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Abstract: Due to the growing public awareness of cardiovascular disease (CVD), blood pressure
(BP) estimation models have been developed based on physiological parameters extracted from both
electrocardiograms (ECGs) and photoplethysmograms (PPGs). Still, in order to enhance the usability
as well as reduce the sensor cost, researchers endeavor to establish a generalized BP estimation model
using only PPG signals. In this paper, we propose a deep neural network model capable of extracting
32 features exclusively from PPG signals for BP estimation. The effectiveness and accuracy of our
proposed model was evaluated by the root mean square error (RMSE), mean absolute error (MAE),
the Association for the Advancement of Medical Instrumentation (AAMI) standard and the British
Hypertension Society (BHS) standard. Experimental results showed that the RMSEs in systolic blood
pressure (SBP) and diastolic blood pressure (DBP) are 4.643 mmHg and 3.307 mmHg, respectively,
across 9000 subjects, with 80.63% of absolute errors among estimated SBP records lower than 5 mmHg
and 90.19% of absolute errors among estimated DBP records lower than 5 mmHg. We demonstrated
that our proposed model has remarkably high accuracy on the largest BP database found in the
literature, which shows its effectiveness compared to some prior works.

Keywords: photoplethysmogram (PPG); cuffless blood pressure (BP) estimation; cardiovascular
disease (CVD) prevention; artificial neural network; wearable biomedical applications

1. Introduction

According to a statistical report from the World Health Organization (WHO), cardiovascular
disease (CVD) is the leading cause of death worldwide, with an estimated 17.9 million people dying
from CVD in 2016, representing 31% of global deaths [1]. Early detection and treatment could effectively
reduce the incidence and mortality rates. As a result, there is an urgent need for efficient and reliable
means of managing cardiovascular risk factors, such as diabetes, hypertension or hyperlipidemia.

Blood pressure (BP) is considered to be one of the most important contributory risk factors and,
therefore, real-time monitoring of BP plays a crucial role in saving people from premature death caused
by CVD. The most common automated BP measurement devices are cuff based, as shown in Figure 1.
They take about one to two minutes to produce one set of diastolic blood pressure (DBP) and systolic
blood pressure (SBP) measurements before making another measurement. This type of measurement
can be time-consuming and is often inaccurate [2]. In view of these issues, some neural network-based
regression models were developed and they shortened the time interval of BP measurement from
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1–2 min to less than 10 s. The accuracy of these regression models also met the criteria (i.e., a protocol
of requirements for the evaluation of BP measuring devices) defined and recommended by the British
Hypertension Society (BHS) [3,4]. While these models produced satisfactory performance in terms of
operation time and accuracy for real-time BP estimation, they may not be practical solutions. The key
reason is that these models are required to estimate physiological parameters from electrocardiogram
(ECG) and photoplethysmogram (PPG) signals, implying that physiological parameter extraction from
two different sensors is needed, and this solution incurs substantial cost.
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Figure 1. Traditional blood pressure measurement device.

The other reason is from the basic theory of the classical method of extracting physiological
parameters from ECGs and PPGs, which relies heavily upon the theory based on pulse wave velocity
(PWV). PWV is the velocity of pressure pulse initiated by the heartbeat, propagating through arteries,
similar to a pipe with elastic walls. PWV has been proved to be highly related to BP and their correlation
can be represented as [5,6]:

PWV =

√
E·h

2·r·ρ
, (1)

where r, h, E and ρ denote the radius of the artery, the thickness of the artery, the elastic modulus
of the arterial wall and the density of blood in of the artery, respectively. There are several existing
approaches that can calculate PWV and, among them, the most widely used one for PWV calculation
is pulse wave transit time, commonly referred to as pulse transit time (PTT). The relation between
PWV and PTT can be represented as follows [7]:

PWV =
d

PTT
, (2)

where PTT is the time interval between a pulse wave being detected by two sensors and d is the
distance between the sensors on the artery. In (1), the elastic modulus E is assumed as a constant when
in fact the value of E in the artery is testified to be exponentially escalated with the blood pressure,
as follows [8]:

E(P) = E0·eα·P, (3)

where E0 denotes the elastic modulus at 0 mmHg (the unit of blood pressure) and α is a parameter
larger than zero that is closely related to arterial stiffness. The stiffer the artery, the greater the value of
α. We can find a nonlinear relationship between blood pressure P and PTT after we substitute (1) and
(2) into (3) to be

