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Abstract: This paper focuses on image compressive sensing (CS). As the intrinsic properties of natural
images, nonlocal self-similarity and sparse representation have been widely used in various image
processing tasks. Most existing image CS methods apply either self-adaptive dictionary (e.g., principle
component analysis (PCA) dictionary and singular value decomposition (SVD) dictionary) or fixed
dictionary (e.g., discrete cosine transform (DCT), discrete wavelet transform (DWT), and Curvelet)
as the sparse basis, while single dictionary could not fully explore the sparsity of images. In this
paper, a Hybrid NonLocal Sparsity Regularization (HNLSR) is developed and applied to image
compressive sensing. The proposed HNLSR measures nonlocal sparsity in 2D and 3D transform
domain simultaneously, and both self-adaptive singular value decomposition (SVD) dictionary and
fixed 3D transform are utilized. We use an efficient alternating minimization method to solve the
optimization problem. Experimental results demonstrate that the proposed method outperforms
existing methods in both objective evaluation and visual quality.
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1. Introduction

As a joint framework of sampling and compression, compressive sensing (CS) [1,2] shows that if
a signal is sparse in some domains, it can be perfectly reconstructed from fewer samples than Nyquist
rate. This characteristic demonstrates its two great potentials in signal acquisition and processing.
First, as the number of samples is greatly reduced, this make it possible for some devices with limited
sensor size to obtain high definition information using low definition sensors. Figure 1 shows the
architecture of the single-pixel camera [3]. With a sensor with only one pixel, this system can get a
complete image. Second, the CS framework transfers the computational burden to the decoding side.
For some energy limited applications, such as wireless sensor network, this advantage can greatly
extend the life cycle of the nodes. As the encoding side is simplified, the performance of the system
depends largely on the performance of the decoding side, namely, the “Recovery method” part in
Figure 1. This paper focus on the recovery method of image CS. Due to the advantages mentioned
above, CS have been applied in many fields, such as digital imaging [3], background subtraction[4],
medical imaging [5], and remote sensing [6].

In the framework of compressive sensing, a one-dimensional sparse signal can be reconstructed
by solving a L0-norm minimization problem. Since L0-norm minimization is non-convex and NP-hard,
L0-norm is often replaced by L1-norm. It has been proved that these two norm are equivalent in most
cases [2] and many CS recovery methods are proposed, such as iterative thresholding algorithm [7],
orthogonal matching pursuit [8], and split Bregman algorithm [9].

For image compressive sensing, the key issue is how to exploit the intrinsic prior information
of images. As the model of prior knowledge has a significant impact on the performance
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of image compressive sensing algorithms, many kinds of regularizations have been developed.
Conventional regularization terms, such as Mumford–Shah (MS) model [10] and total variation
(TV) [7,11–13], are established under the assumption that images are locally smooth. For example,
Li et al. [13] proposed a TV-based CS algorithm and developed an efficient augmented lagrangian
method to solve it. Candes et al. [11] enhanced the sparsity of TV norm via a weighted strategy.
However, these regularizations only consider local smoothness of images and cannot restore details and
textures well. TV norm also favors piecewise constant solution, resulting in oversmoothing. To overcome
this problem and improve performance, many compressive sensing methods utilized the prior information
of transform coefficients [14–16]. Kim et al. [15] modeled the statistical characteristics between transform
coefficients with a Gaussian Scale Mixture (GSM) and achieved better reconstruction performance.

Figure 1. Architecture of the single-pixel camera [3].

In the past few years, sparse representation has begun to emerge and demonstrated good
performance in various image processing tasks [17–21]. The purpose of sparse representation is to
represent a signal with as few atoms as possible in a learned over-complete dictionary. Compared with
fixed dictionary, the learned dictionary can better express sparsity of images. However, dictionaries are
generally learned from external clean images, and it may suffer from high computational complexity.

Recently, inspired by nonlocal means (NLM) [22], many algorithms based on nonlocal
self-similarity have been proposed [23–29]. Dabov et al. proposed a Block-Matching and 3D filtering
(BM3D) algorithm for image denoising [23]. In BM3D, similar patches in a degraded image are grouped
into 3D arrays and collaborative filtering is performed in 3D transform domain. Egiazarain et al.
extended BM3D to compressive sensing and proposed BM3D-CS. Zhang et al. [26] proposed a
structural group sparsity representation (SGSR) model to enforce image sparsity in an adaptive
SVD domain. Dong et al. [28] proposed a nonlocal low-rank regularization (NLR) to exploit
the self-similarity, and applied it to the reconstruction of photographic and MRI images. In [29],
Zha et al. incorporated a non-convex penalty function to group sparse representation and obtained
state-of-the-art reconstruction performance. Gao et al. [30] proposed to use Z-score standardization
to improve the sparse representation ability of patch groups. Keshavarzian et al. [31] proposed to
utilize the principle component analysis (PCA) to learn a dictionary for each group and introduced
non-convex LLp-norm regularization to better promote the sparsity of the patch group coefficients.
In [32], internal self-adaptive dictionary and external learned dictionary were used to encode a patch
group alternately and achieved better performance than single dictionary.
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Another idea is to exploit both local sparsity and nonlocal self-similarity [33–37]. For example,
Zhang et al. [33] combined local anisotropic total variation with nonlocal 3D sparsity, and named it
Collaborative Sparsity Measure (CoSM). Different from the work in [33], Eslahi et al. [37] used curvelet
transform to enforce local patterns. In [34], Dong et al. utilized local patch-based sparsity and nonlocal
self-similarity constrain to balance the trade-off between adaptation and robustness. Zhou, et al. [38]
proposed a data-adaptive kernel regressor to extract local structure and used nonlocal means filter to
enforce nonlocal information.

