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Abstract: The core objective of this paper is to develop and validate a comprehensive visual sensing
concept for robustly classifying house types. Previous studies regarding this type of classification show
that this type of classification is not simple (i.e., tough) and most classifier models from the related
literature have shown a relatively low performance. For finding a suitable model, several similar
classification models based on convolutional neural network have been explored. We have found out
that adding/involving/extracting better and more complex features result in a significant accuracy
related performance improvement. Therefore, a new model taking this finding into consideration has
been developed, tested and validated. The model developed is benchmarked with selected state-of-art
classification models of relevance for the “house classification” endeavor. The test results obtained
in this comprehensive benchmarking clearly demonstrate and validate the effectiveness and the
superiority of our here developed deep-learning model. Overall, one notices that our model reaches
classification performance figures (accuracy, precision, etc.) which are at least 8% higher (which is
extremely significant in the ranges above 90%) than those reached by the previous state-of-the-art
methods involved in the conducted comprehensive benchmarking.

Keywords: classification; house architecture type classification; house type classification;
convolutional neural networks

1. Introduction

Most visual sensors integrate an image classification related functional bricks. Indeed, image
classification is one of the branches of computer vision. Images are classified based on the information
abstracted from a series of sequential functional processes, which are preprocessing, segmentation,
feature extraction, and finding best matches [1]. Figure 1 roughly illustrates both the input (s) (i.e., an
image or some images) and the output of the classifier module. It gets a color image as input and it
returns the house-type label, which may be, for example, a bungalow, a villa, a one-family house, etc.
Various factors or artefacts in the input images may result in a significant reduction of the classification
confidence. Some examples: artifact in image like garden, poor view of image or their neighbor’s houses.
Worth mentioning is that object classification from visual sensors generated images is a functional
brick of high significance in a series of very practical and useful use cases. Some examples of use-cases,
just to name a few, are found in real-world robotic applications, such as image/object recognition [2],
emotion sensing [3], search and rescue missions, surveillance, remote sensing, and traffic control [4].

Automatically recognizing the architectural type of a building/house from a photo/image of
that building has many applications such as an understanding of the historic period, the cultural
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influence, a market analysis, city planning, and even a support of the price/value estimation of a given
building [5–7].

Various candidate known image classification concepts/models can be used for performing this
house classification endeavor.
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house classification task although some of them (e.g., SVM) have been proven to be universal 
approximators. Therefore, one should use/involve truly much high-performing concepts to solve this 
very difficult/challenging classification task at hand [10]. It is also shown that combining those 
traditional methods with dynamical neural networks like cellular neural networks can result in a 
significant performance improvement. For example, Al Machot et al. [11] showed that combining 
SVM with cellular neural networks considerably improves the SVM performance; this new resulting 
hybrid model can thus be used as a very fast and robust detector/classifier instead of using the sole 
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In the recent years, the use of convolutional neural networks (CNN) has been increasing at a fast 
rate for classification and various data processing/mining tasks [12–19]. The input/output data can be 
represented as arrays or as multi-dimensional data like images. At the heart of a CNN network, we 
have convolution operators by which the input values in each layer are convoluted with weights 
matrices [20]. After/before these operations, other operations like sub-sampling (e.g., Max-pooling) 
or “batch normalization” can be used [17,21]. This process can be repeated and thereby creates several 
layers of a deep neural network architecture. The last layer is finally connected to a so-called “fully 
connected” layer. In addition, the network can have some additional channels for different features 
like putting RGB channels or an edge or blurred image as additional channels [22–26]. The main idea 
behind this complex structure is based on filtering non-appropriate data. Each filter which is applied 
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Figure 1. The “House type” classification’s overall process pipe (Source: own images).

Thus, as we have a classifier model, the model should be optimized w.r.t. to a related
loss function. In this case, we use one of the most famous loss functions, which has been often
used for classifications tasks, the so-called categorial cross entropy [8,9]. Equation (1) presents this
chosen loss function:

L(y, ŷ) = −
1
N

M∑
j=1

N∑
i=1

[
yi,j log

(
ŷi,j

)]
(1)

where L is the chosen loss function; N is the number of class categories; M is the number of samples;
yi, j relates to the different true labels; and ŷi, j relates to the different predicted labels. During the
training process, the model will be optimized in a way such that the minimum value of the objective
function L in Equation (1) is reached. Subsequently, the model shall be tested and verified.

