed PF 1.65
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5.2. Problem 2

Consider a ground surveillance problem where a moving target is tracked from a noisy
sensor mounted on a moving platform at an approximately known altitude by using only bearing
angle observations. This bearing-only tracking (BOT) problem has mainly two components,
namely, the target kinematics and the tracking platform kinematics. A representative scenario is given
in References [3,45]. The tracking platform motion may be represented by the following equations:

xtp,k = x̄tp,k + ∆xtp,k,

ytp,k = ȳtp,k + ∆ytp,k, k = 0, 1, · · · , nstep,

where xtp,k and ytp,k represent the X and Y coordinates of the tracking platform at kth time-step,
respectively. x̄tp,k and ȳtp,k are the known mean coordinates of the platform position and ∆xtp,k and
∆ytp,k are independent zero-mean Gaussian white noises with variances, rx = 1 m2 and ry = 1 m2,
respectively. The mean values for position coordinates (in meters) are x̄tp,k = 4kT and ȳtp,k = 20,
where T is sampling time for the discretization expressed in seconds (s).

The target moves in X direction according to following discrete state space relations.

xk = Fxk−1 + Gqk−1, (38)

where

xk =

[
x1,k
x2,k

]
, F =

[
1 T
0 1

]
, G =

[
T2/2

T

]
with x1,k and x2,k denoting the position (in m) and velocity (in m/s), respectively, of the target. qk−1 is
an independent zero-mean white Gaussian noise with variance rq = 0.01 m2s4. The initial true states
are assumed to be x0 = [80 1]T .

The sensor measurement is given by

zk = zm,k + vk, (39)

where
zm,k = h(xtp,k, ytp,k, x1,k) = arctan

ytp,k

x1,k − xtp,k

is the angle between the X axis and the line of sight from the sensor to target and vk is independent
Gaussian white noise with zero mean and variance rv = (3◦)2. For the implementation of CKF-RD,
the measurement noise statistics, on account of the uncertainties in the position of the observer
platform, need to be modified as given in Reference [3].

The randomly delayed measurements with packet drops, y1:k, are generated for 21s by using (3)
and (39) with N = 2. The number of particles used for approximating the pdf is Ns = 3000. At the
beginning of simulation, the latency probability of received measurements is identified offline with
T = 0.05 s, m = 400, and sl = 0.01. Latency probability at the end of each ensemble is calculated.
The mean value of estimated p over 100 ensembles is calculated as 0.460, whereas its true value
is 0.5. For online identification, T is taken as 0.1s and the running average of latency probability
is calculated at each time step. The plots for the offline and online estimations are shown in the
Figure 6a,b, respectively.

Now, the proposed PF with N = 1 and N = 2 are implemented with the true and estimated
latency probabilities, respectively. The results of CKF-RD and the standard PF for same set of delayed
measurements are compared against that of proposed PF. The RMSE of four filters with the true
latency probability p = 0.5 and sampling time T = 0.2 s, which have been calculated over 100 MC
runs, are plotted in Figure 7a,b. From the plots, it can be seen that using a filter designed for delayed
measurements is a better choice than a standard PF where the delays are not accounted.
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Figure 6. Estimated latency probability (a) Offline estimation (b) Online estimation (Problem 2).
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Figure 7. RMSE vs. time steps with p = 0.5. (a) State x1,k (b) State x2,k (Problem 2).

Further, the average RMSE is calculated over 105 time steps for the different values of p.
The average RMSE for two states, x1,k and x2,k are plotted in Figure 8a,b respectively. It can be
seen that the difference in performance of the proposed PF and the standard PF becomes pronounced
as the value of probability increases. However, at higher probabilities, the performance of the proposed
filter also gets deteriorated on account of the higher rate of the packet loss.

To compare the performance of the proposed PF with the estimated latency, and PF-MD with the
unknown latency, randomly delayed measurements with no packet drops are generated using the
measurement model of Reference [29]. The RMSE for three filters are plotted in Figure 9. It can be
observed that estimation of the latency affects the filtering process and the use of its incorrect value
degrades the performance of a filter. The relative computational burden is given in the Table 3.
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Figure 8. Average RMSE vs. probability (a) State x1,k (b) State x2,k (Problem 2).
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Figure 9. RMSE of different filters for measurements with no packet drops considering p = 0.5. (a) State
x1,k (b) State x2,k (Problem 2).

