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Abstract: The development of launch and recovery technology is key for the application to the
unmanned surface vehicle (USV). Also, a launch and recovery system (L&RS) based on a pneumatic
ejection mechanism has been developed in our previous study. To improve the launch accuracy
and reduce the influence of the sea waves, we propose a stacking model of one-dimensional
convolutional neural network and long short-term memory neural network predicting the attitude
of the USV. The data from experiments by “Jinghai VII” USV developed by Shanghai University,
China, under levels 1–4 sea conditions are used to train and test the network. The results show that
the stabilized platform with the proposed prediction method can keep the launching angle of the
launching mechanism constant by regulating the pitching joint and rotation joint under the random
influence from the wave. Finally, the efficiency and effectiveness of the L&RS are demonstrated by
the successful application in actual environments.

Keywords: unmanned surface vehicle (USV); launch and recovery system (L&RS); attitude prediction;
convolutional neural network (CNN); long short-term memory (LSTM) neural network

1. Introduction

Many countries are developing intelligent unmanned maritime equipment for marine exploitation
and protection of maritime rights and interests owing to the rich biological and mineral resources.
Unmanned surface vehicle (USV) is a kind of unmanned surface platform with autonomous navigation
and obstacle avoidance ability, and it can independently complete tasks such as marine environment
information perception, inshore island mapping, and disaster rescue, which is suitable for dangerous
and human-unsuited missions instead of manned surface boats vessels [1–5].

Limited by endurance, the USV is usually carried by the mother ship to the mission area and
then placed on the surface for autonomous operation. After the mission is completed, it would be
recovered to the mother ship’s deck. Therefore, the launch and recovery technology is a key technology
for the application of USV [6]. The launch and recovery system (L&RS) for the manned surface
boat can be divided into two types. The first one is the stern ramp type, which is mainly composed
of a slide and a winch. Kern et al. have designed a device with an inclined chute and traction
mechanism that can recover both autonomous underwater vehicle and remote-operated vehicle [7].
Hayashi et al. developed a set of devices composed of an obstacle avoidance system, slope L&RS, and a
matching remote control for reducing the number of operators in the recovery process [8]. However,
the requirement of slideway is limited to the application range, and thus, the davit system is more
widely used compared with the slide system. The davit is generally installed on both sides of the
mother ship’s deck. During the operation, the USV is out of the ship’s side and is lowered to or hoisted
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from the sea surface [9]. The RHP L&RS developed by Global davit gmbH can be used for the launch
and recovery of boats with mass from 1000 to 3500 kg [10]. Marine Equipment Pellegrini, a company
from Italy, has developed a marine L&RS capable of operating at level 6 sea conditions and has strong
adaptability and large load capacity. The existing L&RS, however, requires human intervention to
operate the boat, which is a difficulty when this is used for USV.

One of the challenges of the launch and recovery technology is the connection of USV to the
mother ship’s recovery system, dealing with the uncertainty and randomness under the impact of
the waves, especially during high seas conditions. Thus, predicting the movement trend of USVs is
important during launch and recovery operations. Consequently, several methods have been used,
such as statistical forecast, Kalman filter, and time series [11]. Wiener et al. proposed an optimal
linear prediction method based on the minimum mean square error [12]. The method can obtain
better prediction results just within 5–6 s; however, the prediction error significantly increased with
the prolonged prediction time [13]. Furthermore, Dodin and Sidar obtained the ship’s motion state
equation based on the force analysis and then deduced the multi-step prediction [14]. On the basis
of the autoregressive model, Peng et al. proposed a real-time modeling and prediction method for
predicting attitude motion of large ships under random wave action. The method is found suitable for
application under non-stationary motion conditions, and the prediction time takes only 7–10 s [15].
Khan et al. combined the autoregressive model and the moving average model with an artificial
neural network for predicting ship motion to achieve better prediction accuracy [16]. On the other
hand, methods of attitude prediction were focused on large tonnage ships. The amplitude and
frequency of the attitude are smaller than that of common USVs because of the inertia. In improving
the maneuverability, the mass of the USV should be generally small. However, because of the influence
of the wind and waves, large and high-frequency changes in attitudes have occurred.

