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Abstract: Unmanned aerial vehicle (UAV) autonomous tracking and landing is playing an increasingly
important role in military and civil applications. In particular, machine learning has been successfully
introduced to robotics-related tasks. A novel UAV autonomous tracking and landing approach based
on a deep reinforcement learning strategy is presented in this paper, with the aim of dealing with the
UAV motion control problem in an unpredictable and harsh environment. Instead of building a prior
model and inferring the landing actions based on heuristic rules, a model-free method based on a
partially observable Markov decision process (POMDP) is proposed. In the POMDP model, the UAV
automatically learns the landing maneuver by an end-to-end neural network, which combines the
Deep Deterministic Policy Gradients (DDPG) algorithm and heuristic rules. A Modular Open Robots
Simulation Engine (MORSE)-based reinforcement learning framework is designed and validated
with a continuous UAV tracking and landing task on a randomly moving platform in high sensor
noise and intermittent measurements. The simulation results show that when the moving platform is
moving in different trajectories, the average landing success rate of the proposed algorithm is about
10% higher than that of the Proportional-Integral-Derivative (PID) method. As an indirect result,
a state-of-the-art deep reinforcement learning-based UAV control method is validated, where the
UAV can learn the optimal strategy of a continuously autonomous landing and perform properly in a
simulation environment.

Keywords: quadrotor unmanned aerial vehicle; deep reinforcement learning; autonomous tracking
and landing

1. Introduction

In recent years, with the rapid development of unmanned aerial vehicle (UAV) technology,
the UAV has been widely used in military and civilian fields, such as search, rescue, exploration,
and surveillance [1,2]. Autonomous tracking and landing is a key point in UAV application [3–6].
However, compared to landing in a simulated environment or a static platform, autonomous tracking
and landing is more difficult because classical techniques have their limitations, in terms of model
design and non-linearity approximation [7]. Furthermore, due to the absence of precise sensors and
the constraint of the sensors’ specific physical motion, autonomous tracking and landing works poorly
with high sensor noise [6,8] and intermittent measurements [9,10].

Given the importance and complexity of the UAV tracking and autonomous landing, increasingly
more scholars from different fields have shown interest in specific solutions such as perception
and relative pose estimation [11,12] or trajectory optimization and control [13,14]. Regarding
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the control maneuvers when the relative state of the moving platform is assumed to be known,
the Proportional-Integral-Derivative (PID) controller is the mainstream algorithm for aggressive
landing from relatively short distances [4,5,15], but a fixed gain of the PID controller cannot provide
immediate response to overcome a nonlinear effect, moreover, PID gain tuning is a crucial part and needs
a lot of effort for optimal gain [16]. This calls for nonlinear control approaches for more precise control
of UAV. By applying a state-dependent coefficient (SDC)-based nonlinear model inversion, the authors
of reference [17] eliminated the need for linearization of the aircraft dynamics, but this approach is quite
sensitive towards sensor noise. In order to solve the problem of UAV autonomouslanding under special
circumstances, such as landing on top of a moving inclined platform [14,18], or landing on a platform
moving in a figure of eight [3,19] (the task of the competition in Mohamed Bin Zayed International
Robotics Challenge (MBZIRC) 2017), a Model Predictive Controller (MPC) tracker was used to generate
UAV feasible trajectories, which could minimize an error of UAV future states over a prediction horizon
to fly precisely above the car given the dynamical constraints of the aircraft. MPC holds the ability
to anticipate upcoming events and can yield control inputs accordingly, however, the development
of accurate prediction models requires a tiresome design effort. Sliding mode methods have been
widely used in UAV autonomous tracking and landing control algorithms [20–22]. This approach
changes the UAV nonlinear dynamics by the application of a discontinuous control signal, but the
main issue with sliding mode control is chattering and a high control demand [7]. Unlike the linear
and non-linear controllers mentioned above, a fuzzy logic controller does not depend on a precise
mathematical model. Regardless of the good performance by PID controllers, these still need to be
adaptive for uncertain conditions. To achieve this purpose, PID control was extended further to fuzzy
adaptive PID [23,24], and the authors of reference [16,25] presented a fuzzy logic-based UAV tracking
and landing using computer vision.

Different from the above methods in solving the control of a UAV by building a prior model and
then making a decision based on a dynamics model, reinforcement learning is an ideal solution
to deal with unknown system dynamics in different tracking and landing circumstances [26].
Recently, significant progress has been made by combining deep learning with reinforcement learning,
resulting in the deep Q-learning network (DQN) [27], the deterministic policy gradient (DPG) [28],
and the asynchronous advantage actor-critic (A3C) [29]. These algorithms have achieved unprecedented
success in challenging domains, such as the Atari 2600 [27].

Concerning deep reinforcement learning for UAV autonomous tracking and landing tasks,
a hierarchy of DQN was proposed in [30,31], which is used as a high-end control policy for the
navigation in different phases. However, the flexibility of the method is limited because the UAV’s
action space is defined by discrete space rather than continuous space. Furthermore, the authors
of reference [32] addressed the full problem with continuous state and actions spaces based on
Deep Deterministic Policy Gradients (DDPG) [33]. However, the altitude (z-axis) is not included in
the framework, there is a significant design effort during the reward plasticity, and the proposed
Gazebo-based reinforcement learning framework has a weak generalization capability, which results
in less autonomous agents.