There are several traditional image classification schemes such as SVM (support vectors machine),
just to name one, which can theoretically/potentially be used [10]. However, most of them are
not robust enough to capture and learn the relatively very complex patterns involved here in the
house classification task although some of them (e.g., SVM) have been proven to be universal
approximators. Therefore, one should use/involve truly much high-performing concepts to solve
this very difficult/challenging classification task at hand [10]. It is also shown that combining those
traditional methods with dynamical neural networks like cellular neural networks can result in a
significant performance improvement. For example, Al Machot et al. [11] showed that combining
SVM with cellular neural networks considerably improves the SVM performance; this new resulting
hybrid model can thus be used as a very fast and robust detector/classifier instead of using the sole
SVM model.

In the recent years, the use of convolutional neural networks (CNN) has been increasing at a fast
rate for classification and various data processing/mining tasks [12–19]. The input/output data can
be represented as arrays or as multi-dimensional data like images. At the heart of a CNN network,
we have convolution operators by which the input values in each layer are convoluted with weights
matrices [20]. After/before these operations, other operations like sub-sampling (e.g., Max-pooling) or
“batch normalization” can be used [17,21]. This process can be repeated and thereby creates several
layers of a deep neural network architecture. The last layer is finally connected to a so-called “fully
connected” layer. In addition, the network can have some additional channels for different features
like putting RGB channels or an edge or blurred image as additional channels [22–26]. The main idea
behind this complex structure is based on filtering non-appropriate data. Each filter which is applied
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will remove some uninteresting/non-appropriate data. Therefore, it results into a smaller network
structure and thus the training requires less time as this technique will shrink the searching area.

The Convolutional Neural Network concept was first introduced by Yann LeCun et al. [17] in
the 1980s. This model has been created based on both convolutional and sub-sampling layers.
Although this model was introduced in the 1980s, it was not yet used popularly in the first
years, as computing’ processing power and other resources were still very restricted and limited.
But nowadays, those restrictions have been removed due to the recent “computing”-related
technological advances/progress and one has seen various usages/applications of such neural networks
for significantly large problems.

The model developed and used in this paper is based on a CNN architecture, whereby, however,
features are extracted through different input channels. In Section 2, we briefly discuss some related
works of relevance for house classification. Our novel model is then comprehensively explained in
Section 3. Thus, in Section 4, our model is tested and compared with another relevant models while
using/involving the very same test data and the results obtained are comprehensively analyzed and
discussed. To finish, in Section 5 concluding remarks are summarized.

2. Related Works

Numerous approaches for image classification have been presented over the years. In 1998,
LeCun et al. [27] presented a convolutional neural network model to classify handwritten digits.
This model (called LeNet-5) comprises three convolutional layers (C1, C3, C5), two average pooling
layers (S2, S4), one fully connected layer, and one output layer (see Figure 2). This model involves
sigmoid functions to include/consider nonlinearity before a pooling operation. The last layer
(see output layers) is using a series of Euclidian Radial Basis Function units (RBF) [28] to classify
10 digits amongst 10 possible classes.

LeNet-5 and LeNet-5-(with distortion) reached after extensive experiments an accuracy of 0.95%
and 0.8%, respectively, on the MNIST data set. However, by increasing both the resolution of an image
and the number of classes of a classification endeavor, the machine needed for computing consequently
requires more powerful processor systems (e.g., GPU units) and a much deeper convolutional neural
network model.
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Figure 2. Architecture (our own redrawing) of the LeNet-5 model [27].

In 2006, Geoffery Hinton and Salakhutdinov showed that the neural network with multiple
hidden layers can improve the accuracy of classification and prediction by improving different degrees
of abstract representation of the original data [29].