Table 3. Relative computational time for different algorithms.

Algorithms Relative Computational Time

CKF-RD 0.053
Standard PF 1

PF-MD 1.285
Proposed PF 1.330

5.3. Problem 3

Consider a coordinated turn model for an aerospace target tracking problem for an aircraft
that executes a maneuvering turn in a two-dimensional plane with a fixed, but unknown turn
rate Ω. This uses the bearing and the range measurement observed from a radar to estimate the
kinematics of the target. The five-dimensional state vector for the kinematics of aircraft is considered
as xk = [ζ ζ̇ η η̇ Ω]>, where ζ and η represent positions, and ζ̇ and η̇ represent velocities along
the X and Y co-ordinates, respectively. The discrete-time state dynamics of the aircraft is given as [46]:
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xk =



1
sin ΩT

Ω
0 −

(
1− cos ΩT

Ω

)
0

0 cos ΩT 0 − sin ΩT 0

0
1− cos ΩT

Ω
1

sin ΩT
Ω

0

0 sin ΩT 0 cos ΩT 0
0 0 0 0 1


xk−1 + qk−1, (40)

where T is the time between two successive measurements. qk−1 is a zero mean Gaussian noise
with covariance Q = diag[q1M q1M q2T], where q1 and q2 are the noise intensity parameters,

and M =

[
T3

3
T2

2
T3

2 T

]
. The range, r, and bearing, θ are the measurement available for target tracking,

which are being measured by a radar placed at the origin. The noise-corrupted measurements can be
expressed as

zk =
[
rk θk

]>
=

[√
ζ2

k + η2
k tan−1

(
ηk
ζk

) ]>
+ vk, (41)

where vk is an independent zero-mean Gaussian noise with covariance R = diag[σ2
r σ2

θ ]. Data for
the different parameters used in this simulation are given in Table 4. Initial values for the
state and covariance are x0 = [1000 m 300 ms−1 1000 m 0 ms−1 −3◦s−1]T and P0|0 =

diag[100 m2 10 m2s−2 100 m2 10 m2s−2 100 mrad2s−2], respectively.

Table 4. Parameters used in tracking

Sampling Time (T) 0.125 s

Turn Rate (Ω) −3◦s−1

q1 0.1 m2s−3

q2 1.75× 10−4 s−3

σr 10 m
σθ

√
10 mrad

The randomly delayed measurements with packet drops, y1:k, are generated by using (41) and
(3) with N = 2 and a probability, p = 0.5. The number of particles used for approximating the pdf is
Ns = 8000. In the beginning of simulation, the latency probability of received measurements is identified
offline with m = 200 and sl = 0.01. The latency probability at the end of each ensemble is calculated and
plotted in Figure 10a. The mean value of the estimated probabilities p̂ over 100 ensembles is calculated
as 0.4864 against its true value 0.5. Figure 10b shows the online estimation of latency probability.
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Figure 10. Estimated latency probability (a) Offline estimation (b) Online estimation (Problem 3).
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To track the maneuvering target, the proposed PF with N = 2 and N = 1 (a wrong value of the
maximum number of delay steps) are implemented. To demonstrate the superiority of the proposed
PF, simulation results of the CKF-RD and the standard PF for the same set of measurements and with
the true value of latency probability, are compared against that of the proposed PF. The RMSE of the
position, velocity and turn rate are the performance metrics as defined in Reference [46]. The RMSE of
position, velocity and turn rate for the four filters with p = 0.5, are plotted in Figure 11a–c, respectively.
Since the standard PF does not consider the correlation of current measurement with previously
observed states due to random delays, it diverges, particularly in case of the RMSE in position. It can
also be observed in the RMSE plots that the proposed PF with N = 1, which has accounted at least
partially for the presence of random delays, performs better than the standard PF. This is significant
since the maximum number of delay steps will have to be decided by the user and setting N = 1 might
still yield some benefit over assuming no delay. Note that the difference in RMSE of position between
the proposed PF and the standard PF or, the CKF-RD is considerable and is worth the relatively higher
computational cost paid to obtain it.
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Figure 11. RMSE vs. time steps considering p = 0.5. (a) RMSE of position (b) RMSE of velocity (c)
RMSE of turn rate (Problem 3).

