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Abstract: Metamaterials, artificially engineered structures with extraordinary physical properties,
offer multifaceted capabilities in interdisciplinary fields. To address the looming threat of stealthy
monitoring, the detection and identification of metamaterials is the next research frontier but have
not yet been explored. Here, we show that the crypto-oriented convolutional neural network (CNN)
makes possible the secure intelligent detection of metamaterials in mixtures. Terahertz signals were
encrypted by homomorphic encryption and the ciphertext was submitted to the CNN directly for
results, which can only be decrypted by the data owner. The experimentally measured terahertz signals
were augmented and further divided into training sets and test sets using 5-fold cross-validation.
Experimental results illustrated that the model achieved an accuracy of 100% on the test sets,
which highly outperformed humans and the traditional machine learning. The CNN took 9.6 s to
inference on 92 encrypted test signals with homomorphic encryption backend. The proposed method
with accuracy and security provides private preserving paradigm for artificial intelligence-based
material identification.

Keywords: metamaterial identification; deep learning; homomorphic encryption; private preserving;
terahertz time domain spectroscopy (THz-TDS)

1. Introduction

Metamaterials are artificial materials, designed with special structures, and can exhibit
controllable electromagnetic properties [1], which are entirely different from their constituent
materials. The broad application of metamaterials in (bio)sensing [2–4], imaging [5,6], cloaking [7–11],
radar [12], and telecommunications [13] have drawn extensive attention. The development history
of metamaterials has experience from equivalent medium metamaterials and surface plasmon
metamaterials to information and smart metamaterials [14]. With the continuous efforts of scientists,
people have made it possible to digitally encode metamaterials, which means that the big gap between
metamaterials and the digital world has been bridged, and intelligent information metamaterials
have become an effective bridge between the physical world and the digital world. In the future,
metamaterials may become ubiquitous and affect our human being everyday life in many aspects.
For example, the imager based on intelligent metasurfaces decorated as a part of wall has already been
capable of remotely detecting body movements and restoring high-resolution images of the human
body [5]. Other research [10] has designed a multi-wave metasurface carpet cloak, which can hide
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objects with arbitrary shapes and sizes under electromagnetic, acoustic, and water waves. Meanwhile,
intelligent metasurfaces may also have the capabilities in 5G/6G wireless communication systems,
where eavesdropping and anti-eavesdropping would become very important. Possessing the ability to
change the direction of wave propagation, metamaterials have been used as stealth material especially
in military. Although metamaterials have enabled reconfigurability, adaptability, and scalability,
and the dawn of their application have already been made great strides, up to now, there are still many
interesting physical and practical application researches not yet been explored, such as monitoring
and eavesdropping through abusing smart metamaterials, which makes the identification of it an
effective way of reconnaissance. As such, this paper proposed a secure and intelligent identification of
metamaterials against the potential threat.

For different electromagnetic frequency ranges, metamaterial characterization methods are various.
In terahertz (THz) band, time-domain spectroscopy (TDS) is widely employed due to its outstanding
performance on extracting both amplitude and phase information. In recent years, rapid advances and
considerable application has been witnessed in THz technology such as sensing [15,16], switching [17],
modulation [18], and antenna [19]. Besides, numerous scientific publications have been devoted to the
use of THz techniques for the detection and identification of materials in recent decades. THz–TDS has
been employed as a major probing technique combining with traditional detecting methods to determine
the water status incorporated in hydrous minerals [20]. The research of optical parameters of absorption
coefficients and refractive index proved that THz–TDS was a promising technique in dehydration
analysis. The TDS data were manually analyzed by the positions of absorption peaks or other spectral
fingerprints, resulting in time consuming human identification. Until recently, machine-assisted THz
technique was reported for the identification of 13 kinds of bi-heterocyclic compounds [21], where
features of compounds were extracted from their THz spectra using principal component analysis
(PCA), and then classified by the kernel support vector machine (SVM). The system achieved 100%
accuracy of the classification of the test compounds, highly surpassing human identification ability.

These previous researches on THz spectra identification evolved from human observation
to machine learning methods which mainly required the use of appropriate input features and
mathematical apparatus for good performance. There is a tendency to use SVM with PCA in
classification, and they indeed achieved perfect accuracy in some cases. However, SVM is based
on handcrafted feature engineering. That is, the input features should be carefully selected during
preprocessing in order to get good performance. This hand-tuning work is both labor intensive and
time consuming, especially for identifying metamaterials whose electromagnetic responses are strongly
correlated to many parameters, such as wave incidence angles, polarizations, sample azimuthal angles,
geometric structures, and so on.