In 2012, Krizhevky et al. [30] introduced a large deep CNN (AlexNet). The AlexNet model is
much bigger than LeNet-5 with the same acritude (see Figure 3). This model has 5 convolutional layers
and 3 fully connected (FC) layers. The rectified linear unit (ReLU) and the FC layers enables the model
to be trained faster than similar networks with tanh activation function units. They also added a local
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response normalization (LRN) after the first and the second convolutional layer; that enables the model
to normalize information. They further added a max-pooling layer after the fifth convolutional layer
and after each LRN layer. The stochastic gradient descent (SGD) method has been used for training the
AlexNet with a batch size of 128, a weight decay of 0.0005 and a momentum of 0.9. The weight decay
works as a regulator to reduce the training error.
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Figure 3. Architecture (our own redrawing) of AlexNet [30].

Also, Jayant et al. [31] presented a model to capture the structural relationships based on statistics
of raw-image-patches in different partitions of a document-image. They compared the Relevance
Feedback (RF) model to the Support Vector machine (SVM) model and reported that whenever the
number of features is large, a combination of SVM and RF is more suitable.

In 2016, He et al. [32] proved that increasing the depth of a CNN processor with more layers
increases model complexity on one hand and decrease convergence rate on the other hand. The main
problem happens due to introducing new intermediate weights and a consecutive training need to
optimize them. For solving this problem, they suggested creating a shallower model with additional
layers to perform an identity mapping. Figure 4 shows their core approach.
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Figure 4. The ResNet model (our own redrawing)—(a) Plain layer; (b) Residual block [32].

The H(x) block is defined as H(x) = F(x) + x. Therefore, F(x) + x will be encapsulated as one
block H(x) and the internal complexity of this block shall be hidden. This model is called ResNet and
it did show 6% to 9% of accuracy error in classification against the CIFAR-10 test set.
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Later, the encapsulation layers concept was extended [33] by introducing a so-called
Squeeze-and-Excitation network (SENet). This model reduces the top-5 classification error to 2.25%.
The main architecture of this model is shown in Figure 5. Each block is composed of four functions.
The first function is a convolution (Ftr). The second function is a squeeze function (Fsq) which
performs an average pooling on each of the channels. The third function is an excitation function (Fex)
which is created based on two fully connected neural networks and one activation function (ReLu).
The last function is a scale function to generate the final output (Fscale). It is known that SENet
has shown/demonstrated very good performance results compared to previous models in terms
training/testing time and accuracy.
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Figure 5. SENet (our own redrawing)—A Squeeze and excitation block [33].

Regarding house classification, a careful study of previous works shows that an automatic
detection of architectural styles, and furthers, much harder, even of house types/classes is not yet
very well developed/researched [34]. Only few studies on the matter have been published so far.
Mathias et al. [35] published a work using SVM to distinguish 4 classes of architectural style, with
a specific focus on “inverse procedural modeling”—thereby using imagery to create a generative
procedural model for 3D graphics.

Shalunts et al. [36] published a further work to classify the architectural styles of facade windows
(see Figure 6). They did thereby use a relatively small dataset (i.e., 400 images) for classifying
the architectural styles of buildings through related typical windows in three classes which are:
Romanesque, Gothics, and Baroque. Ninety images of the dataset were used for training (i.e., 1/3 of the
data of each class).
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Xu et al. [37] developed a 25-class dataset from Wikimedia and used a model involving HOG that
classified through the Multinomial Latent Logistic Regression (see Figure 7). Their model was able to
find the presence of multiple styles in the same building through a single image. Notably, they included
the “American Craftsman” (one of the house styles used in this work) as a class. Both groups (of
authors) lastly mentioned noted the acute absence of a publicly available dataset for architectural
style recognition.
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Figure 7. Schematic illustration (our own redrawing) of an architectural style classification using the
Multinomial Latent Logistic Regression (MLLR) [37].