In general, the current research on the problem of a UAV autonomous tracking and landing is mainly
focused on the situation in which the platform has a constant speed. However, more sophisticated
control is required to operate in unpredictable and harsh environments, such as high sensor noise and
intermittent measurement. In terms of the trajectory control or classic controller, e.g., PID, nonlinear,
fuzzy logic controllers are the mainstream algorithm, but these techniques are limited to model
design, non-linarites approximation, and disturbances rejection. Although, in several studies, the deep
reinforcement learning (DRL)-controller has performed well in UAV tracking and landing problems,
the control problem of UAV tracking and landing on a randomly moving platform becomes intractable,
due to the low reliability and weak generalization ability of the mathematical model.

We decompose the problem of landing on a moving platform into two aspects: one is perception
and relative pose estimation, the other is trajectory optimization and control. The reader is referred
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to [6,34] for algorithms which are used particularly for landing on a platform using visual inputs from
UAV. In the present paper, we focus on trajectory planning and control, aiming to solve the control
problem of UAV tracking and landing on a moving platform. We build a novel model-free-based
tracking and landing algorithm to solve the problem of sensor noise and intermittent measurements.
First, by taking the sensor noise, intermittent measurements, and randomness of UAV movement
into consideration, a novel dynamic model based on the partially observable Markov decision
process (POMDP) [35] is built to describe the autonomous process of UAV tracking and landing.
Then, an end-to-end neural network is used to approximate the action controller of UAV autonomous
tracking and landing. Finally, a DRL-based algorithm is adopted to train the neural network to learn
from the tracking and landing experience.

The rest of this article is organized as follows. In Section 2, we introduce a UAV autonomous
tracking and landing model based on the POMDP. In Section 3, we discuss the hybrid strategy included
with deep reinforcement learning and heuristic rules in order to calculate the optimal control output
and realize UAV autonomous tracking and landing tasks. In Section 4, we present the experimental
results of our methods on a Modular Open Robots Simulation Engine (MORSE) simulator. Conclusions
and future work are drawn in Section 5.

2. Problem Definition

Generally, UAV autonomous tracking and landing could be described as follows: Given a moving
platform, such as a car or truck, and a UAV, the moving state of the UAV and platform could be
detected by some kind of sensors; however, only part of the moving state of the platform could be
observed. The observation states of both platform and UAV may have some errors and information
update delay, so the observation could not be regarded as accurate. The task of UAV autonomous
tracking and landing is to control the UAV with a proper speed or accurate speed, so as to land on
the platform properly. Unlike previous research [30,32,36], in this paper, incomplete and inaccurate
observations are taken into consideration, which makes it more consistent with real situations.

2.1. UAV Autonomous Landing System

As mentioned above, an autonomous tracking and landing system consists of a UAV and
platform (shown in Figure 1), and, to keep the example simple, we assume that the sensors attached
to the UAV and platform could only observe the speed and position of the UAV and platform.
In addition, the observations of both the UAV and platform have a certain frequency, so no real-time
information could be observed, such as the state update delay, making autonomous tracking and
landing more difficult.
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Figure 1. Process of an unmanned aerial vehicle’s (UAV) autonomous tracking and landing, which includes
a moving platform and a UAV, in which the UAV’s task is to achieve the tracking of the moving platform
and landing on it.

Naturally, observations of a system have a certain frequency, which means that multiple states
with a timeline could be obtained, as shown in Figure 2. At each time a state is observed, a proper
decision should be made (which usually means some control parameters, such as speed), and then a
new state could be observed and a new decision should be made. Such a process would continue until
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the UAV lands successfully or reaches a certain step state. Therefore, the control of UAV autonomous
tracking and landing can be regarded as a sequential decision problem.Sensors 2020, 20, x FOR PEER REVIEW 4 of 18 
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Figure 2. At each moment, the UAV sequential decision process can be divided into three steps:
obtaining state information of the current system, performing actions, and updating the state.

2.2. POMDP Mathematical Model

As mentioned above, the UAV autonomous tracking and landing process is partially observable
and can be seen as a sequential decision problem. Therefore, the partially observable Markov decision
process is adopted to describe this process.

Typically, the POMDP consists of tuples (S, A, T, R, O, Ω,γ), where S is a set of states, A is a set of
actions, and Ω is a set of observations. O is a conditional observation probability and the functions T
and R and factor γ define a Markov decision process [37], where T is a transition function, R denotes
immediate rewards, and γ is a discount factor. Based on the POMDP mathematical model, the UAV
autonomous tracking and landing model is described as follows:

1. State S: Represents the state of the system, including the state of the UAV and moving platform;
the system coordinates are constructed as in Figure 3. On the basis of this coordinate system,
the state information could be described by the respective speeds and positions of the UAV and
platform, as in Equation (1):

s =
{
Xu, Yu, Zu, vux, vuy, vuz, Xt, Yt, Zt, vtx, vty, vtz

}
(1)

where vux, vuy ∈ [−10, 10], vuz ∈ [−1, 3], vtx, vty ∈ [−5, 5], vtz = 0.