To this end, deep learning assisted THz identification may offer capabilities, since it is currently
the widespread state-of-the-art pattern recognition method. With the historical opportunities brought
by big data and hardware acceleration, unprecedented breakthroughs have been made in the field of
computer vision. In the task of classification on ImageNet [22], the convolutional neural networks
(CNN), i.e., the AlexNet [23], VGG [24], GoogLeNet [25] and ResNet [26] ushered in a remarkable
breakthrough, and to some extent, have settled the feature extraction problem in computer vision.

Despite the recent progress on accuracy, private concerns raise because of the sensing data exposed
to artificial intelligence (AI), which hinders the application of AI-based identification [27]. If we
provided an online metamaterial identification service and other labs attempted to use it, they would
need to upload sensing data to our server, resulting in the leakage of both sensing data and identification
results. One possible solution is differential privacy [28], where one can determine the amount of
data leaked by a single record. However, the concept is useless in the application stage since we are
interested in individual record. Another option is the federated learning which uses a more secure
aggregation protocol, secure multi-party computing, and the federated average algorithm to train a
model without revealing data [29,30]. Nevertheless, the server still has to use sensing data in plaintext
during the application stage. One promising solution to these problems is homomorphic encryption
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(HE) [31], an algorithm to perform computation on encrypted data in the application stage, which is
highly practical as basic extensions of privacy-preserving [32]. HE supports essential addition and
multiplication operations in CNN. Using HE, the data owner can employ the public key to encrypt his
data, send them to the identification server who has no access to the secret key, and finally receive the
results in ciphertext.

Inspired by the potential threat of the abuse of metamaterials, in this work, we investigated the secure
application of AI techniques to THz identification, exemplified with the identification of metamaterial in
mixtures. Through recording THz electromagnetic responses from metamaterial mixed samples, a large
number of signals with or without metamaterial were extracted and augmented. A crypto-oriented CNN
with HE-backend was applied and we achieved a remarkable accuracy of 100%.

The innovation of this article lies in (1) this work found the gap in the field of metamaterial
identification and filled it with the advanced deep learning method. (2) Considering the application of
proposed identification method, a crypto-oriented CNN with HE backend was developed to provide
secured identification service. The primary goal of this work is to provide practical AI method for THz
signal identification. To the best of our knowledge, this is the first study on the secure use of AI for
THz signal identification.

2. Materials and Methods

The workflow of private preserving THz metamaterial identification is shown in Figure 1. First
in THz-TDS system, the THz wave passed through two lenses, focused onto samples to get the
electromagnetic response signals. To meet the need of big data, random augmentation was adopted
according to the possible noises. Then, fast Fourier transformation was employed to convert these
augmented signals to frequency-domain as the input of CNN. In the training stage, CNN can learn
discriminative features through minimizing loss and updating parameters. Once the network was
trained well enough to identify the existence of metamaterial, parameters in the model would be
exported for application. Afterwards, the model was ready for a private call in application stage, where
one encrypted the original data, fed into the network and got the results back in ciphertext, which can
only be decrypted by oneself.
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2.1. THz Measurement 

In the data acquisition process, a home-built THz-TDS driven by a femtosecond fiber laser was 
employed [2]. The THz wave radiated from a commercial photoconductive antenna. In the first place, 
a femtosecond fiber laser pumps an InGaAs photoconductive antenna to generate a horizontally 
polarized THz pulse, which was focused onto the sample through two lenses. The transmitted THz 
pulse after the sample passes through both lenses to the receiving antenna. In this experiment, we 
collected the spectra of 66 samples, among which 32 contained metamaterials and 34 without 
metamaterials. For samples with metamaterial, we changed the sample azimuthal angle randomly 

Figure 1. The workflow of private preserving terahertz (THz) metamaterial identification. Photocurrent
signals of samples were obtained from THz measurement system and then transformed to
frequency-domain. The training stage in plaintext and the application stage in ciphertext are illustrated
in the upper right and lower right parts, respectively.