In 2015, Lee et al. [38] published a work in which they have used a large dataset of nearly 150 k
Google Street View images of Paris, combined with a real estate cadaster map to date building façades
and discover the evolution of architectural elements over time (see Figure 8). Their approach used HOG
descriptors of image patches to find features correlated with a building’s construction time period.
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Figure 8. Sample chain graph (our own redrawing). Elements in adjacent periods are fully connected
with weights depending on their co-occurrence, while the source and sink connect to every node with
weights that penalize the number of skipped periods. Here, the shortest path (in red) skips pre-1800
and 1915–1939 because they lack the long balconies of the other periods. (For clarity, this visualization
shows only four periods (instead of ten), and only some source and sink edges [38]).
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In 2016, Obeso et al. [39] presented a work based on convolutional neural network (CNN) using
sparse features (SF) to classify images of buildings in conjunction with primary color pixel values
(see Figure 9). As a result, their mode achieved of 88.01% accuracy.Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 
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Figure 9. CNN’s architecture (our own redrawing), conformed by four convolutional layers,
three pooling layers, two normalization layers and two fully-connected layers at the end [39].

We conclude from previous studies that house classification requires very sophisticated
classifier models, which shall cover all aspects of the related problem/task and it further becomes
evident that CNN is very good candidate for filling this gap (i.e., solving this tough classification task).

3. Our Novel Method/Model

The basic problem formulation has been graphically presented in Figure 10 which essentially
underscores the goal of the CNN deep neural model to be developed. However, for reaching the goal
with a sufficient accuracy, a series of problems related to the quality of the input “house images” must
be solved.
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Figure 10. The novel global model is composed of (a) house detection and (b) classification modules.
(Source: our own images).

These problems/issues can be grouped into three different categories (see Figure 11):

• Images, which do not contain a house but only some additional information like garden or trees,
make the house classification difficult. Such images are not appropriate for use for a house
classification endeavor.

• Some images are (maybe) captured from a very poor angle of the house and thus the house is not
well recognizable on them.

• Some house classes have strong similarities with other classes; this is a potential source of
misclassification amongst them.
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Figure 11. Image problems’ illustration: poor view/perspective, more pool garden and/or pool instead
of a view of the house, etc. (Source: our own pictures).

For solving the mentioned problems, our overall model (see Figure 11) is designed with two
modules: (a) a house detection module, and (b) a house classifier module.

The house detection module is responsible for finding/detecting/localizing a house and its
bounding box within the input image. Thus, the result of this module is a bounding box in the
input image. It shall also inform us on how much the image has a similarity to a house if at all.
This module/layer helps the classifier to perform much better. The second module/layer is for house
classification. It may consider all the image or, depending on the outcome of the first module,
consider only an image portion within the bounding box identified by the first module/layer. In the
lastly mentioned case, the image portion is cropped from the original input image and it becomes the
input to be given to the second module for classification.

3.1. House Detection

As explained previously, some images contain either very poor views of the house or/and some
additional, for the classifier non-relevant information. Those issues result in decreasing both precision
and accuracy of our classifier module. Therefore, this module is responsible for finding the image
portion(s) which is/are house views and crop it/them. Figure 11 shows the overall house detection model.
The input image is of size 200 × 200 with three channels. As input images may have different sizes,
each original input image must therefore first be rescaled such as to fit either the width or the heights of
200 pixel; the rest of the image may have no values if the image is not a square ( i.e., or rectangular form).
Therefore, the other parts (with no values) will be black in that case (rectangular form of an original
input image). The output of this model (see Figure 12) is one boundary or bounding box. The image
portion surrounded by the detected “boundary box” will be cropped out and it will the “input image”
for the different classifier models described in Figures 13–15 and the other models involved in the
benchmarking process shown in Section 4.

The house detection model contains three main parts: neural layers, feature extraction layers,
and a Non-Maximum suppression layer. The feature extraction layers/channels (pre-processors)
contain different well-known filters, such as the following ones: Blur filter, Sobel filter, and Gabor filter.
These pre-processing filters help/support the model in taking more attention to aspects of the input
image which are more important and much relevant. It is the convolutional neural network which is
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finding the house boundaries. The last part of the CNN architecture is responsible for creating the final
boundary boxes by selecting a bounding box with 95% or a higher similarly factor and create the final
boundary box based on the Non-Maximum Suppression Algorithm with 0.65 overlap threshold.
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Figure 12. House detection model based on a convolutional neural network. The output of the
convolutional neural network will be 4 boundary boxes with four house similarity factors. The boundary
boxes with house similarity of 95% will be selected for Non-Maximum suppression with 0.65 overlapping
threshold. The house boundary box will be the output of the Non-Maximum suppression module.
(source of input image: our own image).