For previously developed L&RS based on the pneumatic ejection mechanism, this study presents
the attitude prediction for USV to improve the operation success rate. The rest of the paper is organized
as follows. Section 2 introduces the concept and mechanism of the L&RS. In Section 3, the USV attitude
prediction algorithm for stacking one-dimensional convolutional neural network (1D CNN) and
long short-term memory (LSTM) neural network is proposed for improving the aiming accuracy of
the L&RS under the influence of the waves. The experiments in Section 4 verify the validity of the
algorithm, and efficiency of the automatic L&RS. The conclusions and plans for future studies are
presented in Section 5.

2. Launch and Recovery System

2.1. Mechanism

A L&RS for USV based on pneumatic projectile has been developed in our previous study [17].
As shown in Figure 1, it is composed of a launching mechanism, a 2-degree-of-freedom-stabilized
platform mechanism and a docking mechanism. During the launching process, the USV was lowered
to the sea surface by the davit, and then the locking mechanism separated the USV from the conical
butt joint.

The recovery process after the completion of a mission is as follows (Figure 2).

1. First, by automatic regulation of the pitching and rotation joints of the stabilized platform
mechanism, the launching mechanism is aimed to the mother ship’s deck (Figure 2a).

2. After the launching switch was acted, the air projectile was separated from the catapult
mechanism and was driven by the high-pressure gas. It drives the guide rope to drop on
the mother ship’s deck (Figure 2b).

3. Then, the mother ship’s crew passes the guide rope through the hole of the conical butt joint,
and the conical butt joint slides along with the guide rope into the docking mechanism (Figure 2c).
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(a) (b)

(c) (d)

Figure 1. Schematic of an automated L&RS. (a) Concept. (b) Docking mechanism. (c) Stabilized
platform mechanism. (d) Launching mechanism.

4. Finally, the docking mechanism locks the conical butt joint, and the USV is lifted from the sea
surface by the davit (Figure 2d).

(a) (b)

(c) (d)

Figure 2. Operation process in recovering a USV. (a) Homing and aiming phase. (b) Launching phase.
(c) Docking phase. (d) Lifting phase.
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2.2. Launching Angle

The accurate launching of the air projectile to the mother ship is important for the recovery
operation of USV. When the launching angle is too large, it could result in high elevation and
short-range, causing the air projectile to fall into the sea. Hence, when the launching angle is too small,
it could result in low elevation and longer range, causing the air projectile to hit the mother ship’s
sidewall. Therefore, during the recovery process, it is required to regulate the launching angle of the
stabilized platform according to the measured distance and direction information between the USV
and the mother ship.

A world coordinate system O0X0Y0Z0 is established, as shown in Figure 3a. The O0Y0 axis points
to the bow; the O0Z0 axis is perpendicular to the sea level, opposite to the direction of gravity,
and direction of the O0X0 is determined by the right-hand rule. The coordinates of the port of the
canister launcher Op and the target landing point of the air projectile Oh are denoted by (xp,yp,zp) and
(xh,yh,zh), respectively. On the basis of the aerodynamics, the desired angle of the azimuth angle ϕ and
the elevation angle η in the world coordinate system (Figure 3b) can be calculated as follows [18]:

ϕ = arctan
yh − yp

xh − xp
= arctan

sgn(xh − xp) · s1

s0 + sj
(1)

η = arcsin

 cW( c2−1
e e

b2 lh
m2g )

c2 − 1 − W( c2−1
e e

b2 lh
m2g )

 (2)

c =
bv0

mg
(3)

where s0 is the distance between the USV and mother ship’s side, s1 is the distance between the
USV and the landing point along the direction of the O0Y0 axis, h0 is the altitude difference between
the mother ship and the USV, sj is the distance from the mother ship’s side to the landing point,
lh and v0 are the elevation and initial velocity of the air projectile, respectively, m is the mass of air
projectile, and b is the damping coefficient.“sgn” is a symbolic function, which returns an integer
variable indicating the sign of the argument:

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

(4)

The Lambert W function is a multivalued complex function:

W(x)eW(x) = x (5)

where x is a complex number. The detailed relationship between x and the Lambert W(x) function can
be found in [19].

By coordinate transformation, the corresponding angles of the pitching and rotation joints of the
stabilized platform can be derived. Thus, the launching angle can be kept constant by regulating the
stabilized platform in real time to compensate for the attitude change of the USV due to the influence
of sea waves.
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(a) (b)

Figure 3. Coordinate systems. (a) Overview. (b) The azimuth angle ϕ and the elevation angle η in the
world coordinate system.