2.1. THz Measurement

In the data acquisition process, a home-built THz-TDS driven by a femtosecond fiber laser was
employed [2]. The THz wave radiated from a commercial photoconductive antenna. In the first
place, a femtosecond fiber laser pumps an InGaAs photoconductive antenna to generate a horizontally
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polarized THz pulse, which was focused onto the sample through two lenses. The transmitted
THz pulse after the sample passes through both lenses to the receiving antenna. In this experiment,
we collected the spectra of 66 samples, among which 32 contained metamaterials and 34 without
metamaterials. For samples with metamaterial, we changed the sample azimuthal angle randomly
from 0◦ to 180◦, and added some background materials such as glucose, lactose, and medicines
(Vitamin B, ibuprofen, and cimetidine). The metamaterial design parameters are the same in this
literature [2]. Fourier transformation was employed to turn the probed temporal waveform signals into
frequency-domain, and the amplitudes were input into CNNs to get the binary classification results.

The existence of metamaterials in the mixture is very challenging for humans to distinguish because
many factors, such as wave incidence angles, polarizations, sample azimuthal angles, and geometric
structures may lead to overlapping absorption peaks in the spectrum. Here we take the mixture of
metamaterial and lactose as an example. As is illustrated in Figure 2a, for a specified compound, lactose,
all curves with and without metamaterial have similar trends, featuring large interclass similarity.
Furthermore, all mixture curves with different azimuthal angles present subtle varieties, indicating
great intra-class variances. For example, both blue and orange curves represent the existence of
metamaterial with different azimuthal angles, while the orange curve has higher amplitude between
0.75–1.2 THz than that from the blue one. Based on the aforementioned discussion, it is known that
the similar resonant features for both the intentionally designed THz metamaterials and the mixed
sample materials make the manual analysis by human alone very difficult. A more advanced method
is highly demanded.
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Figure 2. (a) Frequency-domain spectra of metamaterial-lactose mixtures with different azimuthal
angles of 0◦, 40◦, 90◦, respectively. The grey dotted line is the reference signal without any samples;
(b) Data augmentation on THz temporal waveform signals. A-F represent signals with attenuation of
70%, 80%, 90%, and signals adding Gaussian noises with mean value 0 and variance 5 × 10−9, 10−9,
10−10, respectively.

2.2. Data Augmentation

Deep learning benefits from big data, but it is prohibitively expensive to experimentally collect
large-scale databases in terms of time and labor cost. Alternatively, data augmentation is convenient
to extend the dataset without extra cost. The straightforward approaches for image augmentation
include random flipping and random cropping, which are widely used in image identification and
validated to be effective. While the aforementioned augmentations were designed for two-dimensional
RGB images, which were not applicable to one-dimensional single-channel THz data.

We considered two possible ways to expand the data. First, random perturbation was added to
the original time-domain data to simulate system noises. Considering that the data ranged from −9−9

to 10−8 A, three kinds of Gaussian noises with mean value 0 and variance 10−10, 10−9, 5 × 10−9 were
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added. The second method to enlarge data scale was simulating the power reduction of the THz source
by attenuating the raw time-domain data to 70%, 80%, and 90%. Figure 2b shows the augmentation
results, where one spectrum was augmented to seven with different noises and attenuations. With these
augmented data, the diversity of training signals was enhanced, and, therefore, the generalization
ability of AI model can be improved. We divided the augmented dataset into training set and test set
using 5-fold cross-validation.

2.3. Crypto-Oriented CNN Design

The augmented Fourier transformed data was the input of the CNNs, the ability of which
to construct abstract features makes it well suited to metamaterial identification. To design a
crypto-oriented CNN, the depth of CNN should be constrained to prevent accumulated noises in HE
decryption, and the ReLU [33] activation should also be replaced due to the limited nonlinear operation
supported by HE. Our model comprised two convolutional layers, followed by a fully connected
layer. After each convolutional layer, square activation was chosen to improve the ability of nonlinear
expression, also alleviate the problem of gradient disappearance. Square activation is defined as
Square(x) = x2. Details of CNN are exhibited in Figure 3. Convolutional layer processed the input
signal, a one-dimensional array with 61 numbers, by convolving it with a bank of kernels. The shape of
kernel to each convolutional layer was (32,3) and (8,3), respectively. Both convolution operations were
represented in Figure 3 as cones and had a stride of 2. Subsequently, the red square activation operation
worked to provide nonlinear modeling for network. Then, the output of last square activation was
flattened to transform the feature to a one-dimensional shape. Finally, the fully-connected layer
mapped distributed feature representation to output space. The pooling function was not adopted
since max-pooling is not supported by HE and average-pooling was proved inadequate in experiments.
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Figure 3. Convolutional neural network (CNN) inferences on raw frequency-domain spectrum using
two convolutional layers and one fully-connected layer. “Input” layer was a vector of 61 numbers.
In the first “Conv1D” operation, which was represented as a green cone, input signals were convolved
by 32 kernels with shape 1 × 3. Then the 30 × 32 shaped output was obtained and represented as a
black-and-white grid. Subsequently, the “Square activation” operation was added as a light red square.