P = −
2
α
· ln(PTT) +

1
α
·ln

(
2·r·ρ
E0·h
·D2

)
, (4)
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Though it may seem easy from the theoretical perspective, it would be inconvenient and almost
impossible to use (4) directly since there is no way to get all the person-dependent variables in a short
period of time. The other approach is done by extracting a set of representative time indices, including
PTT (p), PTT (d) and PTT (f), as shown in Figure 2, from the relative location between the PPG and
ECG signals [9,10]. However, it is still a very challenging task since the ECG waveform, in particular,
has higher variability [7] and its accuracy is still limited for clinical uses [11].
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Notwithstanding that devices such as, but not limited to, wearable devices that have the capability
of recording both ECG and PPG signals are now thriving in the market, these are still highly priced
and prevent users from having direct access to the data [12]. On the other hand, PPG sensors have
been largely applied in wearable devices. They are popular as a low-cost but robust technology with
full accessibility. Prior works have emphasized the relevance of a more detailed study of PPG signals
only [13–18]. Hence, a ECG-free BP estimation model is preferable to improve the usability and to
reduce the cost since the devices will no longer need additional biosensors for detecting ECG signals.

2. Literature Review

PPG is a non-invasive technique for measuring changes in blood volume due to the blood pulsatile
nature of microvascular tissue under the skin [19]. The characteristics of the PPG waveform, along with
its derivatives, have been discussed in [16,20,21]. Here, we can conclude that taking its first and second
derivatives significantly helps in detecting the informative features in the PPG waveform. From a
biomedical application perspective, [13] shows that PPG is an effective technique for diagnosing several
CVDs and is able to be utilized in new medical tools such as the Internet of Things and biosensors.
The clinical applicability of PPG is also verified in [18], which tried to distinguish individuals with
congestive heart failure from healthy individuals by applying the concept of natural time analysis
(NTA). NTA is applied to analyze a phase change or critical point in a complex system such as the
human heart. The results obtained by PPG demonstrate a comparable value of accuracy to the results
obtained by ECG.

For a more specific BP estimation task, we can basically divide them into two approaches,
feature-based and whole-based methods. In [14], five different features, which consist of the pulse area,
pulse rising time, pulse width at 25% of pulse height, pulse width at 50% of pulse height and pulse
width at 75% of pulse height, were extracted from a PPG segment. Machine learning methods, such as
multiple linear regression (MLR), support vector machine (SVM) and regression tree, were then utilized
for training and testing the data for estimating both DBP and SBP values, with the best overall accuracy



Sensors 2020, 20, 5668 4 of 19

being achieved using the regression tree. Another work, [22], uses several spectral and morphological
features, such as systolic upstroke time and diastolic time. Using artificial neural network (ANN)
architecture for fitting the features to simultaneously estimate the DBP and SBP, this method reduces
the error from the other methods used as comparisons, such as linear regression and regression support
vector machine (RSVM). On the contrary, the whole PPG waveform segment was extracted and used as
the input of deep learning models in [15,17]. Both models comprised a convolutional neural network
(CNN) and its modification to capture the spatial features of the waveforms. Both models achieved
impressive accuracy, with a relatively low distribution of error as well.

3. Materials and Methods

The main flow of the proposed model is illustrated in Figure 3, which was composed of
preprocessing, a feature extractor and a deep neural network predictor. Since the raw PPG might
contain noise and long sequences, preprocessing is necessary for further feature extraction processes.
In this section, a detailed explanation about each part is presented, with a summary introduced
as follows:

• Data preprocessing: This part comprises signal smoothing of raw PPG data and the removal
of abnormal data following standard procedures suggested by [23]. Next, we partition the
preprocessed PPG into an approximately 2.17 million heart cycles.

• Feature extractor: Features from the preprocessed data are further extracted and selected as the
input set.

• Deep neural network predictor: We feed the feature set into a deep neural network predictor,
which consists of five fully connected layers, and each layer contains 2000+ units of fully
connected perceptrons, responsible for predicting BP in each heart cycle from 32 extracted
physiological parameters.
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3.1. Data Source

For every data-driven neural network application, the data themselves mean everything, affecting
regression models from every perspective. Specifically, the diversity of data affects how generalized a
model is and, the more variability the data has, the more generalized the model that can be trained.
Based on this idea, the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) II online
waveform database, which has been refined and prescreened in the literature [9], and contains
12,000 data instances indicating unique subject records and an estimated more than 4 million heart
cycles, was used in this study. Among this enormous dataset, we preselected 9000 data instances for
training, validating and testing our deep neural network predictor.