2. Action A: The speeds of the UAV are used as action parameters defined as A =
{
vx, vy, vz

}
.

3. Transition function T: Represents the dynamic model of the UAV autonomous tracking and
landing system, which is difficult to model and describe explicitly, in this work the transition
model is not given (model-free).

4. Observation Ω: Owing to the physical limitations of the sensor, one could only obtain the velocity
and position information of the UAV and moving platform with sensor noise or intermittent
measurements, and the observation is defined as

Ω =
{
Xu
′, Yu

′, Zu
′, vux

′, vuy
′, vuz

′, Xt
′, Yt

′, Zt
′, vtx

′, vty
′, vtz

′
}
. (2)

5. Reward function R: Because one of our goals is to minimize the distance between the UAV and
the moving platform, a positive reward of 10 is given when the distance between the UAV and
the platform is less than a certain threshold, and a negative reward of −10 is given if the distance
between the UAV and the platform is more than a certain threshold.

Additionally, due to the complexity of the UAV control, when the agent explores its environment
in the early stages, the event of randomly reaching the distance between the UAV and the moving
platform within a certain threshold is rare, and thus cannot provide the agent with enough information
to converge. Conversely, it is the best to receive reward signals at each time step of UAV tracking, so the
intermediate reward between a positive and negative reward is designed, as shown in Equation (3),
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where the agent maximizes the reward (thereby minimizing distance) in order to track the target as
accurately as possible.

R =


−10, dist > 6

−0.1× dist, 0.8 ≤ dist ≤ 6
+10, dist < 0.8

(3)

where the variable dist is given by

dist =

√
(Xu − Yt)

2 + (Xu − Yt)
2 . (4)

6. Discount factor γ is a parameter used to incorporate the future reward into current action.
We used an action-value function to evaluate the learning outcome, which describes the expected
accumulated discounted reward after taking an action ai in state si and, thereafter, following
policy π:

Qπ(si, ai) = R(si, ai) + γ
∑

si+1∈S

Pai
sisi+1

vπ(si+1) (5)

where Si+1 denotes the state information on the next moment, Pai
SiSi+1

is the Markov dynamics
model of the system, and vπ is the total expected reward under the strategy π. The goal of this
paper is to find the strategy π(ai

∣∣∣si) to maximize Qπ(Si, ai), which means finding an optimal
strategy for selecting actions based on the information observed by the UAV to realize UAV
autonomous tracking and landing tasks.
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Figure 3. The UAV coordinate system and ground coordinate system are constructed separately, and the
pose and velocity of the moving platform and UAV are obtained through coordinates.

3. UAV Autonomous Tracking and Landing Method Based on Hybrid Strategy

If the UAV autonomous landing problem can be described by an accurate mathematical model,
then we can solve the objective function of the Markov decision model (shown in Equation (5))
by an iterative solution based on the direct method or indirect method of the optimal control
theory and then directly obtain the above optimal decision strategy of the Markov decision process.
However, as described in Section 2, the model of the target system is unknown and difficult to describe.
Much of the current research [38,39] uses a reduced model of the UAV for generating the optimal
landing trajectory for landing on a moving target. However, such an approximation may not be
accurate, and, consequently, the landing performance is decreased. Besides, most methods take a
state as inputs and assume that the observation of the state is accurate, which is unlikely to be true.
Different from the previous definition of optimal control [40], the UAV optimal control method we
propose refers to the control strategy that maximizes the action value function (shown in Equation (5))
of the UAV. Aided by reinforcement learning, a model-free method is adopted, and a novel network is
used to map the observation to optimal action in an end-to-end way. In addition, we use the tracking
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and landing experience history to train the network to learn the optimal tracking strategy. Once the
platform is tracked, a rule-based landing strategy is used to land the UAV.

3.1. Hybrid Strategy Method

The hybrid strategy adopted in this paper is shown in Figure 4. The strategy consists of two parts:
tracking and landing modules. The tracking module introduces the reinforcement learning method to
adjust the speed of the UAV in the horizontal direction, aiming to achieve the stable tracking of the
moving platform. The landing module adjusts the height of the UAV in the vertical direction based on
heuristic rules, so as to land the UAV on the platform.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 

 

tracking of the moving platform. The landing module adjusts the height of the UAV in the vertical 

direction based on heuristic rules, so as to land the UAV on the platform. 

Critic

FC1 FC2 scale  ai

Actor

QiFC3

Tracking Model

UAV initial 

height 5m

Tracking 

error < 4m
Y

N

Landing Model

State 

Update

Tracking Model

Landing Module

State 

Update

t

Si

Si+1

 

Figure 4. Hybrid strategy consisting of two parts: tracking and landing modules. The tracking module 

introduces the deep reinforcement learning method, and the landing module adopts heuristic rules, 

so as to land the UAV on the platform. 