To be precise, assuming l to be the number of layers. Before training, weight and bias of each
neuron should be initialized as random values W and b. The data-label pairs were fed through the
network as training samples to generate prediction. For input tensor zl, the convolution process ’*’
resulted in tensor zl+1, as the input for next convolutional layer.

zl+1 = Square(zl
∗Wl+1 + bl+1) (1)
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In the last fully-connected layer, the unnormalized probabilities (aka logits) o was obtained and
regarded as the confidence of metamaterial existence.

o = zlWl+1 + bl+1 (2)

Then, sigmoid function was performed to obtain predicted class labels ŷ. The errors between
ŷ and ground truth labels y were calculated using binary cross-entropy (BCE) loss function [34,35],
and then back-propagated through the network employing the chain rule. The above iteration would
stop when training epoch is up to 100. Sigmoid scaled each component in the interval (0,1), thus can
be interpreted as probabilities. As a nonlinear function, sigmoid would not participate in the HE
operation in application stage. The definition of sigmoid is shown as below.

ŷ= sigmoid(o) =
1

1 + exp(−o)
(3)

The goal of training CNNs was to minimize the error between ŷ and y. To penalize non-matching
cases, BCE error function of batch m is defined to better align network outputs and targets.

L(ŷ, y) = −
1
m

m∑
i = 1

(yi log ŷi + (1− yi) log(1− ŷi)) (4)

After that was the back-propagation, which aimed to update parameters by computing partial
derivative from the output layer to the input layer.

∂L(ŷi, yi)

∂W
=

m∑
i = 1

prod(
∂L(ŷi, yi)

∂o
,
∂o
∂Wi ) (5)

Function “prod” returns the product of all the values present in its arguments. The performance
of the network was improved by approximately minimizing the training objective. Root mean square
propagation (RMSprop) [36], an adaptive learning rate method proposed by Geoff Hinton, was expected
to address sharp decline in learning rate. For parameter θt at time t, the new θt+1 was obtained.

θt+1 = θt −
η√

E[g2]t + ε
gt, (6)

E
[
g2

]
t
= γE

[
g2

]
t−1

+ (1− γ)g2
t , (7)

where the learning rate η was suggested to be 0.001 and gt denoted the gradient at time t.
The denominator was the decaying average of the root mean square of the gradient. Adding
momentum γ made the speed on the dimension with constant gradient go faster and the changed
gradient go slower, so it could accelerate convergence and reduce oscillation.

2.4. Private Preserving Application

Figure 4 shows how the HE enables a client to implement AI identification on confidential THz
signals using a remote, untrusted server. Client encrypted his data using public key pk and sent it to
remote server, which was received and fed into crypto-oriented CNN model. Afterwards, the client
decrypted the output of CNN using secret key sk and performed sigmoid function to obtain the final
results. In no case should the server gain access to the existence of metamaterial.



Sensors 2020, 20, 5673 7 of 11

Sensors 2020, 20, x FOR PEER REVIEW 6 of 11 

 

Then, sigmoid function was performed to obtain predicted class labels ŷ . The errors between 
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Figure 4. Secure application in client-server model. Possessing private data waiting for identification,
client encrypted his plaintext using public key for ciphertext, which was then received by the server.
Without decrypting it, the server performed calculations of CNN with homomorphic encryption (HE)
backend directly and sent the decrypted results to the client, who uncovered results with his secure key.

Our fully homomorphic encryption scheme is based on the assumed hardness of the Ring
Learning with Errors problem [37], whose parameters contain N as the polynomial modulus degree.
It is necessary to select parameters of sufficient size so that the amplification of random noise will not
make the original message unrecoverable. Therefore, the multiplication times on the ciphertext should
be no more than L, the maximum multiplicative depth. In experiment, we chose N = 213 and L = 8.
Privacy was guaranteed through four algorithms:

• KeyGen, a randomized algorithm that takes a security parameter λ as input, generates some
representations of a finite ring R with addition operator ⊕ and multiplication operator ⊗,
and outputs a sk and pk.