Further, to observe the impact of latency probability on the performances of the different filters,
the time-averaged value of the RMSEs of the position, velocity and turn rate are plotted against
different values of the p in Figure 12a–c, respectively. It can be seen that with high value of probability,
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that is, when the random delays are more likely, the standard PF and proposed PF with N = 1 become
significantly less applicable than the proposed PF with N = 2. It can also be observed that when the
probability is high with insufficiently higher value of N, the rate of packet drops increases and even
the performance of the proposed PF (N = 2) gets deteriorated.

The performance of the proposed PF and PF-MD is compared in terms of the RMSE in Figure 13.
To be in synchronization with the model of Reference [29], the measurements used for the estimation
are without any packet drops. It can be observed from the plot that without the knowledge of
latency, the performance of PF-MD degrades considerably, which suggests estimation of the latency
is needed as it is presented in the proposed PF. Table 5 shows the relative computational burden for
different filters.
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Figure 12. Average RMSE vs. probability (a) Average RMSE of position (b) Average RMSE of velocity
(c) Average RMSE of turn rate (Problem 3).
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Table 5. Relative computational time for different algorithms.

Algorithms Relative Computational Time

CKF-RD 0.025
Standard PF 1

PF-MD 1.512
Proposed PF 1.610
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Figure 13. RMSE of different filters for measurements with no packet drops considering p = 0.5.
(a) RMSE of position (b) RMSE of velocity (c) RMSE of turn rate (Problem 3).

6. Conclusions and Discussion

The standard PF loses its applicability if measurements are randomly delayed at the receiver.
The random delays are possible in a system where the sensor and the receiver are connected through a
network with bandwidth limitation.

In this paper, a recursion equation of the importance weight was developed to handle delays
in measurements. A practical measurement model based on i.i.d. Bernoulli random variables,
which includes the possibility of random delays in receiving the observations along with the packet
drop situation if any measurement suffers a delay more than the data buffer length, was adopted.
Moreover, the latency probability of the received measurements is usually unknown in practical cases.
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Hence, this paper presented a method to identify the latency probability in the randomly delayed
measurement environment. Further, this paper explored the conditions to ensure the convergence of
the proposed PF and the trade-off in selecting the maximum delay.

To validate the performance of the proposed filter and demonstrate its superiority, three numerical
examples are simulated using the standard PF, the CKF-RD, the proposed PF with wrong selection of
maximum delay and the proposed PF with the correct value of maximum delay. Simulation results
show that a filter designed for the delayed measurements, even considering less delay than the actual,
performs better than the standard PF. If the random delay is more likely in a system, number of
the maximum possible delay should be chosen such that it strikes a balance between avoiding the
information loss and minimizing the convergence error. Further, the proposed PF is compared
with PF-MD, which is designed for the multi-step randomly delayed measurements without any
packet drops and assumes that the latency probability is known. Simulation results showed that the
performance of a filter depends on the correct value of latency and its estimation is necessary for the
better accuracy of the filtering process.
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Abbreviations

The following abbreviations are used in this manuscript:

pdf Probability density function
PF Particle filter
EKF Extended Kalman filter
UKF Unscented Kalman filter
EM Expectation-Maximization
SMC Sequential Monte Carlo
SIR Sequential importance resampling
LL Log-Likelihood
CKF-RD Cubature Kalman filter for randomly delayed measurements
PF-MD(IL) Particle filter for multiple delayed measurements with incorrect latency
PF-MD(TL) Particle filter for multiple delayed measurements with true latency
RMSE Root mean square error
BOT Bearing-only tracking
i.i.d. Independently and identically distributed
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