3.2. House Classification

The house classification module is designed to classify the input house images into eight
different types. Figure 13 shows the overall house classification model. The input image is 200 × 200
with three channels. Cropped images from the previous module are first rescaled to fit either its
width or its heights in 200-pixel square, and the rest of the model’s input square (of 200 × 200) has
no values. Therefore, those rest parts of the input square are black. The output of this model is a class
number/label.

On the way to developing the very best model for house classification, we created several models
from which to then select the best suitable one for the task at table. These different models are explained
in this section.

3.2.1. Model I

Our first classification model is composed of five convolutional layers. The outputs of those
convolutional layers go into different max-pool layers. Finally, the output of the last max-pool layer
goes into a dense layer, whereby the latest dense layer has eight output neurons, which are representing
the eight house classes (see Figure 13).
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Figure 13. House classification Model I (Source of input image: our own image).
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3.2.2. Model II

The second model, like the previous model, has five convolutional layers. The result/output
of those convolutional layers will go respectively into max pool layers. Finally, the output of the
latest max pool layer will go into the dense layers. The final dense layer has eight output neurons,
which represent our eight house classes. The main difference between these two classifier models are
the preparation/pre-processing layers of this second model.

These pre-processing layers of this second model provide/generate more details and they are
indeed new channels besides the basic the color channels of the input image. These new additional
channels are respectively: Blur 3 × 3, Blur 5 × 5, Blur 9 × 9, Sobel Filter X, Sobel Filter Y, and Intensity
(see Figure 14).
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Figure 14. The house classification Model II (Source of input image: our own image).

3.2.3. Model III

This model has also two main parts: a) neural layers, and b) features extraction layers. The features
extraction pre-processing layers/channels contain different well-known filters such as the following
ones: Blur, Sobel, and Gabor filters (see Figure 15). Here too, these pre-processing filters help/support
the model in placing more attention on aspects of the input image, which are more important and
relevant for the classification task.
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Figure 15. Modell III—Convolutional neural network for house classification. The output of the model
consists of 8 house classes (Source of input image: our own image).

Indeed, the pre-processing filters provide more relevant features to the model, and this significantly
supports the training process to search and find those features, which are pointing directly to those



Sensors 2020, 20, 5672 11 of 16

parts of the input image, which are most relevant. Figure 16 shows, for illustration, the results of the
image filtering through one of the pre-processing modules, here the Gabor filters. Each Gabor filtered
image is highlighting some interesting features of the image which may help the classifier to better
perform the classification task.
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Figure 16. Effect of the Gabor filters on an input house image: The top row images are produced by
Gabor filters with a kernel size 5, sigma 2, and theta having the following respective values: 0, 45, 90
and 135 degrees (from left to right). The bottom row images are produced by Gabor filters with kernel
size 5, sigma 5, and theta having the following respective values: 0, 45, 90 and 135 degrees (from left to
right). (Source of input image: own image).

4. Results Obtained and Discussion

As previously explained, several images were gathered from the Internet and used for both
training and testing after an appropriate labelling: a total of 1200 images; the number of classes was 8
(see Figure 17 for illustration).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 

 

directly to those parts of the input image, which are most relevant. Figure 16 shows, for illustration, 
the results of the image filtering through one of the pre-processing modules, here the Gabor filters. 
Each Gabor filtered image is highlighting some interesting features of the image which may help the 
classifier to better perform the classification task.  