Tracking module: The UAV autonomous tracking and landing problem has a continuous state 

and decision space, and the DDPG, which combines the DQN and DPG, is a deterministic strategy 

for a continuous action space. This method combines reinforcement learning with deep learning and 

has good potential for dealing with complex tasks. Thus, this network is introduced in this paper for 

mapping the observation to proper action in an end-to-end way. 

Details of the decision network structure are shown in Figure 4. The network adopts the actor-

critic architecture [41], in which the actor network input is the system state, mainly including the 

motion state information of the UAV and moving platform in the system. The output layer is a two-

dimensional continuous action space, which corresponds to the speed value of the UAV in the 

longitudinal and lateral directions after scale conversion. The critic network estimates the action-

value function that describes the expected reward after following policy π. Since the decision is a 

deterministic action, to ensure that the environment is fully explored during the training process, we 

constructed a random action by adding noise sampled from a noise process Ni, in which the noise is 

only needed in the training process: 

   |   i i ia s N     

 

(6) 

where 𝑎𝑖 is the output action, 𝑠𝑖 represents the current state information, 𝜇(𝑠𝑖|𝜃
𝜇 ) represents the 

decision taken when the policy parameter is 𝜃𝜇 in state 𝑠𝑖, and 𝑁𝑖 is the artificially added Gaussian 

noise attenuated over time. 

As shown in Figure 4, the network consists of three fully connected layers, the FC1 and FC3 

layers are followed with the relu activation function, and the FC2 layer is followed with the tanh 

layer. The parameters of each layer in the network are shown in Table 1. Furthermore, the effects of 

different network parameters on the UAV tracking performance are shown in Appendix C. 

Table 1. Network parameters. 

Network Name Number of Hidden Layers Activation Function 

FC1 30 relu 

FC2 2 tanh 

FC3 30 relu 

Landing module: The landing module adjusts the height of the UAV in the vertical direction 

based on heuristic rules (shown in Table 1). As show in Table 2, dist has been defined in Equation (4), 

and height is defined as ℎ𝑒𝑖𝑔ℎ𝑡 =  𝑍𝑢 − 𝑍𝑡. According to the rules table, the speed of the UAV in the 

Figure 4. Hybrid strategy consisting of two parts: tracking and landing modules. The tracking module
introduces the deep reinforcement learning method, and the landing module adopts heuristic rules,
so as to land the UAV on the platform.

Tracking module: The UAV autonomous tracking and landing problem has a continuous state
and decision space, and the DDPG, which combines the DQN and DPG, is a deterministic strategy
for a continuous action space. This method combines reinforcement learning with deep learning and
has good potential for dealing with complex tasks. Thus, this network is introduced in this paper for
mapping the observation to proper action in an end-to-end way.

Details of the decision network structure are shown in Figure 4. The network adopts the actor-critic
architecture [41], in which the actor network input is the system state, mainly including the motion state
information of the UAV and moving platform in the system. The output layer is a two-dimensional
continuous action space, which corresponds to the speed value of the UAV in the longitudinal and
lateral directions after scale conversion. The critic network estimates the action-value function that
describes the expected reward after following policy π. Since the decision is a deterministic action,
to ensure that the environment is fully explored during the training process, we constructed a random
action by adding noise sampled from a noise process Ni, in which the noise is only needed in the
training process:

ai = µ(si
∣∣∣θµ) + Ni (6)

where ai is the output action, si represents the current state information, µ(si
∣∣∣θµ ) represents the decision

taken when the policy parameter is θµ in state si, and Ni is the artificially added Gaussian noise
attenuated over time.

As shown in Figure 4, the network consists of three fully connected layers, the FC1 and FC3
layers are followed with the relu activation function, and the FC2 layer is followed with the tanh layer.
The parameters of each layer in the network are shown in Table 1. Furthermore, the effects of different
network parameters on the UAV tracking performance are shown in Appendix C.
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Table 1. Network parameters.

Network Name Number of Hidden Layers Activation Function

FC1 30 relu

FC2 2 tanh

FC3 30 relu

Landing module: The landing module adjusts the height of the UAV in the vertical direction
based on heuristic rules (shown in Table 1). As show in Table 2, dist has been defined in Equation (4),
and height is defined as height = Zu −Zt. According to the rules table, the speed of the UAV in the
vertical direction depends on the distance and height between the UAV and the moving platform.
When the distance between the UAV and moving platform is less than 4 m, the UAV should gradually
reduce its height while ensuring stable target tracking. When the relative height between the UAV
height and moving platform is less than 0.1 m, and the distance error of the horizontal direction
is less than 0.8 m, it is then considered that the landing task is successful. When the target is lost
during landing, the UAV would stop landing and gradually restore the initial height and re-plan the
landing trajectory.

Table 2. The vertical speed generated by heuristic rules.