3.2. PPG Raw Data Preprocessing

Prior to the actual process of estimating the blood pressure using PPG signal exclusively, we conduct
a preprocessing to enhance the quality of the PPG. The raw PPG data preprocessing consists of four main
steps, including noise removal, normalization, feature point detection, and partitioning. The detailed
explanation of each step is presented as follows:

1. Noise removal: Fast Fourier transform (FFT) is applied to every PPG data segment to convert
it from its time domain into the frequency domain. Let x[n], 0 ≤ n ≤ N − 1, represent the PPG,
and the FFT of x[n] is denoted as X[k], 0 ≤ k ≤ N − 1. We remove the frequency components that
are lower than 0 Hz or higher than 8 Hz by turning off those frequency components, as follows

Xr[k] =
{

X[k] k ≥ 8
0 otherwise

, (5)

By removing this range of frequency, we aim at removing noise and the baseline wander. The PPG
signal can then be restored into the time domain with inverse FFT (IFFT).

2. Normalization and 1st and 2nd derivative of PPG calculation (denoted as “dPPG” and “sdPPG”):
All the raw values of PPG are positive, so min–max normalization is applied to every PPG data
segment. The equation of min–max normalization can be represented as (5):

x′ = (x − Xm )/(XM − Xm), (6)

where x are data points in each PPG data segment {X} and Xm and XM are the minimum and
maximum values, respectively, in each PPG data segment {X}. After min–max normalization,
the values of every PPG data segment are within the range [0 1] and dPPG and sdPPG (1st and
2nd derivative of waves of PPG) are calculated at the same time.

3. Feature point detection: Before feature extraction, a few points should be marked and detected
in every cycle of the heartbeat for every signal (PPG, dPPG and sdPPG) for cycle segmentation
and alignment. Firstly, the systolic peaks of PPG waves of each heart cycle are marked by taking
advantage of an algorithm mentioned in [24]. The correctness and validity of the systolic peak
detection algorithm is of vital importance because the rest of the feature point detection algorithm
is based on it. Secondly, the onset and offset valley points of PPG are detected by finding the
minimum between two consecutive systolic peaks. Thirdly, with the valley points of PPG found,
the location with the maximal and minimal slope values of PPG and dPPG can easily be derived by
computing their gradients. Fourthly, the dicrotic notch points of PPG are detected by finding the
secondary peaks of the sdPPG contour [20]. An example set of waveforms is shown in Figure 4.
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4. Partitioning and abnormal cycle removal: After feature points are located, each PPG data segment
and its corresponding dPPG and sdPPG waves are partitioned into fragments by reserving each
PPG data segment from one valley point of PPG to the next consecutive valley point of PPG.
Abnormal heart cycles are also removed following the criteria mentioned in [23]. After abnormal
cycle removal is done, the histograms of distribution of SBP and DBP are plotted, as seen in
Figure 5, and approximately 2.17 million PPG, dPPG and sdPPG data fragments of heart cycles
are obtained.
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3.3. Feature Extraction and Selection Index γ

3.3.1. Feature Extraction

The candidate features are the 65 features proposed in past studies [10,16,25–28], which are
reported to be highly related to blood pressure estimation [11]. Among them, we select 59 features,
including hr, t1, t2, t3, t4, t5, t6, t7, t8, AS, dAS, sdAS, DS, dDS, sdDS, S1, S2, AA, dAA, sdAA, DA, dDA,
sdDA, RAAD, dRAAD, sdRAAD, PI, dPI, sdPI, dVI, sdVI, AID, dAID, sdAID, dDID, sdDID, PIR, dPIR,
sdPIR, dRIPV, sdRIPV, AT, dAT, sdAT, DT, dDT, sdDT, dTVO, sdTVO, Slope_a, S3, S4, RtArea, NI, AI, AI1,
RSD, RSC and RDC. All the definitions of the 59 features are listed in Table 1. The extracted features
are first standardized to value [−1 1] using Z-score normalization, as shown in (7), for each feature:

y′ =
y− µ
σ

, (7)

where y are the elements in each feature and µ and σ are the mean value and standard deviation of
each feature, respectively. Although the authors of [16] observed a phenomenon that the fluctuation in
BP led to conspicuous changes in these 59 features, seemingly unveiling the close correlation between
BP and these 59 features in their dataset, whether the same phenomenon will happen again in our
experimental data source is still unclear and unpredictable due to the fact that the database we use is
not only different but is also more diverse than the dataset mentioned in [16]. Consequently, statistical
experiments on our dataset are recomputed and, moreover, an index γ is introduced to evaluate the
degree of correlation between each feature and BP.