 

 

 

 

 

 

 

Figure 16. Effect of the Gabor filters on an input house image: The top row images are produced by 
Gabor filters with a kernel size 5, sigma 2, and theta having the following respective values: 0, 45, 90 
and 135 degrees (from left to right). The bottom row images are produced by Gabor filters with kernel 
size 5, sigma 5, and theta having the following respective values: 0, 45, 90 and 135 degrees (from left 
to right). (Source of input image: own image). 

4. Results Obtained and Discussion 

As previously explained, several images were gathered from the Internet and used for both 
training and testing after an appropriate labelling: a total of 1200 images; the number of classes was 
8 (see Figure 17 for illustration).  

 
Figure 17. House types which are considered in this work—here some illustrative examples: (a) is 
Farmer house; (b) is bungalow; (c) is a duplex house; (d) is a detached house; (e) is an apartment 
house; (f) is a row house; (g) is a villa; (h) is a country house. (Source of input image: our own images). 

The developed deep-learning model (made of two modules: see Figures 12 and 15) was trained 
with 600 images and verified with 200 images and tested with 400 other images. Figure 14 shows the 
classification confusion matrix with 200 test images obtained by the best classification model (Figures 
12 and 15).  

All classifier models have been implemented on a PC with Windows 10 Pro, Intel Core i7 9700K 
as CPU, double Nvidia GeForce GTX 1080 TI with 8GB RAM as GPU and 64GB RAM. Here, the 
training takes approximately 8 h. 

(a) (b) (c) (d) 

(e) (f) (g) (h)

Figure 17. House types which are considered in this work—here some illustrative examples: (a) is
Farmer house; (b) is bungalow; (c) is a duplex house; (d) is a detached house; (e) is an apartment house;
(f) is a row house; (g) is a villa; (h) is a country house. (Source of input image: our own images).

The developed deep-learning model (made of two modules: see Figures 12 and 15) was trained
with 600 images and verified with 200 images and tested with 400 other images. Figure 14 shows
the classification confusion matrix with 200 test images obtained by the best classification model
(Figures 12 and 15).

All classifier models have been implemented on a PC with Windows 10 Pro, Intel Core i7 9700K
as CPU, double Nvidia GeForce GTX 1080 TI with 8GB RAM as GPU and 64GB RAM. Here, the
training takes approximately 8 h.

In order to understand and find an objective justification of why the best model is outperforming
the other ones, we conduct a simple feature significance analysis. Hereby, we use the so-called
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NMI (normalized mutual information) for the input features. Table 1 shows the Normalized Mutual
Information (NMI) scores obtained for the input features. It is clearly shown that by adding more specific
features through the multi-channel pre-processing units/modules, the NMI is thereby respectively
significantly increased.

Table 1. Normalized Mutual Information (NMI) Scores obtained for the input features for the various
deep-learning models used (for the test data sets used in this work).

Model
CNN Model without

Multi-Layer Channels
(Figure 13)

CNN Model with
Multi-Channel Features

(Figure 14)

CNN Model with
Multi-Channel Features

(Figure 15)

NMI 79.5% 84.59% 88.19%

Furthers, Table 2 presents the classification performance scores reached for the three models
referred to in Table 1. Here we use the usual multi-dimensional classification performance metrics,
namely accuracy, precision, F1-Score, and recall). Most of the classes have an interference/similarity
problem with the class “country house”; and it is for this reason often mistaken with other house classes.
Therefore, by changing our target function from “Top-1” to “Top-2”, our confusion matrix is
changed/improved and most of the “similarity” problem is significantly solved/reduced (Figures 18
and 19). Indeed, for practical use cases for which this classification may be relevant (e.g.: assessing
the value of a given house for sales or for other purposes), using a “Top-2” classification may be
fully sufficient.

Table 2. Comparison of our novel model’s classification performance through different traditional metrics.

Model
CNN without

Multi-Layer Channels
(Figure 13)

CNN with
Multi-Channel Features

(Figure 15, Top-1)

CNN with
Multi-Channel Features

(Figure 15, Top-2)

Accuracy 86.5% 94.5% 96.4%
Precision 86.6% 94.2% 96.9%
F1 Score 86.7% 94.0% 96.1%

Recall 87.7% 93.9% 95.9%
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Figure 19. Top-2 Confusion matrix of the results obtained by Model III while using 200 test images.
List of classes: FH is farmer house; B is bungalow house; DH is duplex house; OFH is one family house;
MFH is more family house; RH is raw house; V is villa; and CH is country house.