Velocity (m/s)
Dist

0 < dist < 0.8 0.8 ≤ dist ≤ 4 dist > 4

Height (m)

0 ≤ |height| ≤ 0.1 0 0.5 × height −1

0.1 < |height| ≤ 3.5 0.5 × height 0.5 × height −1

|height| > 3.5 0.5 × height 0.5 × height 0

3.2. Network Model Training

To train the UAV tracking neural network to learn the optimal tracking strategy, we adopted the
reinforcement learning process (shown in Figure 5). At each step, the UAV observes the states’ partially
observable information and then interacts with the environment through actions while receiving
immediate reward signals. After multi-step decisions, the agent gains decision-making experience,
so as to obtain more cumulative rewards and maximize the action-value function (defined in Section 2).
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Figure 5. At each step, the UAV observes the environment and interacts with it through actions while
receiving immediate signals and updating information of the environment. After multi-step decisions,
the UAV acquires decision-making experience and then optimizes the entire task sequence.

One challenge when training a neural network is that there is a correlation between the data
generated by sequential exploration in the UAV autonomous tracking and landing environment.
To address these issues, a replay buffer is used to define a control experience tuple: Di = {si, ai, ri,
si+1}, indicating the UAV input state at time i, outputting the control action, receiving the reward,
and obtaining the state at the next time i + 1. The tuple is stored in the replay buffer, and the neural
network is updated by uniform random sampling of the mini-batch data in the replay buffer.
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The decision network training method is now presented. The critic network uses the method of
minimizing the loss function to approximate the value function, which is defined as

L
(
θQ

)
=

1
N

∑
i

[
Q(si, ai|θ

Q) − ri − γQ′
(
si+1,µ′

(
si+1|θ

µ′
))
|θQ′

]2
(7)

where L
(
θQ

)
is the loss function, Q

(
si, ai

∣∣∣θQ
)

is the estimate of the Q value at time i (the latter two values
are the actual Q values after the action ai at time i), γ is the discount factor, and ri is an immediate
reward.

In the actor network, the neural network is also used to approximate the strategy function, and the
actor policy is updated to output the optimal decision on the basis of the current state. The updated
formula is

∇J ≈
1
N

∑
i

∇aQ
(
s, a

∣∣∣θQ
)∣∣∣∣s=si,a=ai∇θµµ(s

∣∣∣θu) |s=si (8)

where ∇J represents the gradient direction of the Q value caused by the strategy µ, thereby updating
the policy parameter µ(s|θu), ∇aQ

(
s, a|θQ

)
|s=si,a=ai represents the change in the Q value generated by

the action ai in the current state, and ∇θµµ(s|θu) represents the current policy gradient direction.
To ensure the stability of the learning process, in this paper, the networks µ′

(
s|θu′

)
and Q′

(
s, a|θQ′

)
are created to be the same as the actor and critic network, respectively, which are then used for
calculating the target values, and the parameter-updated formula is

θi+1
Q′ = τθQ + (1 − τ)θi

Q′

θi+1
µ′ = τθµ + (1 − τ)θi

µ′ (9)

4. Simulation Results

4.1. Simulation Environment

To evaluate the behavior of the control system approach, experiments were performed on the
Modular Open Robots Simulation Engine (MORSE) simulation platform (https://github.com/morse-
simulator/morse), which can perform accurate dynamic simulations based on the state-of-the art Bullet
library. The simulation environment was established using a UAV and ground vehicle. The UAV speed
was controlled by the algorithm proposed in this paper, and the orientation of the ground vehicle
(robot) was able to be changed at any time from the command line. The experimental computer was
an AMD Ryzen 71,700 (eight-core processor, main frequency 3.0 GHz, 8 GB DDR4, 2400 MHz memory,
operating system Ubuntu 16.04) running Python v3.6.0, anaconda v4.2.0, and TensorFlow v1.4.0.

The flowchart of the simulation experiment for the proposed method is shown in Figure 6.
The flowchart defines two different types of tests. The first was to test the performance of the
UAV tracking model by tracking moving platform with a fixed height of 5 m. Once the tracking
error was less than a certain threshold, a second experiment could be carried out to evaluate the
ability of the hybrid strategy method to automatically land from a height of 5 m. Both tracking
and landing tests have the same environment: The tracking and landing phases were trained in
simulation throughout approximately 60 k training steps. The trajectory of the moving platform could
be linear, circular, or random. The maximum velocity of UAV and moving platform were defined in
Section 2. The permitted horizontal area for the moving platform to move is a rectangle of 37 m × 85 m.
The velocity controller frequency of UAV is 20 Hz in a real-time MORSE simulation.

In the simulation environment, in order to ensure the flight safety of the UAV, on the one hand,
during the model training phase, we restricted the speed data output by the model, and stipulated
that the horizontal velocity of the UAV vx, vy was less than 10 m/s, and vz was less than 3 m/s. On the
other hand, we introduced heuristic rules to prevent the UAVs from crashing and keep them at a safe
flying height, specifically, when the height of the drone was less than 3.5 m, vz = 0.5 × height. When the

https://github.com/morse-simulator/morse
https://github.com/morse-simulator/morse
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distance between the UAV and the moving platform was greater than 6 m, the flying height of the UAV
must gradually return to the initial height of 5 m.
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Figure 6. The simulation experiment includes two parts: the tracking and landing experiment. Once the
UAV can track the moving target stably, it will adjust the altitude and land on the moving platform.