With the development of deep learning, many convolutional neural network (CNN) based
image compressive sensing algorithms have been proposed. For example, Kulkarni et al. [39]
proposed a non-iterative and parallelizable CNN architecture to get an initial recovery and fed it
into an off-the-shelf denoiser to obtain the final image. Zhang et al. [40] cast the Iterative Shrinkage-
Thresholding Algorithm (ISTA) into CNN framework and developed an effective strategy to solve
it. In [41], low-rank tensor factor analysis was utilized to capture nonlocal correlation and a deep
convolutional architecture was adopted to accelerate the matrix inversion in CS. DR2-Net [42] utilized
a linear mapping to reconstruct a preliminary image and used residual learning to further promote
the reconstruction quality. Yang et al. [43] unrolled the Alternating Direction Method Multipliers
(ADMM) to be a deep architecture and proposed ADMM-CSNet. Zhang et al. [44] proposed a
optimization-inspired explicable deep network OPINE-Net and all the parameters were learned
end-to-end using back-propagation.

In this paper, we propose a Hybrid NonLocal Sparsity Regularization (HNLSR) for image
compressive sensing. First, different from the methods mentioned above, two nonlocal self-similarity
constrains are applied to exploit the intrinsic sparsity of images simultaneously. Then, fixed dictionaries
are universal, and learned dictionaries are more robust to the image itself. To take advantages of
them, both fixed 3D transform and 2D self-adaptive dictionary are utilized. Finally, for the non-convex
model of HNLSR, we use the split Bregman to divide it into several subproblems, making it easier
and more efficient to be solved. The flowchart is illustrated in Figure 2. Experimental results show
that compared with both model-based algorithms and deep learning-based algorithms, the proposed
HNLSR-CS demonstrates the superiority of its performance.

Figure 2. Flowchart of the proposed HNLSR-CS.

The remainder of this paper is organized as follows. Section 2 introduces the related works.
In Section 3, we present the proposed method. The experiment and analysis are elaborated in Section 4.
Section 5 concludes the paper.

2. Related Work

2.1. Compressive Sensing

For a n-dimension signal x ∈ Rn, its CS measurements can be expressed as
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y = Φx (1)

where y ∈ Rm and Φ ∈ Rm×n(m � n). Φ is the measurement matrix which meets the restricted
isometry property (RIP) [1]. If x is sparse in a transform domain Ψ ∈ Rn×n, namely, x = Ψα,
the reconstruction of x can be formulated as

α̂ = arg min
α
‖α‖0 s.t. y = ΦΨα (2)

where ‖α‖0 is the L0-norm that counts the nonzero elements in α.
The unconstrained Lagrangian form of Equation (2) is

α̂ = arg min
α

1
2
‖y−ΦΨα‖2

2 + λ‖α‖0 (3)

where λ is the regularization parameter. After getting the solution of Equation (4), x can be restored by
x̂ = ΨΨα̂.

For image compressive sensing, the optimization problem can be written as

x̂ = arg min
x

1
2
‖y−Φx‖2

2 +R(x) (4)

where x stands for an image, Φ is the measurement matrix andR(x) is the regularization item which
exploits the intrinsic prior information of images.

2.2. Sparse Representation and Group-Based Sparsity

For an image x ∈ RN , it can be divided into many overlapped patches. Suppose a patch xi of size√
n×
√

n at location i, i = 1, 2, . . . , N, sparse representation means that this patch can be represented
over a redundant dictionary Di

α̂i = arg min
αi

‖αi‖0 s.t. xi = Diαi (5)

Nonlocal self-similarity means that a patch has many similar patches in other positions [18,22,23].
We search its (m− 1) best matched patches and form them into a data matrix xGi ∈ Rn×m, where each
column of xGi denotes a similar patch, so we have

xGi = RGi (x) (6)

where subscript Gi is the number of the group, RGi is an operator that extract all the similar patches
and xGi is a patch group. Given a proper dictionary DGi , this group can be expressed as