3. USV Attitude Prediction

Having the features of being small in size and lightweight, the USV has superior maneuverability
over the common manned surface vehicle. However, the changes in attitude due to the influence of
waves will affect the landing point accuracy of air projectile in a recovery operation. By reducing the
tracking error of the catapult mechanism due to time delays, we predict the attitude of the USV based
on the previous state information. In this study, the LSTM neural network model is used to predict the
attitude of the USV at sea in real time. To improve the performance of the prediction model, 1D CNN
is superimposed on the LSTM. It can reduce the fluctuation range of prediction results and prediction
errors, resulting in a successful recovery operation.

3.1. LSTM Neural Network

LSTM is an advanced recurrent neural network (RNN) structure that can learn and predict time
series data [20,21]. For an ordinary RNN network, the output at the time t is as follows:

Yt = δ(WoXt + UoSt + bo) (6)

where Xt is the input at the current moment; St is the state of the network at time t, which is derived
from the output of the network at the previous moment (i.e., St = Yt−1); Wo is the weight matrix of
the input; Uo is the weight matrix for the states; bo is the bias; and δ is the activation function of the
network. After Yt is inputted to the softmax layer, the final prediction result can be obtained as follows:

prediction = so f tmax(VsYt + bs) (7)

where Vs and bs are the weights of the softmax layer. Because state St is a recursive variable, the
derivative term increases with the time step when calculating the gradient, causing the gradient to
disappear. To solve this problem, we improved the LSTM neural network on the basis of the original
RNN network.

Figure 4 shows the internal structure of the LSTM, which adds a memory cell state Ct on the
original basis. During the training process, the signal is not only controlled by the input and output
but also passes the forgetting control unit. The forget gate Ft enables the network to delete some
memory cell state information according to the previous training feedback without changing the
weight, and it also selects certain neurons to update the weight. Also, an input gate It and an output
gate Kt are added to make the model nonlinear. The input gate determines the amount of current
input information used to calculate the carrying value. The output gate determines the amount of



Sensors 2020, 20, 5662 6 of 16

output from the carrying value to the final state. The state information of the three gates is calculated
as follows: 

It = δi(WiXt + UiSt + bi)

Ft = δ f (W f Xt + U f St + b f )

Kt = δk(WkXt + UkSt + bk)

(8)

Figure 4. The internal structure of the LSTM neurons.

The memory cell state information carried by the network at the next moment is as follows:

C̃t = tanh(WcXt + UcSt + bc) (9)

Ct = Ft ∗ Ct−1 + It ∗ C̃t (10)

where C̃t is the candidate value used to calculate the memory cell state information. The output of the
network is as follows:

Yt = Kt ∗ tanh(Ct) (11)

where Yt is the input to the softmax layer, obtaining the final prediction result. The carrying information
can still be retained even after several time steps. The final output can derive long-term dependencies
from the carrying information, thus solving the problem of gradient disappearance. At the same time,
the input gate and the output gate can also adjust the influence of the output of different timing on the
model, so it can effectively solve the problem of the gradient explosion of RNN.

3.2. One-Dimensional Convolutional Neural Network

Although LSTM has a suitable performance for processing time series, it is difficult to apply to
a huge number of input data, which significantly reduced the calculation efficiency. 1D CNN is an
effective method in dealing with sequence objects. It can extract high-level features from local input
data through convolution operations, which can efficiently use data and reduce the input dimension.
As a result, computational cost can be significantly reduced [22].

As shown in Figure 5, a local one-dimensional sequence segment is extracted from the original
sequence in a 1D CNN. It is dotted with the weights in the convolution kernel to generate a shorter
one-dimensional sequence. The sequence is trained as the input to the LSTM layer. As the input
sequence length is shortened, the input dimension of the LSTM layer and the required training
parameters are reduced. Therefore, the computing load can be effectively reduced, and the training
time of the network can be shortened. Also, the 1D CNN extracts more advanced and abstract features
from the original sequence in advance, so that the data use is high and the performance of the network
can be effectively improved.
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Figure 5. The working principle of 1D CNN. Each output time step is obtained using a small segment
of the input sequence in the time dimension.