4.2. Autonomous Tracking Tests

In the autonomous tracking tests, the UAV and ground vehicle were randomly placed at an initial
position. The behavior of the control system was evaluated using the root-mean-square error (RMSE)
and tracking success rate (TSR) during the tracking tests. In Equation (10), the tracking success is
defined as the horizontal distance between the UAV and moving platform, which is less than 3 m,
and the definition of TSR is shown as follows:

TSR =
N∑

i=0

Di
N
× 100%, Di =

{
1, dist < 3
0, dist ≥ 3

}
(10)

where Di = 1 refers to the success of the UAV tracking moving platform at step i, Di = 0 refers to
tracking failure, and N refers to stopping the tracking test after updating fixed N time steps.

Table 3 shows the RMSE and TSR values of the tracking modules compared with the PID controllers
(a complete description of PID controllers and parameters are shown in Appendix A). The moving
platform has four different types of motion trajectories, including linear, circular, and random
motion. The results show that, although the tracking performance of the PID method is more stable,
when encountering complex motion, the RMSE of the proposed method is smaller. Compared with the
VIEW percent indicator, the PID method is more likely to cause the loss of the tracking target. Figure 7
shows the trajectory of the UAV in the x-y plane while following a moving platform. Figure 7c,d
show that the PID method could fit the motion trajectory of the platform, but it has a large response
hysteresis and response error; therefore, compared with the PID method, the proposed method is more
effective in solving the problem of tracking large-scale changes in moving platforms.

Table 3. Root-mean-square error and tracking success rate (TSR) of the unmanned aerial vehicle (UAV)
for tracking a moving platform.

Controller PID Method Proposed Method
Units

Movement Linear Circular Random1 Random2 line Circular Random1 Random2

x axis (RMSE) 0.2969 2.4204 3.3479 3.7198 0.3896 1.7466 2.8444 2.6720 m
y axis (RMSE) 0.8809 1.9919 2.7271 3.6738 1.1834 2.0197 1.9053 2.0395 m

TSR (%) 95.0 65.5 27.5 20.3 94.8 63.8 45.3 37.2 –



Sensors 2020, 20, 5630 10 of 17
Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

 

(a) (b) (c) (d)  

Figure 7. Trajectory of UAV while tracking a moving platform: moving platform for (a) linear motion, 

(b) circular motion, (c) random motion, and (d) random motion. 

In order to test the capability of the generalization and robustness of the proposed method, 

experiments were conducted to analyze the effects of sensor noise on the tracking model. These 

experiments simulated the measurement noise of the sensors, which limits the ability to acquire the 

ground-truth motion information of the UAV and moving platforms. We added Gaussian noise (μ = 

0 and σ = 1, 2, 3, 4) to observations obtained from the UAV, and the results of the noise influence are 

shown in Figure 8, and the confidence intervals of the data points are specified in Appendix B. Both 

models degrade in performance as more noise is applied to the UAV observation. However, the 

performance of the proposed model does not degrade as quickly as that of the PID algorithms and 

even performed tracking tasks better than the PID algorithms. 

(a) (b)

(c)

RMSE of the UAV in x direction on measurement noise RMSE of the UAV in y direction on measurement noise

R
M

S
E

(m
）

R
M

S
E

(m
）

TSR of the UAV on measurement noise

T
S

R
 *

1
0
0

%

 

Figure 8. Tracking results on measurements error: (a) root-mean-square error (RMSE) of UAV in the 

x-direction, (b) RMSE of UAV in the y-direction, and (c) tracking success rate (TSR) of UAV. 

On the other hand, we tested the effects of intermittent measurements on the tracking method. 

In the process of the UAV tracking the moving platform, the initial state of the system is 𝑆0, and then 

the system needs to update the state at a fixed frequency and stop the tracking process after updating 

Figure 7. Trajectory of UAV while tracking a moving platform: moving platform for (a) linear motion,
(b) circular motion, (c) random motion, and (d) random motion.

In order to test the capability of the generalization and robustness of the proposed method,
experiments were conducted to analyze the effects of sensor noise on the tracking model.
These experiments simulated the measurement noise of the sensors, which limits the ability to
acquire the ground-truth motion information of the UAV and moving platforms. We added Gaussian
noise (µ = 0 and σ = 1, 2, 3, 4) to observations obtained from the UAV, and the results of the noise
influence are shown in Figure 8, and the confidence intervals of the data points are specified in
Appendix B. Both models degrade in performance as more noise is applied to the UAV observation.
However, the performance of the proposed model does not degrade as quickly as that of the PID
algorithms and even performed tracking tasks better than the PID algorithms.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

 

(a) (b) (c) (d)  

Figure 7. Trajectory of UAV while tracking a moving platform: moving platform for (a) linear motion, 

(b) circular motion, (c) random motion, and (d) random motion. 