α̂Gi = arg min
αGi

∥∥αGi

∥∥
0 s.t. xGi = DGi αGi (7)

where α̂Gi is the sparse coefficient. After getting α̂Gi , the whole image can be reconstructed via [45]

x ≈ (
N

∑
i

RT
Gi

1(n×m))
−1(

N

∑
i

RT
Gi

DGi α̂Gi ) (8)

where 1(n×m) is a matrix of size n × m with all the elements being 1. Equation (8) means that we
can restore the image by putting patches back to their original locations and averaging them on a
pixel-by-pixel basis.
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2.3. Nonlocal Self-Similarity in 3D Transform Domain

Dabov et al. proposed the well-known BM3D [23] for image denoising and the self-similarity in
3D transform domain has attracted great attention since then [24,33,37]. For a patch xi of size

√
n×
√

n,
after searching its (m− 1) similar patches, they are stacked into a 3D array Z of size

√
n×
√

n×m.
Next, a 3D transform is performed to get the transform coefficients

T3D(Z) = Θ (9)

where T3D(·) is a transform operator and Θ are coefficients. Since these coefficients are considered
sparse, they are shrunken by some filters (e.g., soft-thresholding or hard-thresholding). Then, the sparse
coefficients are inverted to generate the estimated group. These estimates are returned to their original
positions. Nonlocal 3D sparsity can explore high degree sparsity of images, and can well preserve
details and differences between patches.

2.4. Split Bregman Iteration

The split Bregman iteration (SBI) [9] was proposed to solve various optimization problem.
Considering a constrained problem:

min
x,z

H(x) + G(z) s.t.x = Kz (10)

where H : RN → R, G : RM → R and KN×M ∈ RN×M. H(·) and G(·) are convex functions.
This optimization problem can be efficiently solved by Algorithm 1. According to the SBI framework,
as x and z have some relationship, the optimization problem can be split into two subproblem (namely,
step 3 and step 4). The rationale behind is that in step 3 and step 4, only one variable is solved at a
time, making it much easier than the original problem.

Algorithm 1 Split Bregman Iteration (SBI).

1: Set µ, k = 0, x(0) = 0, z(0) = 0, b(0) = 0.
2: repeat

3: x(k+1) = arg min
x

H(x) + µ
2

∥∥∥x−Kz(k) − d(k)
∥∥∥2

2
;

4: z(k+1) = arg min
z

G(z) + µ
2

∥∥∥x(k+1) −Kz− d(k)
∥∥∥2

2
;

5: d(k+1) = d(k) − (x(k+1) −Kz(k+1));
6: k = k + 1.
7: until Stop criterion is satisfied.

3. Proposed Method

3.1. Hybrid Non-Local Sparsity Regularization (Hnlsr)

Integrating two kinds of different nonlocal regularizations, we propose a Hybrid Non-Local
Sparsity Regularization (HNLSR), and it can be expressed as

RHNLSR(x) = λ‖α‖0 + τ‖T3D(Z(x))‖1 = λ‖α‖0 + τ‖Θ‖1 (11)

where α are the coefficients under certain 2D sparse dictionary and λ and τ are regularization
parameters. Z(x) is the 3D form of x. The proposed regularization has two advantages:

1. It constrains sparsity in both 2D and 3D domains, which means that it can better explore the
intrinsic nonlocal similarity of images.
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2. We use a self-adaptive dictionary as the 2D sparse basis and a fixed 3D transform to measure
sparsity in high-dimensional space. Two kinds of different dictionaries can improve the
robustness of the regularization.

Next, we will apply the proposed HNLSR to image compressive sensing and show how to solve
the optimization problem.

3.2. Image Cs Via Hnlsr

Incorporating Equation (11) into Equation (4), the proposed optimization problem for image CS is
expressed as

x̂ = min
x

1
2
‖y−Φx‖2

2 + λ ‖α‖ 0 + τ‖Θ‖1 (12)

where λ and τ are regularization parameters. We use the SBI framework to solve this optimization
problem. Define H(x) = 1

2 ‖y−Φx‖2
2 and G(z) = λ‖α‖0 + τ‖Θ‖1, so the corresponding K are sparse

dictionaries. Invoking Line 3 in Algorithm 1, we obtain

x(k+1) = arg min
x

1
2
‖y−Φx‖2

2 +
µ

2

∥∥∥x−Dz(k) − d(k)
∥∥∥2

2

= arg min
x

1
2
‖y−Φx‖2

2 +
µ

2

∥∥∥∥∥[x, x]− [D2D, D3D]

[
α(k)

Θ(k)

]
−
[

b(k)

c(k)

]∥∥∥∥∥
2

2

(13)

where d(k) =

[
b(k)

c(k)

]
. Splitting the second term in Equation (13), we have

x(k+1) = arg min
x

1
2
‖y−Φx‖2

2 +
µ1

2

∥∥∥x−D2Dα(k) − b(k)
∥∥∥2

2
+

µ2

2

∥∥∥x−D3DΘ(k) − c(k)
∥∥∥2

2
(14)

Then we apply Line 4 and Equation (12) is transformed into

z(k+1) = arg min
z

G(z) +
µ

2

∥∥∥x(k+1) −Dz− d(k)
∥∥∥2

2

= arg min
α,Θ

λ‖α‖0 + τ‖Θ‖1 +
µ

2

∥∥∥∥∥[x(k+1), x(k+1)]− [D2D, D3D]

[
α

Θ

]
−
[

b(k)

c(k)

]∥∥∥∥∥
2

2

(15)

Finally, b and c can be calculated by

b(k+1) = b(k) − (x(k+1) −D2Dα(k+1)) (16)

c(k+1) = c(k) − (x(k+1) −D3DΘ(k+1)) (17)

Therefore, the minimization problem of Equation (12) is divided into several subproblems and
the solution to each subproblem will be discussed below.