Table 1. Part of the PPG feature definitions and corresponding γs are computed and listed in this table
and all the definitions and denotations are in reference to past studies [10,16,25–28].

Denotation Feature Definition of Feature σ

η1 hr Heart rate # 0.01281 *

η2 t1 Time interval of S1 (as seen in Figure 4) -
η3 t2 Time interval of S2 (as seen in Figure 4) 0.01653
η4 t3 Time interval of S3 (as seen in Figure 4) 0.01637
η5 t4 Time interval of S4 (as seen in Figure 4) 0.01604
η6 t5 Time interval of dAA (as seen in Figure 4) 0.01634
η7 t6 Time interval of sdDA (as seen in Figure 4) 0.01628
η8 t7 Time interval of sdAA (as seen in Figure 4) 0.01673
η9 t8 Time interval of sdDA (as seen in Figure 4) 0.01628
η10 AS Ascending slope of PPG (slope from onset point to maximum peak) # 0.01276 *

η11 dAS Ascending slope of dPPG 0.01455
η12 sdAS Ascending slope of sdPPG # 0.01405

η13 DS Descending slope of PPG (slope from maximum peak to offset point) # 0.01405 *

η14 dDS Descending slope of dPPG 0.01646
η15 sdDS Descending slope of sdPPG # 0.01298

η16 S1 Area under PPG curve between onset point and maximum slope
point (as seen in Figure 4) 0.01556 *

η17 S2 Area under PPG curve between maximum slope point and
maximum peak (as seen in Figure 4) 0.01411 *
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Table 1. Cont.

Denotation Feature Definition of Feature σ

η18 AA Ascending area of PPG (as seen in Figure 4) # 0.01381 *

η18 AA Ascending area of PPG (as seen in Figure 4) # 0.01381 *

η19 dAA Ascending area of dPPG (as seen in Figure 4) # 0.01255 *

η20 sdAA Ascending area of sdPPG (as seen in Figure 4) # 0.01298 *

η21 DA Descending area of PPG (as seen in Figure 4) # 0.01232 *

η22 dDA Descending area of dPPG (as seen in Figure 4) # 0.01228 *

η23 sdDA Descending area of sdPPG (as seen in Figure 4) # 0.01265 *

η24 RAAD Ratio of ascending area to descending area, AA/DA -
η25 dRAAD dAA/dDA -
η26 sdRAAD sdAA/sdDA -
η27 PI Peak intensity of PPG # 0.01261 *

η28 dPI Peak intensity of dPPG # 0.01313 *

η29 sdPI Peak intensity of sdPPG # 0.01305 *

η30 dVI Valley intensity of dPPG # 0.01296 *

η31 sdVI Valley intensity of sdPPG # 0.01299 *

η32 AID Ascending intensity difference of PPG, intensity difference between
maximum peak and onset point

# 0.01324 *

η33 dAID Ascending intensity difference of dPPG, intensity difference
between maximum peak and onset point

# 0.01311 *

η34 sdAID Ascending intensity difference of sdPPG, intensity difference
between maximum peak and onset point

# 0.01305 *

η35 dDID Descending intensity difference of dPPG, intensity difference
between offset point and maximum peak

# 0.01322 *

η36 sdDID Descending intensity difference of sdPPG, intensity difference
between offset point and maximum peak

# 0.01310 *

η37 PIR Peak intensity ratio of PPG, ratio of maximum peak intensity to
onset intensity -

η38 dPIR Peak intensity ratio of dPPG, ratio of maximum peak intensity to
onset intensity -

η39 sdPIR Peak intensity ratio of sdPPG, ratio of maximum peak intensity to
onset intensity -

η40 dRIPV Ratio of maximum peak intensity to valley intensity of dPPG # 0.01305 *

η41 sdRIPV Ratio of maximum peak intensity to valley intensity of sdPPG # 0.01350 *