• Enc, a randomized algorithm that takes pk and a plaintext πas input and outputs a ciphertext ψ∈ R.
• Dec takes sk, ψ as input and outputs the plaintext π.
• Eval is an efficient algorithm which takes pk, ring R and a tuple of ciphertexts ψ= {ψ1, . . . ,ψt

}
as

input, and outputs a ciphertext ψ ∈ R.

For any plaintext π1, π2 ∈ R, we have

Dec(Enc(π1)) ⊕Dec(Enc(π2)) = π1 + π2, (8)

Dec(Enc(π1)) ⊗Dec(Enc(π2)) = π1 ×π2, (9)

where + and × are the standard addition and multiplication operations in the ring R. The correctness
of scheme is defined as

if ψ← Eval(pk, R,ψ), then Dec(sk,ψ)→ R(π1, . . . ,πt). (10)

3. Results and Discussion

The CNN model was implemented by the deep learning framework Keras with TensorFlow
backend on a workstation equipped with one Intel Core i7-6700 3.40 GHz Processor (64 GB memory)
and one NVIDIA TITAN RTX GPU (24 GB graphic memory).

Figure 5 is the test process taking one-fold as an example, where accuracy quickly arrived at
100%, indicating the model’s robustness and ability in predicting. Compared with the red line,
data augmentation also has a remarkable effect in enhancing stability.
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Figure 5. Comparison of accuracy on test set with and without augmentation in one-fold, where
augmentation rendered the convergence faster and smoother.

We conducted the comparison experiment following the mainstream SVM algorithm. The method
consisted of two stages. First, PCA was utilized to extract relevant features from a set of observed
spectra, and then as input of the SVM with Gaussian kernel to classify the features. Considering the
61 neurons in one input tensor, we chose principal components from 5 to 60.

To prove the difficulty of distinguishing metamaterial according to its THz spectrum, we carried
out an experiment on 50 people as human baseline. These people, randomly divided into five groups for
each fold test, were asked to figure out which spectrum belongs to metamaterial. Figure 6a illustrates
the result as follows. Inevitably, due to the anisotropy of metamaterial in mixture, the spectra are too
hard to differentiate by human eyes, achieving the mean accuracy of only 56.95%. Traditional SVM
method performed better, with mean accuracy of 87.9%. However, deep learning method CNN has the
most outstanding performance, with the accuracy of 100% on every fold.
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Frequency-domain spectrum of pure α-lactose monohydrate and its corresponding ciphertext are
shown in Figure 6b. HE worked by introducing random noises to ensure privacy. Noises ranging from
−4874.36 to 4013.41 are larger than the signals by exorbitant orders of magnitude, which is efficient
enough to prevent information leakage.

When security is applied to sensitive data, a balance must be found between accuracy and
computational complexity. Different approaches present different trade-offs in terms of accuracy and
speed. Though outperforms as the fastest algorithm, SVM does not support any encryption and has
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poor accuracy. Several HE approaches with different parameters, N and L, all achieved the accuracy of
100%, among which we figured out the one with the shortest time and least computation, featuring
N = 213, L = 8 and time of 9.6 s on a batch of 92 signals. Even though runtimes increased after employing
HE, we must note that runtimes are independent of batch size since computation graphs provide a
mechanism for parallel identification. Batching only increases throughput significantly.

4. Conclusions

In summary, we identified the existence of metamaterial in mixtures using THz technique and
crypto-oriented CNN model. The feasibility of CNN has been demonstrated against the traditional
and extensively used machine learning-based approaches, since it can be trained by the raw signals
to learn discriminative features. The main contribution of this paper is to implement identification
of metamaterials in mixtures which is a challenging task for human and SVM. With the assistant of
AI, metamaterials can be successfully identified with high efficiency. The superiority was proved by
evaluating the performance with human beings and SVM, where the classification accuracy on test
set is obviously improved. Furthermore, HE was integrated for security purpose, thus, the private
preserving identification service can be applied in client-server model. Although we assumed a certain
structure, our method is applicable to other configurations of metamaterials only with the network
structure fine-tuned.

Our work demonstrates the applicability of AI to the THz recognition field. Under the premise of
sufficient data, AI will open up a new research path for the THz identification of different materials.
With the improvement and popularization of THz technology in the future, AI will be closely combined
with THz technology in the fields of (bio)sensing, imaging, cloaking, and 5G/6G wireless communication.
Meanwhile, numerous sensitive THz detectors that can collect the electromagnetic data of celestial
objects in the THz band have emerged. This advanced work may shed light in various AI-based
applications, such as THz astronomy, security, and smart sensing. We also hope that AI and THz
technology will cross over into better results in the future.
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