3.2.1. x-Subproblem

Given α, Θ, b and c, Equation (14) is a convex quadratic function optimization problem and we
can use gradient descent method to solve this problem efficiently

x(k+1) = x(k) − η(k)g(k) (18)

where g(k) is the gradient direction of Equation (14)

g(k) = ΦTΦx(k) −ΦTy + µ1(x(k) −D2Dα(k) − b(k)) + µ2(x(k) −D3DΘ(k) − c(k)) (19)
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and η(k) is the optimal step-size and calculated via

η =
gTg

gTΦTΦg + (µ1 + µ2)gTg
(20)

The superscript k of g is omitted for conciseness.

3.2.2. z-Subproblem

Given x, b and c, z-subproblem Equation (15) can be divided into two formulas

α(k+1) = arg min
α

λ‖α‖0 +
µ1

2

∥∥∥x(k+1) −D2Dα− b(k)
∥∥∥2

2
(21)

Θ(k+1) = arg min
Θ

τ‖Θ‖1 +
µ2

2

∥∥∥x(k+1) −D3DΘ− c(k)
∥∥∥2

2
(22)

Let us define x(k+1) = x(k+1) − b(k), where x(k+1) can be seen as the noisy observation of x(k+1).
Therefore, Equation (21) can be rewritten as

α(k+1) = arg min
α

λ‖α‖0 +
µ1

2

∥∥∥x(k+1) −D2Dα
∥∥∥2

2
(23)

As patch group is the basic unit of sparse coding, this problem can be split into divided into
several subproblems. Moreover, for each subproblem, the coefficients of each group are the variables
to be solved. Therefore, Equation (23) can be solved by

min
α

∑n
m=1

(
1
2

∥∥∥x(k+1)
Gm

−D2Dm αGm

∥∥∥2

F
+ θ‖αGm‖0

)
(24)

where θ = λ
µ1

and x(k+1)
Gm

is image patch group. D2Dm and αGM are corresponding dictionary and sparse
coefficients. For every group, we adopt the singular value decomposition (SVD) to generate the 2D
dictionary. Applying the SVD to a group xGm , we have

xGm = UGm ΣGm VT
Gm

(25)

where ΣGm is a diagonal matrix formed by the eigenvalues. Moreover, the dictionary is defined as

DGm = UGm VT
Gm

(26)

Therefore, for every optimization problem in Equation (24), it has a close-form solution

αi
Gm

= hard(Σi
Gm

,
√

2θ) = Σi
Gm
� 1(abs(Σi

Gm
)−
√

2θ) (27)

where hard(·) is hard thresholding function and � stands for the element-wise product operator.
Similar to the α-subproblem, we define x̂(k+1) = x(k+1) − c(k) and consider the fact that the

probability of every overlapped image patch appearing is equal, we can solve Equation (22) by

min
Θ

∑n
m=1

(
1
2

∥∥∥x̂(k+1)
Gm

−D3DΘGm

∥∥∥2

F
+

τ

µ2
‖ΘGm‖1

)
(28)

where x̂(k+1)
Gm

is a 3D patch array. This problem can be seen as a filtering problem in transform domain.
Invoking the Bayesian framework [21], the maximum a posterior (MAP) estimation of ΘGm with

x̂(k+1)
Gm

is



Sensors 2020, 20, 5666 8 of 18

ΘGm = arg max
ΘGm

log P(ΘGm

∣∣∣x̂(k+1)
Gm

)

= arg max
ΘGm

{
log P(x̂(k+1)

Gm
|ΘGm ) + log P(ΘGm)

}
(29)

Assuming that x̂(k+1)
Gm

is disturbed by Gaussian noise with standard deviation σn and ΘGm follows
i.i.d Laplacian distribution

P(ΘGm) = ∏
i

 1√
2σi

exp

−
∣∣∣Θi

Gm

∣∣∣
σi

 (30)

where σi is the standard deviations of Θi
Gm

. Substituting Equation (30) into Equation (29), we can obtain

arg min
ΘGm

1
2

∥∥∥x̂(k+1)
Gm

−D3DΘGm

∥∥∥2

F
+ 2
√

2σ2
n ×

l

∑
i=1

1
σi

∣∣∣Θi
Gm

∣∣∣ (31)

From the above analysis, we can know that τ
µ2

= 2
√

2σ2
n

σi
and Equation (31) can be solved by soft

thresholding function

ΘGm = sgn(DT
3Dx̂(k+1)

Gm
) ·max

(∣∣∣DT
3Dx̂(k+1)

Gm

∣∣∣− 2
√

2σ2
n

σi
, 0

)
(32)

The proposed method for image compressive sensing is summarized in Algorithm 2.