η42 AT Ascending time interval of PPG # 0.01348 *

η43 dAT Ascending time interval of sPPG 0.01634
η44 sdAT Ascending time interval of sdPPG 0.01673
η45 DT Descending time interval of PPG 0.01490
η46 dDT Descending time interval of dPPG 0.01628
η47 sdDT Descending time interval of sdPPG 0.01628
η48 dTVO Time interval between valley point and offset point of dPPG 0.01569
η49 sdTVO Time interval between valley point and offset point of sdPPG 0.01438
η50 Slope_a Slope from maximum peak to dicrotic notch of PPG # 0.01308 *

η51 S3 Area under PPG curve between maximum peak and dicrotic notch
(as seen in Figure 4)

# 0.01333 *

η52 S4 Area under PPG curve between dicrotic notch and offset point (as
seen in Figure 4)

# 0.01323 *

η53 RtArea Ratio of systolic area to diastolic area, (S1 + S2 + S3)/S4 (as seen in
Figure 4) -
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Table 1. Cont.

Denotation Feature Definition of Feature σ

η54 NI Dicrotic notch intensity # 0.01230 *

η55 AI Augmentation index = NI/PI # 0.01277 *

η56 AI1 Augmentation index 1 = (PI − NI)/PI # 0.01274 *

η57 RSD Ratio of systolic duration to diastolic duration,
(t1 + t2 + t3)/t4

# 0.01405 *

η58 RSC Ratio of diastolic duration to cardiac cycle,
t4/(t1 + t2 + t3 +t4)

# 0.01286 *

η59 RDC Ratio of systolic duration to cardiac cycle,
(t1 + t2 + t3)/(t1 + t2 + t3 + t4) 0.01611

“#” indicates that a value is one of the first 32 low γ values of the features. “*” indicates one of the selected 32
features. “-” suggests that the value is too large to be considered.

3.3.2. Selection Index γ

An index γ is introduced to ensure the validity of all selected features, and γ is defined as:

γ ≡

∑i=µ+α

i=µ−α

{
| f

(
i
β

)
−

∫ i+10
β

i
β

ℊ(u)du |
}

∑x=µ+α
x=µ−α 1

, (8)

where:

f (u) = probability mass function of standardized target feature, its estimated precision is down to k
decimal places.

ℊ(u) = probability density function of standard normal distribution.
β = 10k+1.
µ = 0, the mean of the standardized target feature.
α = 10kCσ , where σ is the standard deviation of the target feature (in the case of standardized

features, µ and σ are equal to 0 and 1) and C is an integer. For evaluation, the definition of the
values of features ranging from µ – Cσ to µ + Cσ is used.

Figure 5 shows the histogram distribution of SBP and DBP values in our dataset. From Figure 5,
it seems that the distributions of SBP and DBP are close to the normal distribution and, as a result,
σ is designed to check the degree of similarity between the standard normal distribution and the
distributions of each standardized feature. The smaller the value of σ, the higher the degree of
similarity. In fact, the basic concept of σ is to compute the mean absolute error (MAE) between the
standard normal distribution and the distributions of each standardized feature within u = µ±Cσ.
In our experiments, firstly, while computing σ, our standardized features are all computed to one
decimal place. So, in our case, k = 1. In addition, since we plan to evaluate the similarity using a
value within u = µ± 3σ, in our case, C = 3. All the values of σ of the 59 features mentioned above are
computed and listed in Table 1.

3.4. Deep Neural Network Predictor

After feature selection is done, the optimal feature set considered to be highly correlated to BP
is obtained. The next step is to train a machine learning model which is able to predict the SBP
and DBP values accurately given the selected features. In this work, we use a fully connected deep
neural network regressor for this goal. As shown in Figure 3, our model is composed of multiple
fully connected layers with activation function “ReLU”. Between input layers and output layers, each
hidden layer contains 2048, 4096, 8192 and 2048 fully connected neurons, respectively.
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3.4.1. Introduction to Fully Connected Neural Network

As a matter of fact, a brain of a human comprises billions of neurons connected each other with
synapses, and each neuron communicates through electrical currents. A special kind of machine
learning model, called a neural network (NN), was proposed a long time ago to mimic the behaviors of
neurons. A generic NN consists of perceptrons, mimicking the function of biological neurons, and an
interconnected layered structure that connects every perceptron in one layer to another. Each perceptron
contains a weighted vector W and a bias b, as seen in Figure 3, whose value gets updated iteratively
during the training process. The correlation between the input and output of a fundamental perceptron
can be formulated as (9):