3.3. USV Attitude Data

Owing to the strong correlation between the attitude motion sequences of USV, the attitude in
the next moment can be predicted by the LSTM neural network based on the attitude sequence value
within the past time. In this paper, the training data are measured by a six-axis gyroscope mounted on
the “Jinghai VII” USV developed by Shanghai University. The attitude data include posture angle and
angular velocity in the heading, pitch, and roll directions of the USV. The measurement frequency of
the sensing system is 10 Hz, which is far faster than that of the large tonnage ships. The experimental
data with a time step of 0.1 s can be converted into dimensionless data through standardized formulas:

x∗(t) =
x(t)− xmin(t)

xmax(t)− xmin(t)
(12)

where t is time; x(t) is input data at time t; xmax(t) and xmin(t) are maximum and minimum values of
the input data at time t, respectively; and x∗(t) is the normalized value of the input data in which the
range is from 0 to 1.

3.4. Determination of Hyper-Parameters

In this study, we applied a neural network model with two hidden layers and ten hidden units.
The input layer inputs the attitude angle and angular velocity information of the USV in one direction.
The output layer uses the tanh function as the activation function to output the predicted result.
The uniform distribution randomly generates the network weights. The range is (−limit, limit):

limit =

√
6

nj + nj+1
(13)

where nj is the number of units in the layer j network. The bias is initialized at 0. The square sum
of the difference between the predicted value and the actual value of the output is selected as the
loss function. By minimizing the loss function, all weights and bias parameters in the network can
be obtained:

loss =

n
∑

j=1
(yi − yi

p)2

n
(14)

where yi is the actual value, yi
p is the predicted value, and n is the total number of data.

The loss function can also be used to evaluate the accuracy of the neural network training model.
The trained heading, pitch, and roll neural network models of the USV can be respectively derived
from the posture angle and angular velocity in three directions.
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3.5. Training Process

As shown in Figure 6, first, the weights and biases of the stacked LSTM network are initialized.
After entering the normalized attitude data, the forecasted value of heading, roll, and pitch angles can
be obtained. Equation (14) is used to calculate the loss between the desired value and the real value.
Finally, the gradient descent method is used to constantly adjust the weight and bias until the loss
value converges or the number of iterations reaches the peak.

Figure 6. The training process of the 1D CNN-LSTM neural network.

It is noted that a large size of database takes a long training time. Thus, a reasonable batch size
needs to be set to reduce the number of iterations required for the training model. To obtain the
suitable batch size, it was set to 1 at the beginning, and then the value increased until the improvement
in training accuracy was no longer apparent in this study.

4. Experiments and Discussion

4.1. Experimental Overview

To verify the validity of the proposed prediction algorithm, we used the experimental data
measured from the “Jinghai VII” USV under levels 1–4 sea conditions for training the testing. Table 1
lists the specifications of the USV. According to [23,24], the sea level conditions were generally defined
by the ranges of significant wave heights as listed in Table 2. The data set contains the posture angles
and angular velocities of the USV in the heading, pitch, and roll directions. Each set has approximately
3000 sets of data, in which 60%, 20%, and 20% were taken as training, verification, and test sets,
respectively. The batch size is 128 in both training process and validation process.
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Table 1. Specifications of “Jinghai VII” USV.

Parameters Values Unit

Length 8.2 m
Width 2.45 m
Height 1.84 m
Mass 3000 kg

Depth of immersion 0.5 m

Table 2. Definition of sea level conditions [23,24].

Sea Condition Level Sea States Significant Wave Height (m)

0 Calm (glassy) 0
1 Calm (ripples) 0–0.1
2 Smooth (wavelets) 0.1–0.5
3 Slight 0.5–1.25
4 Moderate 1.25–2.5
5 Rough 2.5–4.0
6 Very rough 4.0–6.0
7 High 6.0–9.0
8 Very high 9.0–14.0
9 Phenomenal (Extreme) Over 14.0

To prevent model overfitting, we took samples 100 times per turn for a total of 50 rounds.
The neural network model is trained by inputting the angle and angular velocity information
simultaneously. To demonstrate the performance of the proposed method, we compared the results
with that predicted by the original LSTM, Nonlinear Autoregressive Exogenous Model (NARX)
network, and Time Delay Neural Network (TDNN) under 1–4 sea levels.