Algorithm 2 Image compressive sensing via HNLSR.

1: Input: measurement y, measurement matrix Φ
Initialization:
(1) Set k, λ, τ, b, c, m, σn;
(2) Estimate an initial image xinit;

2: Compute x via Eq.(19);
3: for Each patch do
4: (1) Block-matching and form patch group;
5: (2) Generate dictionary for every patch group via Eq.(25);
6: (3) Compute α via Eq.(27);
7: end for
8: for Each patch do
9: (1) Search similar patches and arrange as 3D arrays;

10: (2) Compute Θ via Eq.(32);
11: end for
12: Update b via Eq.(16);
13: Update c via Eq.(17);
14: k = k + 1.
15: Output: Reconstructed image x∗

4. Experimental Results

4.1. Implementation Details

This section presents the performance of the proposed HNLSR methods. In our experiment,
eight commonly used images are used to test the reconstruction performance of the algorithms (shown
in Figure 3). The size of them is 256× 256. In the measurement phase, a image is divided into blocks
of size 32 × 32 and Gaussian matrix is applied to generate measurements for each block. In the
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reconstruction phase, the size of overlapping patches is 8× 8. Step size, i.e., the distance between two
image patches in the horizontal or vertical direction, is set as 4. For every image patch, we search its 59
similar patches in a 20× 20 window. µ1 and µ2 are set to (0.0025, 0.0025), (0.0025, 0.00025), and (0.0025,
0.0001) when the sampling rates are 0.1, 0.2, and 0.3, respectively. The 3D dictionary is composed
of 2D DCT and 1D Haar wavelet. Maximum iteration number is 120. We use peak signal-to-noise
ratio (PSNR)and feature similarity (FSIM) [46] as the performance evaluation indices. All experiments
are performed in Matlab R2017a on computer with Intel Core i5-6500 CPU of 3.2 Ghz, 8 GB memory,
and Windows 10 operating system.

Figure 3. Eight test images. (a) Boats. (b) Cameraman. (c) Fingerprint. (d) Leaves. (e) Lena.
(f) Monarch. (g) Parrots. (h) Peppers.

4.2. Comparison with State-of-the-Art Methods

We compare our method with six representative methods: MH-BCS [47], RCoS [33], ALSB [27],
GSR [45], JASR [37], and GSR-NCR [29]. MH-BCS uses residual in the measurement domain and
multihypothesis predictions to improve reconstruction quality; RCoS utilizes nonlocal 3D sparsity and
local 2D sparsity (namely, total variation (TV)) to explore the intrinsic of images; ALSB is a patch-based
sparse representation method; JASR employs discrete curvelet transform (DCuT) to constrain local
sparsity and combines it with nonlocal 3D sparsity; GSR is an extended version of SGSR [26]. Both GSR
and GSR-NCR are group-based method, and their difference is GSR uses L0-norm to constrain the
sparse coefficients, while GSR-NCR uses non-convex Lp-norm. GSR and GSR-NCR are known as the
stat-of-the-art methods. The PSNR and FSIM results are shown in Tables 1 and 2 respectively, and the
best result for each sampling rate is marked in bold.

We can see that compared with MH-BCS, methods based on non-local self-similarity have
obvious advantages in performance. As a patch-based algorithm, ALSB is inferior to other methods
in most cases. JASR performs better than RCoS since DCuT is better than TV in depicting
local characteristics. Compared with methods using fixed dictionaries (namely RCoS and JASR),
methods using self-adaptive dictionaries have better performance in general. The proposed method
combines fixed dictionary with self-adaptive dictionary and get the best performance in most cases.
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Table 1. PSNR(dB) comparison of six representative methods and the proposed method.

Rate Methods Boats C.man F.print Leaves Lena Monarch Parrots Peppers Average

0.1

MH-BCS 26.11 22.13 20.08 20.89 26.13 23.19 25.34 25.00 23.61
RCoS 27.85 22.97 16.30 22.38 27.53 25.56 25.60 27.41 24.45
ALSB 28.12 22.97 20.68 21.32 27.04 24.34 26.03 26.67 24.65
GSR 28.30 22.89 20.27 23.22 27.56 25.29 26.37 26.91 25.10
JASR 28.59 23.54 21.04 23.62 27.90 25.83 26.76 27.60 25.61

GSR-NCR 27.96 22.50 20.50 22.26 27.02 24.67 26.03 26.37 24.66
Proposed HNLSR 28.77 24.67 21.12 24.54 28.04 26.26 27.22 27.91 26.07