In order to test the capability of the generalization and robustness of the proposed method, 

experiments were conducted to analyze the effects of sensor noise on the tracking model. These 

experiments simulated the measurement noise of the sensors, which limits the ability to acquire the 

ground-truth motion information of the UAV and moving platforms. We added Gaussian noise (μ = 

0 and σ = 1, 2, 3, 4) to observations obtained from the UAV, and the results of the noise influence are 

shown in Figure 8, and the confidence intervals of the data points are specified in Appendix B. Both 

models degrade in performance as more noise is applied to the UAV observation. However, the 

performance of the proposed model does not degrade as quickly as that of the PID algorithms and 

even performed tracking tasks better than the PID algorithms. 

(a) (b)

(c)

RMSE of the UAV in x direction on measurement noise RMSE of the UAV in y direction on measurement noise

R
M

S
E

(m
）

R
M

S
E

(m
）

TSR of the UAV on measurement noise

T
S

R
 *

1
0
0

%

 

Figure 8. Tracking results on measurements error: (a) root-mean-square error (RMSE) of UAV in the 

x-direction, (b) RMSE of UAV in the y-direction, and (c) tracking success rate (TSR) of UAV. 

On the other hand, we tested the effects of intermittent measurements on the tracking method. 

In the process of the UAV tracking the moving platform, the initial state of the system is 𝑆0, and then 

the system needs to update the state at a fixed frequency and stop the tracking process after updating 

Figure 8. Tracking results on measurements error: (a) root-mean-square error (RMSE) of UAV in the
x-direction, (b) RMSE of UAV in the y-direction, and (c) tracking success rate (TSR) of UAV.



Sensors 2020, 20, 5630 11 of 17

On the other hand, we tested the effects of intermittent measurements on the tracking method.
In the process of the UAV tracking the moving platform, the initial state of the system is S0, and then
the system needs to update the state at a fixed frequency and stop the tracking process after updating
the fixed N steps (arriving final state SN). Therefore, we set time steps L during which the observations
were not updated. Furthermore, the random starting interval Si of [S0,SN−L] was generated by a
random number generation algorithm, namely the linear congruential method [42], and then the
intermittent measurements interval [Si,Si+L) was obtained. This simulated the incomplete information
acquired by the sensors—the tracking results for the loss of motion information in an information
acquired by the sensors. The tracking results for the loss of motion information in an intermittent
measurement environment are shown in Table 4. The results show that, in most cases, the performance
of the proposed method is better than that of the PID algorithms.

Table 4. Tracking results in an intermittent measurement environment. Root-mean-square error and
percentage of steps of the moving platform in the field of view of the UAV are shown in this table.

Controller PID Method Proposed Method

Movement
Values x axis (m)

(RMSE)
y axis (m)
(RMSE)

TSR (%) x axis (m)
(RMSE)

y axis (m)
(RMSE)

TSR
(100%)

linear 0.3991 2.4481 78.60 0.3764 2.0297 90.50

circular 6.7256 8.2300 15.50 2.1986 2.5640 59.75

random1 10.3374 10.1190 15.00 3.1644 2.3531 43.00

random2 6.2291 6.0182 12.00 2.6294 3.1471 35.00

The results of these three tracking experiments indicate that our algorithms are outperformed by
PID controllers in some conditions and are more tolerant of noisy and intermittent measurements than
PID method.

4.3. Autonomous Landing Tests

Once the tracking methods and landing methods are obtained, they can be used together to control
the autonomous landing of the virtual UAV. The moving platform changes its position in the x-y plane
to achieve the four different movement types. The initial position of the UAV is an altitude of 5.0 m
with the vertical velocity controller constrained by the x and y axis errors, and this strategy retains the
UAV’s ability to carry out autonomous tracking.

To evaluate the UAV landing method proposed in this paper, we introduced the landing success
rate as the evaluation indicator of the landing algorithm. A landing trial is considered successful
when the horizontal and vertical distance between the UAV and the moving platform are less than the
fixed threshold.

Table 5 shows the success rate based on 100 times landing test episodes, compared with the
PID algorithm, the proposed algorithm reduces the success rate by 2~3% when the moving platform
performs a linear or circular motion, however, the landing success rate of the proposed algorithm is
significantly improved, such as when the moving platform performs random motion. In addition,
Figure 9 shows the trajectory of the UAV in the x-y-z plane while landing on a moving platform.
The success rate and landing trajectory suggest that the PID control could not explore the unknown
nonlinearity in its control architecture and thus, usually leads to a suboptimal performance, but the
proposed approach succeeded in learning the landing maneuver in complex environments.

Table 5. Landing success rate for several movement types.

Movement Type Linear Circular Random1 Random2

PID method 97% 85% 56% 41%
Proposed method 94% 83% 70% 74%
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Figure 9. Trajectory of UAV while landing on a moving platform for (a) linear motion, (b) circular
motion, (c) random motion, and (d) random motion.