4.2. Results and Discussion

To evaluate the performance of the 1D CNN-LSTM neural network, we compared the effect of
that LSTM neural network model, in which the parameter settings and training test data are the same
for the two models. The results of the heading angle of USV are taken as an example. As shown in
Figure 7a, although the sea condition is at level 1, the heading angle fluctuates greatly because of the
slight weight of the USV. Both neural network models can predict the trend of the USV attitude, but the
predicted results by LSTM neural network have a rougher degree of agreement with the actual curve.
It is deduced that as the data set is small, the original LSTM neural network is difficult to learn the
changing characteristics of the heading angle, reducing the accuracy of the prediction model. It can be
seen from the enlarged area of Figure 7a that when the heading angle suddenly changed, the prediction
error of the LSTM neural network increased. However, the predicted results by 1D CNN-LSTM neural
network can achieve higher accuracy. It is attributed that after the addition of CNN, the model can
effectively extract the features of the USV attitude data and reduce the redundant information input
to the LSTM neural network. CNN enables LSTM neural network to mine the deeper features of
heading angle variation so that the predicted results are closer to the actual test data. Table 3 shows the
comparison of the training speed and various losses of the model. It can be confirmed that the training
speed of the LSTM neural network is 22 ms/step, whereas the training speed of the 1D CNN-LSTM
network model is increased by 55% to 10 ms/step. The LSTM test loss was 0.0511, whereas the test
loss of the 1D CNN-LSTM network model was reduced by 59% to 0.0212. The 1D CNN-LSTM neural
network has higher training efficiency and higher prediction accuracy.

The proposed prediction algorithm is required to guarantee suitable prediction accuracy for
various sea conditions and environments. To demonstrate the performance of the proposed network
model under unknown complex sea conditions and higher noise disturbances, we showed the results
of the heading angle under level 2–4 sea conditions in Figure 7b–d, respectively. As shown in Table 3,
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the test error of the LSTM neural network increased with the increase of sea level. It means that the
complexity of high sea conditions has a great influence on the accuracy of the LSTM neural network
prediction result. However, the predicted results by the 1D CNN-LSTM network model after training
agreed with the test data well. The proposed network model test error is approximately 0.015–0.025.

(a) (b)

(c) (d)

Figure 7. Comparison of the predict results and actual results by LSTM with CNN and LSTM without
CNN at different sea level. (a) Level 1 sea condition. (b) Level 2 sea condition. (c) Level 3 sea condition.
(d) Level 4 sea condition.

As shown in Figure 8, all the neural network models can predict the trend of the USV attitude,
in which the 1D CNN-LSTM can achieve the higher prediction accuracy than the other 3 networks.
Table 3 demonstrated the comparison of the training speed and various losses of the four networks
at different sea level. Compared with NARX, the training speed of 1D CNN-LSTM increased by
25% (level 1), 18% (level 2), 17% (level 3) and 21% (level 4), and test loss decreased by 4% (level 1),
43% (level 2), 16% (level 3) and 6% (level 4). Although the training speed of 1D CNN-LSTM has slight
increase with TDNN, the test loss was 25% (level 1), 39% (level 2), 29% (level 3) and 26% (level 4)
lower than that of TDNN. In addition, it can be found that the training speed of 1D CNN-LSTM in
levels 1–4 sea conditions is increased by 45%, 30%, 25% and 29% respectively, compared with the test
loss of LSTM. The test loss of 1D CNN-LSTM in levels 1–4 sea conditions is reduced by 59%, 45%,
30%, and 65%, respectively, compared with the test loss of LSTM. It is noticed that the degree of the
improvement in the prediction accuracy has no relationship with the sea level conditions.



Sensors 2020, 20, 5662 11 of 16

(a)

(b)

(c)

(d)

Figure 8. Comparison of the heading angle by 1D CNN-LSTM network, LSTM network, NARX network
and TDNN network at different sea level. (a) Level 1 sea condition. (b) Level 2 sea condition. (c) Level 3
sea condition. (d) Level 4 sea condition.
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Table 3. Comparison of the results by LSTM, 1D CNN-LSTM, NARX and TDNN.

Sea Condition Network Model Training Speed (ms/step) Training Loss Validation Loss Test Loss