0.2

MH-BCS 29.91 25.88 23.17 25.14 29.81 27.10 29.23 28.45 27.34
RCoS 31.42 25.68 19.64 27.22 30.36 29.60 28.61 30.87 27.93
ALSB 33.27 26.65 23.64 26.97 30.73 28.30 29.73 29.87 28.65
GSR 33.69 27.17 23.85 30.54 31.36 30.78 31.17 30.83 29.92
JASR 32.70 27.75 23.98 30.24 31.19 30.60 31.09 31.06 29.83

GSR-NCR 33.30 26.30 23.67 29.03 30.87 29.46 30.18 20.46 29.16
Proposed HNLSR 33.89 28.34 24.03 30.97 31.57 31.17 31.41 31.19 30.32

0.3

MH-BCS 32.25 28.08 24.73 27.63 31.99 27.10 31.01 30.30 29.14
RCoS 34.32 27.98 22.74 30.92 32.41 32.53 30.53 32.65 30.51
ALSB 36.59 29.01 25.81 31.01 33.30 31.41 31.98 32.13 31.41
GSR 36.91 29.62 26.20 34.46 34.17 34.25 33.81 33.02 32.81
JASR 36.08 29.93 26.21 33.70 34.05 33.63 33.10 33.09 32.47

GSR-NCR 37.27 29.37 26.35 34.95 33.94 34.68 33.07 32.86 32.81
Proposed HNLSR 36.94 30.01 26.27 34.54 34.27 34.27 33.93 33.18 32.93

Table 2. FSIMcomparison of six representative methods and the proposed method.

Rate Methods Boats C.man F.print Leaves Lena Monarch Parrots Peppers Average

0.1

MH-BCS 0.8489 0.7692 0.8512 0.7634 0.8913 0.7912 0.8981 0.8489 0.8328
RCoS 0.8765 0.7942 0.6027 0.8632 0.8863 0.8757 0.8919 0.8794 0.8337
ALSB 0.8934 0.8021 0.8682 0.7916 0.8965 0.8251 0.9105 0.8735 0.8576
GSR 0.9027 0.8154 0.8691 0.8755 0.9147 0.8673 0.9229 0.8859 0.8817
JASR 0.9035 0.8139 0.8722 0.8799 0.9107 0.8822 0.9176 0.8918 0.8840

GSR-NCR 0.898 0.8012 0.8688 0.8408 0.9106 0.8318 0.9190 0.8733 0.8679
Proposed HNLSR 0.9042 0.8408 0.8622 0.8984 0.9092 0.8907 0.9204 0.8962 0.8903

0.2

MH-BCS 0.9159 0.8552 0.9103 0.8577 0.9348 0.8751 0.9405 0.9036 0.8991
RCoS 0.9348 0.8645 0.7923 0.9307 0.9331 0.9314 0.9311 0.9281 0.9058
ALSB 0.9522 0.8759 0.9208 0.9069 0.9440 0.8907 0.9460 0.9228 0.9199
GSR 0.9581 0.8946 0.9254 0.9559 0.9537 0.9411 0.9524 0.9332 0.9393
JASR 0.9458 0.8961 0.9256 0.9516 0.9434 0.9409 0.9478 0.9342 0.9342

GSR-NCR 0.9526 0.8797 0.9225 0.9430 0.9470 0.9216 0.9435 0.9268 0.9296
Proposed HNLSR 0.9589 0.9096 0.9271 0.9586 0.9545 0.9454 0.9526 0.9364 0.9429

0.3

MH-BCS 0.9439 0.8938 0.9331 0.8961 0.9538 0.899 0.9563 0.9269 0.9254
RCoS 0.9615 0.9089 0.8937 0.9579 0.9555 0.9555 0.9501 0.9472 0.9413
ALSB 0.9748 0.9190 0.9471 0.9508 0.9650 0.9303 0.9620 0.9455 0.9493
GSR 0.9770 0.9325 0.9520 0.9765 0.9716 0.9636 0.9668 0.9513 0.9614
JASR 0.9723 0.9311 0.9510 0.9719 0.9677 0.9610 0.9623 0.9505 0.9585

GSR-NCR 0.9783 0.9305 0.9534 0.9799 0.9715 0.9668 0.9660 0.9501 0.9621
Proposed HNLSR 0.9772 0.9366 0.9523 0.9769 0.9716 0.9639 0.9670 0.9525 0.9623

Some visual comparisons are illustrated in Figures 4–7. In Figure 4, it is obvious that MH-BCS
generates the worst result. ALSB, GSR, and GSR-NCR suffer from some artifacts in the water surface
area. RCoS and JASR have better results, but the edge of the tripod is a little blurry. In Figure 5,
other methods produce some undesirable traces in the blank area, and the proposed method is not only
pure in the blank area, but also has relatively sharp leaf edges. MH-BCS, RCoS, and ALSB produce
some unexpected noise in the white area around the eyes in Figure 6, and the pattern around the
eyes of the proposed method is the clearest. It is evident that in terms of visual quality, the proposed
method outperforms other methods.
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Figure 4. Reconstruction of Cameraman with sampling rate = 0.1. (a) Original image; (b) MH
(PSNR = 22.13 dB, FSIM = 0.7692); (c) RCoS (PSNR = 22.97 dB, FSIM = 0.7942); (d) ALSB (PSNR = 22.97 dB,
FSIM = 0.8021); (e) GSR (PSNR = 22.89 dB, FSIM = 0.8154); (f) JASR (PSNR = 23.54 dB, FSIM = 0.8139);
(g) GSR-NCR(PSNR = 22.50 dB, FSIM = 0.8012); (h) Proposed HNLSR (PSNR = 24.67 dB, FSIM = 0.8408)).