O
(
IT ) = act

(
WIT + b

)
, (9)

where IT is a transpose input vector of a perceptron, O(IT) is an output value of a perceptron, act()
represents an activation function, and, in our case, activation function “ReLU” is applied in our deep
neural network models. If every perceptron in one layer is connected to every perceptron in the next
layer, such an NN is called a “fully connected neural network”, as seen in Figure 6.
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3.4.2. Neural Network Selection

As the development of artificial intelligence has evolved, more and more different kinds of neural
networks, such as fully connected networks, convolutional neural networks, and recurrent neural
networks, have been proposed to tackle different kinds of problems. Among them, long short-term
memory (LSTM) and fully connected neural networks are the most commonly applied regressors for
building BP estimation models. Su et al. [29] constructed an LSTM-based model with high accuracy
across 84 subjects by extracting classical PTT-related features mentioned in Section 1. On the other
hand, Kurylyak et al. [30] used a fully connected neural network to build up a valid model across 15,000
cardiac cycles by utilizing temporal features extracted from PPG segments. The two different kinds
of models actually have their pros and cons. In this paper, we decided to adopt the fully connected
neural network as our regressor since it is easier to be implemented in wearable devices. The model
structure is clean and easier to understand compared to LSTM, which enables software engineers to
transfer and deploy the code to wearable devices. Another advantage of a fully connected network
for BP estimation is that it takes inputs from only one cardiac cycle to estimate BP. On the other
hand, the LSTM model usually takes inputs from several cardiac cycles before it outputs BP values,
which causes a time delay when dealing with patients with a critical situation of CVD.
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4. Experiments and Results

4.1. Feature Point Detection and Abnormal Cycle Removal

Following the methodologies mentioned in Section 3.3, one example of a result of a PPG and
its corresponding dPPG and sdPPG marked with feature points is demonstrated in Figure 7 and the
validity of the algorithm that helps us locate the dicrotic notch in every cardiac cycle by finding the
corresponding secondary peaks of the sdPPG contour signal [20] is strengthened and verified by our
statistical results after experimenting with normalized notch intensity across more than 2.17 million
cycles in our dataset. The distribution of normalized notch intensity is shown in Figure 8. After feature
point detection, partitioning and abnormal cycle removal are done, approximately 2,176,188 data
fragments of the PPG, dPPG and sdPPG of a single cardiac heart cycle are obtained and the distributions
of the corresponding SBP and DBP values are shown in Figure 5. One of the results of feature point
detection is demonstrated in Figure 7.
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4.2. Characteristic Features of Cardiac Cycles

With the help of the σs computed and listed in Table 1, the process of feature selection becomes
easier. The criterion for feature selection is to choose the features with the lowest σs. Indeed, 30 out of
32 selected features, including hr, AS, DS, AA, dAA, sdAA, DA, dDA, sdDA, PI, dPI, sdPI, dVI, sdVI,
AID, dAID, sdAID, dDID, sdDID, dRIPV, sdRIPV, AT, Slope_a, S3, S4, NI, AI, AI1, RSD and RSC, are
selected from the first 32 features with the lowest σ values, while the remaining two of the 32 selected
features, which are S1 and S2, are not. The reasons why we include these two features are that their
σs are relatively low and they are commonly used features that were reported to be highly related to
BP in the literature. Most importantly, the reason why sdAS and sdDS, which are on the list of the
first 32 features with the lowest σ values, are not selected is because that the performance of models
whose input features contain sdAS and sdDS is worse than the performance of those whose inputs
contain S1 and S2. Finally, a set of features (η32 × 2,176,188), including hr, AS, DS, AA, dAA, sdAA,
DA, dDA, sdDA, PI, dPI, sdPI, dVI, sdVI, AID, dAID, sdAID, dDID, sdDID, dRIPV, sdRIPV, AT,
Slope_a, S3, S4, NI, AI, AI1, RSD, RSC, S1 and S2, is selected as our final feature set.

Figure 9 shows the distributions of the values of the first two features, dDA(a) and NI(b), and the
last two features, sdAT(c) and t7(d), which have the lowest σ values. Figure 10 shows the distributions
of the values of features S1(a), S2(b), sdAS(c) and sdDS(d).
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4.3. Model of Deep Neural Network Predictor

Despite the fact that models built from LSTM units are the most frequently and widely applied for
time series-related problems, in this study, we choose a different approach. We use a fully connected
neural network, which is much simpler in terms of the number of parameters compared to an LSTM
unit, to build up our core deep fully connected neural network, serving as a predictor of BP. We conduct
tests on several models to determine the optimal number of hidden layers and neurons, following the
approach in [30]. Finally, our model is introduced as follows.