Level 1

LSTM 22 0.1013 0.1232 0.0511
1D CNN-LSTM 12 0.0289 0.0128 0.0212

NARX 16 0.0301 0.0120 0.0222
TDNN 13 0.0247 0.0416 0.0283

Level 2

LSTM 20 0.0402 0.0264 0.0240
1D CNN-LSTM 14 0.0284 0.0201 0.0132

NARX 17 0.0308 0.0244 0.0232
TDNN 14 0.0222 0.0188 0.0216

Level 3

LSTM 20 0.0309 0.0107 0.0310
1D CNN-LSTM 15 0.0279 0.0211 0.0218

NARX 18 0.0305 0.0186 0.0261
TDNN 14 0.0212 0.0221 0.0308

Level 4

LSTM 21 0.0765 0.0461 0.0381
1D CNN-LSTM 15 0.0415 0.0125 0.0133

NARX 19 0.0377 0.0239 0.0141
TDNN 16 0.0286 0.0232 0.0179

It is noticed that compared with the common online prediction algorithms, 1D CNN-LSTM
requires no calculation of the model parameters in real time. It ensures the high speed, real-time
and reliability of the usv’s attitude data prediction. The fluctuation range of model prediction error
under sea conditions is relatively stable regardless of the time, and the prediction error keep stable in
the prolonged prediction time. Therefore, the 1D CNN-LSTM network is superior to the other three
networks in terms of prediction accuracy, adaptability, and efficiency. It can achieve suitable prediction
accuracy under various sea conditions, which is important for the recovery operation of the USV.

4.3. Field Application

The autonomous launch and recovery operation of “Jinghai VII” USV was performed in the
East China Sea to demonstrate the effect of the proposed attitude prediction method in the practical
application. After the mission was completed, the USV returned to the vicinity of the mother ship in
preparation for recovery. The mother ship was stopped, and the position was continuously changing
due to the influence of sea waves. By the guidance of the navigation system, the USV finally stopped
approximately 3 m away from the port side of the mother ship with the same heading.

After the propeller was stalled, the USV switched to the aiming phase. Owing to the influence
of the wave, the attitude of the USV continuously changes. From Equations (1) and (2), the desired
launching angle of the air projectile can be calculated from a distance between the stabilized platform
and the target landing point in the world coordinate system measured by the laser rangefinder and
GPS positioning system mounted on the USV.

Figure 9 demonstrates the effect of the proposed prediction algorithm on the stability control of
the stabilized platform. It can be seen that the tracking error of the azimuth and elevation angles can be
improved by using the proposed prediction algorithm. Without the attitude prediction, the stabilized
platform regulated the azimuth and elevation angles based on the tracking error by the PID algorithm.
As shown in Figure 9a,c, although the desired values and actual values have similar trends, it has the
obvious time delay. It is attributed that the attitude of the USV changes instantly, and the launching
angle of the air projectile changes synchronously with the change of the USV attitude. As the stabilized
platform moves to the desired angle according to the calculated value at the previous moment, the USV
attitude has changed. However, using the proposed prediction algorithm, the joint angles can follow
the desired values with a slight tracking error. On the basis of the predicted results, the stabilized
platform can respond in advance. It compensated the influence of the wave and increased the accuracy
of the air projectile launch.
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(a) (b)

(c) (d)

Figure 9. Comparison of the predict results and actual results in the field application. (a) Azimuth
angle. (b) Error of azimuth angle. (c) Elevation angle. (d) Error of elevation angle.

By applying the proposed prediction method, we can obtain an accurate projectile on the mother
ship’s deck. As shown in Figure 10, following the operation process in Section 2.1, the mother ship’s
crew operated the hoisting boom to drop the conical butt joint to slide into the conical dock entrance
along with the guide rope. Then, the locking mechanism locked the conical butt joint, and the USV
was lifted and placed on the mother ship’s deck.

During the operation, reducing the sway of the USV was time-consuming. Moreover, in reducing
the sway of the USV during the lifting process, the operation required eight operators, a crane operator,
a commander, and other people that could pull the USV in the head and stern directions through ropes.
All people were working on the mother ship’s deck, and no operator is required onboard the USV.
It significantly improved the safety of the USV recovery operation.
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(a) (b)

(c) (d)

Figure 10. From (a–d), recovery process in field application. The recovery process took approximately
23 min. The efficiency of the aiming and launching of L&RS is suitable.

5. Conclusions and Future Work

To improve the launching accuracy of the developed pneumatic ejection mechanism-based L&RS
of USV, we proposed a stacking model of 1D CNN and LSTM network in this study to predict the
attitude of the USV. On the basis of the predicted results, the pitching joint and rotation joint of the
stabilized platform can be regulated in real time to compensate for the disturbance of the waves,
keeping the launching angle stable. The data from the experiments by “Jinghai VII” USV were used
to train and test the proposed network. The results demonstrated that the algorithm has suitable
prediction accuracy and calculation efficiency. From the filed application, it can be confirmed that the
L&RS with the trained network can successfully recover USV. It requires no operator working on the
USV, and it significantly improved safety and adaptability. In the future, the proposed method will be
applied to model predictive control techniques, automatic speech recognition, etc.
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