Figure 5. Reconstruction of Leaves with sampling rate = 0.1. (a) Original image; (b) MH (PSNR = 20.89 dB,
FSIM = 0.7634); (c) RCoS (PSNR = 22.38 dB, FSIM = 0.8632); (d) ALSB (PSNR = 21.32 dB, FSIM = 0.7916);
(e) GSR (PSNR = 23.22 dB, FSIM = 0.8755); (f) JASR (PSNR = 23.62 dB, FSIM = 0.8799); (g) GSR-NCR(PSNR
= 22.26 dB, FSIM = 0.8408); (h) Proposed HNLSR (PSNR = 24.54 dB, FSIM = 0.8984)).
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Figure 6. Reconstruction of Parrots with sampling rate = 0.2. (a) Original image; (b) MH (PSNR = 29.23 dB,
FSIM = 0.9405); (c) RCoS (PSNR = 28.61 dB, FSIM = 0.9311); (d) ALSB (PSNR = 29.73 dB, FSIM = 0.9460);
(e) GSR (PSNR = 31.17 dB, FSIM = 0.9524); (f) JASR (PSNR = 31.09 dB, FSIM = 0.9478); (g) GSR-NCR(PSNR
= 30.18 dB, FSIM = 0.9435); (h) Proposed HNLSR (PSNR = 31.41 dB, FSIM = 0.9526)).

Figure 7. Reconstruction of Lena with sampling rate = 0.3. (a) Original image; (b) MH (PSNR = 31.99 dB,
FSIM = 0.9538); (c) RCoS (PSNR = 32.41 dB, FSIM = 0.9555); (d) ALSB (PSNR = 33.30 dB, FSIM = 0.9650);
(e) GSR (PSNR = 34.17 dB, FSIM = 0.9716); (f) JASR (PSNR = 34.05 dB, FSIM = 0.9677); (g) GSR-NCR(PSNR
= 33.94 dB, FSIM = 0.9715); (h) Proposed HNLSR (PSNR = 34.27 dB, FSIM = 0.9716)).
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We also compare the HNLSR-CS with three representative deep learning methods: ReconNet [39],
ISTA-Net+ [40], and DR2-Net [42]. We use pretrained models for testing and the PSNR and FSIM
results are reported in Tables 3 and 4. The best results are highlighted in bold. The proposed method
obtains the best result in most cases.

Table 3. PSNR (dB) comparison of deep learning methods and the proposed method.

Rate Methods Boats C.man F.print Leaves Lena Monarch Parrots Peppers Average

0.04

ReconNet 21.36 19.26 14.67 15.40 21.28 18.19 20.27 19.56 18.75
ISTA-Net+ 22.23 20.45 14.99 16.38 22.64 19.54 21.97 21.47 19.96
DR2-Net 22.11 19.84 15.04 16.29 22.13 18.93 21.16 20.31 19.48

Proposed HNLSR 23.22 21.09 14.90 18.08 24.52 20.49 23.46 23.49 21.16

0.1

ReconNet 24.15 21.28 15.84 18.35 23.83 21.11 22.63 22.14 21.17
ISTA-Net+ 27.44 23.66 17.47 23.44 27.65 26.58 26.58 27.23 25.01
DR2-Net 25.58 22.46 17.21 20.26 25.39 23.10 23.94 23.73 22.71

Proposed HNLSR 28.77 24.67 21.12 24.54 28.04 26.26 27.22 27.91 26.07

0.25

ReconNet 27.30 23.15 19.10 21.91 26.54 24.32 25.59 24.77 24.09
ISTA-Net+ 33.71 29.19 23.47 31.96 32.70 33.41 31.99 32.70 31.14
DR2-Net 30.09 25.62 21.63 25.65 29.42 27.95 28.73 28.49 27.20

Proposed HNLSR 35.44 29.34 25.14 33.25 33.08 33.36 32.79 32.41 31.85

Table 4. FSIM comparison of deep learning methods and the proposed method.