Our model, as shown in Figure 3, is a six-layered structure of a fully connected neural network
and the dimensions of the input layer are 1 × 32, which represents the features extracted from a single
cardiac cycle. The numbers of hidden nodes in each layer are 2048, 4096, 8192 and 2048 and every node
is fully connected to all nodes in the next layer. The activation function we use is ReLU, and the output
layer has dimensions of 1 × 2, which are the estimated SBP and DBP, respectively. Before the training
of our proposed deep neural network predictor, the selected feature set (η32 × 2,176,188) is split into
three parts, and each part contains 70%, 20% and 10% of the data, which serve as training, testing
and validation datasets, respectively. As for the training process, a gradient descent optimizer, called
“Nadam” [31], is applied to update all the variables, including w and b, in the model. In every epoch,
the root mean square error (RMSE) and MAE are measured as loss functions for every 512 batches.
For software implementation, we use Keras [32] to build the DNN model, “numpy” toolkits [33]
for signal preprocessing and the “Heartpy” toolkit [24] for cardiac cycle segmentation.

4.4. Performance of Proposed Model

There are several mathematical methods and indices that are used to evaluate the validity of the
regression model. Among them, the RMSE and MAE between the ground truth of BP and the estimated
BP are the most widely used to gauge the performance of a BP estimation model. The definitions of the
RMSE and MAE are shown in (10) and (11), respectively [34]:
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RMSE =

√∑i=N
i=1

(
Zi −Z′i

)2

N
, (10)

and

MAE =

∑i=N
i=1

∣∣∣ Zi −Z′i
∣∣∣

N
, (11)

where N is the number of total BP samples (SBP or DBP) to be evaluated and Z and Z′ are the ground
truth BP (SBP or DBP) and estimated BP (SBP or DBP), respectively. The performance of our proposed
model is assessed by the standards established by the Association for the Advancement of Medical
Instrumentation (AAMI) [35] and the British Hypertension Society [4]. Additionally, two classical
statistical approaches to evaluate a regression model, which are Bland–Altman analysis and Pearson’s
correlation analysis, are conducted to evaluate our proposed model. Most importantly, at the end,
the RMSE is computed to compare the performance of our work with others and the results will be
further discussed and elaborated in the following sub-sections. Figure 11 shows the distribution of
absolute error across 2,176,188 records of SBP and DBP.
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4.4.1. Performance Evaluation by AAMI Standards

An article by the Association for the Advancement of Medical Instrumentation (AAMI) [35]
suggests that the average and standard deviation of error among numerous measurements of SBP
and DBP should not be larger than 5 mmHg and 8 mmHg, respectively. Fortunately, our proposed
deep neural network model fulfills the criteria suggested by the AAMI with averages and standard
deviations equal to 3.21 mmHg and 3.35 mmHg for SBP and 2.23 mmHg and 2.44 mmHg for DBP
across 2,176,188 records of SBP and DBP.

4.4.2. Performance Evaluation by BHS Standards

Table 2 shows the BHS standard for BP measuring devices and the performance of our model.
From Table 2, the performances of our deep neural network estimator for both SBP and DBP satisfy
grade A of the BHS standards, with 80.63% of error lower than 5 mmHg, 95.86% of error lower than
10 mmHg and 98.78% lower than 15 mmHg for SBP and 90.19% of error lower than 5 mmHg, 98.29%
of error lower than 10 mmHg and 99.59% lower than 15 mmHg for DBP.
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Table 2. The standards of the British Hypertension Society (BHS) for BP measuring devices and the
performance of our model.

Error ≤ 5 mmHg Error ≤ 10 mmHg Error ≤ 15 mmHg

BHS [4]
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Our Model
SBP 80.63% 95.86% 98.78%
DBP 90.19% 98.29% 99.59%

4.4.3. Pearson’s Correlation and Bland–Altman Analysis

Pearson’s correlation analysis is one of the most popular methods used to evaluate the validity of
a regression model by computing Pearson’s correlation coefficient r, whose value ranges from −1 to 1
and it can be formulated as [36]:

r =

∑i=N
i=1 (xi − µx)

(
yi − µy

)
σxσy

, (12)

where N is the number of points (xi, yi) on the plot and µ and σ are means and standard deviations,
respectively. The basic concept of r is to measure the degree of correlation between two signals, x and
y. In our case, if our proposed model is perfect and error free, then the Pearson’s correlation coefficient
of our model should be equal to 1. From Figure 11, the results show that r is equal to 0.977 between
the ground truth of SBP and the estimated SBP and that r is equal to 0.947 between the ground truth
of DBP and the estimated DBP across 2,176,188 records in our dataset, revealing the extremely high
correlation between estimated BP and the ground truth of BP. Figure 12 shows the Pearson’s correlation
analysis results for the estimation error for SBP and DBP.
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(b) Pearson’s correlation analysis results for error across 2,176,188 records of DBP.