In Table 3, the performance of our novel classifier model is compared to that of some very relevant
previous/related works. These results clearly show/demonstrate that our novel method (which involves
the above discussed multi-channel pre-processing features extraction) has the clearly best performance
when compared to the various other models from the relevant recent literature.

Table 3. Comparison of our novel model’s performance with that of several other state-of-the-art
classifier models published in previous/recent works from the relevant literature.

Model
Mathias

(Involving
SVM) [35]

Montoya
Obesso

(Involving
CNN) [39]

ResNet-18
[40]

ResNet-34
[40]

CNN without
Multi-Layer

Channels
(Figure 13)

CNN with
Multi-Channel

Features
(Figure 15, Top-1)

CNN with
Multi-Channel

Features
(Figure 15, Top-2)

Accuracy 77.1% 88.1% 78.1% 79.8% 86.5% 94.5% 96.4%
Precision 76.9% 87.7% 78.0% 80.1% 86.6% 94.2% 96.9%
F1-Score 76.5% 87.9% 77.8% 77.8% 86.7% 94.0% 96.1%

Recall 75.3% 88.2% 77.9% 75.8% 87.7% 93.9% 95.9%
Memory

Usage 200 MB 100 MB 24 MB 34 MB 20 MB 67 MB 67 MB

Processing
Time 100 ms 12 ms 11 ms 12 ms 9 ms 10 ms 10 ms

One can see in Table 3 that our first CNN model without any additional preprocessing is much
faster than all other models. However, after adding the pre-processing modules (for additional features)
to our first model, the classification performance increases. This can also be seen in Table 1. In addition,
both memory and processing time increase after adding the pre-processing layers.

In order to improve the overall classification performance of the housing prediction, the developed
model has been divided into two modules: the pre-processors module, and the deep-learning module.
The experimental results obtained show that this novel model significantly improves the classification
performance. The price is, however, that more memory is consumed (although not very excessive) and
the processing time slightly increases.
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5. Conclusions

In this paper, a new CNN model for house types classification has been comprehensively developed
and successfully validated. Its performance has also been compared to that of some recent very relevant
previous works from literature. We can say clearly state that our novel classification model has a
much better performance w.r.t. classification performance (i.e., accuracy, precision, recall, F1 score),
memory usage, and even, to a large extent, also w.r.t. processing time.

An objective justification/explanation of the superiority of our novel model presented in Figure 15
is also shown through the fact that adding more features through the different pre-processing units
significantly increases the resulting related “NMI scores” metric. Indeed, we thus understand why
adding additional features (through Sobel and Gabor filters) has resulted in significantly increasing the
model’s classification performance (i.e., accuracy, precision, etc.)

Nevertheless, one could observe some misclassifications: a close analysis of the causes of them
may inspire future works to reach a much better classification performance. Indeed, the fact of adding
several pre-processing features extracting channels in the best-performing version of our novel model
has some drawbacks: (a) it uses more memory compared to the (our first) model without those
additional pre-processing channels; and (b) the training time is much longer, comparatively.

In addition, a few classification errors have been observed. These misclassifications appear to
be caused by the fact that certain house classes/types have a very strong similarity to one another.
Examples: class “Villa” and class “Detached house”. This requires and inspires some future/further
deep investigations and a subsequent better definition of house classes or, as a further option, a merging
of some classes, which are visibly too similar to each other. All this does and shall have (in future
works) the potential to make the overall resulting classification performance much more accurate and
more robust against a series of imperfections of the input house images/photos.

Also, the accuracy of the developed model can be further improved by extending by involving
appropriately adapted inspirations involving, amongst others, a series of technical concepts and
or paradigms such as the so-called “Adaptive Recognition” [41], “Dynamic Identification” [42],
and “Manipulator controls” [43].
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