Rate Methods Boats C.man F.print Leaves Lena Monarch Parrots Peppers Average

0.04

ReconNet 0.7310 0.6954 0.5873 0.6122 0.7641 0.6833 0.7835 0.7327 0.6987
ISTA-Net+ 0.7616 0.7300 0.5781 0.6876 0.8003 0.7403 0.8235 0.7806 0.7378
DR2-Net 0.7574 0.7134 0.6013 0.6770 0.7869 0.7217 0.7991 0.7587 0.7269

Proposed HNLSR 0.7805 0.7501 0.5717 0.7617 0.8389 0.7734 0.8732 0.8136 0.7704

0.1

ReconNet 0.7910 0.7440 0.6714 0.6835 0.8137 0.7406 0.8285 0.7840 0.7571
ISTA-Net+ 0.8756 0.8289 0.7007 0.8760 0.8967 0.8816 0.9062 0.8862 0.8565
DR2-Net 0.8415 0.7896 0.7305 0.7948 0.8488 0.8184 0.8605 0.8282 0.8140

Proposed HNLSR 0.9042 0.8408 0.8622 0.8984 0.9092 0.8907 0.9204 0.8962 0.8903

0.25

ReconNet 0.8730 0.8030 0.8166 0.7765 0.8765 0.8152 0.8801 0.8460 0.8359
ISTA-Net+ 0.9575 0.9205 0.9111 0.9623 0.9583 0.9607 0.9560 0.9491 0.9469
DR2-Net 0.9198 0.8575 0.8793 0.8902 0.9200 0.8989 0.9204 0.9034 0.8987

Proposed HNLSR 0.9699 0.9244 0.9427 0.9715 0.9646 0.9605 0.9602 0.9469 0.9551

Some visual comparisons are shown in Figures 8 and 9. In Figure 8, ReconNet, ISTA-Net+,
and DR2-Net all suffer from block effects, and the proposed method has the best details. In Figure 9,
ReconNet, and DR2-Net still have some block artifacts; ISTA-Net+ has the best PSNR, but it produces
some undesirable artifacts, resulting in worse FSIM than ours. These results also prove the superiority
of the proposed method.

4.3. Effect of Parameters of Similar Patches

In this section, we discuss how the parameters of similar patches affects the performance of the
method. With other variables fixed, we change the number of similar patches at intervals of 10 between
30 and 90. The comparisons are shown in Figure 10. We can see from the figure that all three curves are
relatively stable, which means that the performance is not sensitive to the number of image patches.
Considering the performance and complexity of the method, we set the number of similar patches
to 60.
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Figure 8. Reconstruction of Monarch with sampling rate = 0.1. (a) Original image; (b) ReconNet
(PSNR = 22.14 dB, FSIM = 0.7840); (c) ISTA-Net+ (PSNR = 27.23 dB, FSIM = 0.8862); (d) DR2-Net
(PSNR = 23.73 dB, FSIM = 0.8282); (e) Proposed HNLSR (PSNR = 27.91 dB, FSIM = 0.8962).

Figure 9. Reconstruction of Monarch with sampling rate = 0.1. (a) Original image; (b) ReconNet
(PSNR = 21.11 dB, FSIM = 0.7406); (c) ISTA-Net+ (PSNR = 26.58 dB, FSIM = 0.8816); (d) DR2-Net
(PSNR = 23.10 dB, FSIM = 0.8184); (e) Proposed HNLSR (PSNR = 26.26 dB, FSIM = 0.8907).
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Figure 10. Performance comparison with different number of patches for three test images in case of
sampling rate = 0.2.

4.4. Convergence

As Equation (12) is non-convex, it is difficult to give a theoretical proof of the convergence of
the proposed method, so we only show its stability through empirical evidence. Figure 11 shows the
curve of PSNR versus iteration number of four images at the sampling rate of 0.2 and 0.3, respectively.
We can see from the figure that with the iteration number increases, PSNR changes drastically at the
beginning, and then gradually become stable. This illustrates the good convergence performance of
the proposed method.

Figure 11. Evolutions of PSNR versus iteration number for four test images. (a) Sampling rate = 0.2;
(b) Sampling rate = 0.3.
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5. Conclusions and Future Work

This paper proposes a Hybrid Nonlocal Sparsity Regularization (HNLSR) method for image
compressive sensing. Different from existing methods, the proposed HNLSR does not consider the local
sparsity of images, but uses two dictionaries to explore the nonlocal self-similarity. The 2D dictionary
is self-generated and the 3D dictionary is a fixed dictionary, which can combine the advantages of
adaptability and versatility from different dictionaries. An effective framework based on SBI is present
to solve the optimization problem. The convergence and stability of the proposed method have also
been proven. Experimental results show that compared with methods which are based on local and
nonlocal regularizations or single nonlocal regularization, the proposed method performs better than
most existing image compressive sensing methods in both quality assessment and visual quality.

As multiple dictionaries can improve the performance, we are considering some research
directions. For example, learning different dictionaries for different areas of the images
(e.g., smooth area and textured area). Another direction is to learn multi-scale dictionaries and select
them adaptively according to the parameters. Our future work include extending the proposed method
to other image processing tasks (e.g., denoising, deblocking, and deblurring) and high-dimensional
data (e.g., videos and multispectral images). For high-dimensional or multi-frame data, how to collect
similar patches (intra- or inter-frame) is also a problem to be solved.
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