A Bland–Altman plot [37] is used in analyzing the agreement of two different arrays. It is
another way to test the difference between estimated BP and the ground truth of BP in our case.
Figure 12 show the Bland–Altman analysis results for SBP and DBP. From Figure 12a, there are two
horizontal lines, which are y = µ+ 1.96σ and y = µ− 1.96σ, respectively, forming a range called
limits of agreement (LOA), and 95% of data points are in the range. From Figure 12, the LOA for
errors of SBP is (−9.38 8.76) mmHg. On the other hand, the LOA for errors of DBP is (−5.97 6.87)
across 2,176,188 records, which confirms the accuracy of our proposed model. Figure 13 shows the
Bland–Altman analysis results for the estimation error for SBP and DBP.
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4.4.4. Comparison with Other Works

To be honest, it is extremely difficult for us to do a fair comparison with prior works for the
following reasons. First, most of the existing models used both ECG and PPG as inputs of the models.
Second, even if the inputs of the models were PPG only, it is still difficult to compare them, since
the datasets used in different studies may be different. Last, but not least, even if the model to be
compared uses the same dataset as our model and also takes only PPG as input, the number of subjects
(and cardiac cycles) used for training and testing, which will hugely affect the degree of generalization
of a model, may still be different. However, despite all the impediments, it is still necessary to compare
our proposed model to other works owing to the fact that through the comparison, we will be able to
understand and judge our own model better. The comparison results are shown in Table 3.

Table 3. Comparison of different models using PPG only as input for BP estimation.

Researchers Dataset Input Performance

Mousavi et al. [38] MIMIC II
(441 subjects) PPG

BHS standard:
Grade A for DBP and Grade D for SBP

AAMI:
only the results of DBP satisfy the standards

MAE, RMSE: not mentioned in the paper

Slapnivcar et al. [39] MIMIC II
(510 subjects) PPG

MAE:
DBP = 9.43 mmHg, SBP = 6.88 mmHg

RMSE: not mentioned in the paper

Ibtehaz and Rahman [15] MIMIC II
(942 subjects) PPG

BHS standard:
Grade A for DBP and Grade B for SBP

AAMI:
the results of both DBP and SBP satisfy the standards

MAE:
DBP = 3.45 mmHg, SBP = 5.73 mmHg

RMSE: not mentioned in the paper

Our proposed model MIMIC II (2,176,188
records of BP in total) PPG

BHS standard:
Grade A for both DBP and SBP

AAMI:
the results of both DBP and SBP satisfy the standards

MAE:
DBP = 2.23 mmHg, SBP = 3.21 mmHg

RMSE:
DBP = 3.21 mmHg, SBP = 4.63 mmHg
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From Table 3, it is clear that in terms of the accuracy and scale of the experiments, our proposed
deep neural network model is one of the best so far and, hence, the generalized BP estimation model
with PPG signals only has been achieved.

5. Conclusions and Future Works

In summary, in this study, we propose a fully connected DNN model to estimate SBP and DBP,
from a PPG signal only. We perform feature selection based on big data analysis using 9000 subjects,
2,176,188 records of BP in total and 32 optimal features selected based on the proposed selection index.
Finally, our proposed model reaches BHS Grade A and satisfies the AAMI standard. The MAE is as
low as 3.21 mmHg and 2.23 mmHg for SBP and DBP, and the RMSE is as low as 4.63 mmHg and
3.21 mmHg for SBP and DBP, which outperforms all existing works using the same dataset (MIMIC II).

For future works, we plan to apply other RNN-related models to see if the MAE and RMSE
can be further decreased. A sequence to sequence model is also a promising direction for this topic.
Phase changes in blood pressure can happen under various influences. Thus, further studies should
try to involve the correlation between BP estimation and natural time analysis. Additionally, we would
like to implement our model in wearable devices to help people at risk of high blood pressure to
monitor their BP continuously in their daily activities. Hence, studies on data from people outside
hospital should be conducted.
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