Additionally, in order to further validate the performance of our proposed model, we compare
the landing success rate of the proposed method with other deep reinforcement learning methods.
The results of the test phase are summarized in Figure 10. The bar chart compares the performances
of the DQN-single [30], DQN-multi [30], DDPG (two-dimensional) [5,32], and the proposed method.
In all tests, the moving platform performed a uniform straight-line motion at a speed of 3 m/s.
In this case, the proposed method has the highest success rate with an accuracy of 93%, the DDPG
(two-dimensional) has the similar performance (89%). The DQN-single follows with a score of (85%).
The DQN-multi score is significantly lower (80%). The results show that the method proposed in this
paper can more effectively solve the problem of a UAV’s autonomous landing in high-dimensional and
continuous action space.
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5. Conclusions and Future Work

A hybrid strategy-based autonomous tracking and landing method is proposed. With the help
of reinforcement learning and an end-to-end neural network, the proposed method requires no
prior information of the moving platform and the UAV can work well in a noisy measurement and
intermittent measurements. Compared with the PID methods, the proposed method shows good
performance when the platform moves in a complex trajectory. Considering the control strategy of
the UAV landing (or other types of robot complex tasks) in unpredictable and harsh environments,
other reinforcement learning algorithms can also be applied to our neural network training process,
which improves the generality of our control framework. The developed algorithm also has some
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limitations. For example, due to the complexity and continuity of the state and action space of the
UAV landing problem, the z-axis is based on heuristic rules and is not included in the solution space
of reinforcement learning. Therefore, we would consider including the z-axis in the action space in
future work. At the same time, we would use the dji-m210 UAV to further verify the robustness
and effectiveness of the proposed method, and some offline training controller and online optimizer
solutions would be tested.
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Appendix A

Combined with the velocity control method of the UAV in the MORSE platform, the PID control
law of velocity can be given as follows:

V = kI·∆P + kp·∆V + kD·∆a (A1)

where V is the velocity output, and ∆P, ∆V, ∆a, respectively, correspond to the position difference,
velocity difference, and acceleration difference between the UAV and the moving platform. KI is
the integral term parameter, KP is the proportional term parameter, and KD is the differential term
parameter. Parameter setting is the key step of the PID controller design, and the PID parameters
during the UAV’s moving tracking and landing are displayed in Table A1. In addition, in this paper,
we used the critical proportion method and engineering experience to adjust the PID parameters.

Table A1. Parameters of the Proportional-Integral-Derivative (PID) controller.

Movement Type Linear Circular Random1 Random2

KP 5.0 8.0 2.5 4.0

KD 3.0 3.0 5.0 3.5

KI 3.5 3.5 0.3 1.0

Appendix B

This paper considers that the RMSE and TSR data obtained by measurement and calculation obey
a normal distribution, and the confidence probability of the data is 99.7%. The confidence interval of
the data obtained in the sensor noise environment is shown in Tables A2–A4.
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Table A2. Tracking results of UAV in the sensor noise environment. The root-mean-square error in the
x-axis direction and data confidence interval are shown in this table.

Movement Type
Method

Noise
σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

linear
Proposed Method 0.39 ± 0.21 1.00 ± 1.34 2.06 ± 1.96 4.81 ± 2.56 5.80 ± 3.41

PID Method 0.30 ± 0.32 1.89 ± 1.23 4.52 ± 2.19 10.99 ± 3.13 14.31 ± 5.73

circular
Proposed Method 1.75 ± 0.13 2.63 ± 0.87 4.47 ± 1.95 5.73 ± 2.14 6.98 ± 3.43

PID Method 2.42 ± 0.31 2.84 ± 1.53 3.47 ± 1.87 6.12 ± 2.06 19.32 ± 4.54

random1
Proposed Method 2.84 ± 0.17 3.17 ± 1.68 3.97 ± 1.93 4.41 ± 2.27 4.82 ± 2.96

PID Method 3.35 ± 0.27 4.44 ± 1.54 5.30 ± 2.01 8.02 ± 3.84 10.71 ± 4.25

random2
Proposed Method 2.67 ± 0.01 2.97 ± 0.99 3.58 ± 1.95 4.47 ± 2.15 4.69 ± 2.73

PID Method 3.71 ± 0.53 5.70 ± 1.36 1.86 ± 2.81 5.93 ± 3.72 6.02 ± 4.06

Table A3. Tracking results of UAV in the sensor noise environment. The root-mean-square error in the
y-axis direction and data confidence interval are shown in this table.

Movement Type
Method

Noise
σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

linear
Proposed Method 1.18 ± 0.17 1.78 ± 1.45 3.44 ± 2.23 5.04 ± 2.47 5.65 ± 3.75

PID Method 0.88 ± 0.38 2.01 ± 1.65 6.24 ± 2.47 6.52 ± 2.65 7.27 ± 3.06

circular
Proposed Method 2.02 ± 0.22 2.12 ± 1.06 2.51 ± 1.53 4.71 ± 1.97 4.72 ± 3.16

PID Method 2.00 ± 0.17 4.04 ± 1.47 5.20 ± 1.99 5.93 ± 2.15 14.34 ± 3.69

random1
Proposed Method 1.95 ± 0.13 2.72 ± 1.42 3.91 ± 1.87 4.26 ± 2.43 5.52 ± 3.06

PID Method 2.72 ± 0.25 3.56 ± 1.56 5.26 ± 2.45 7.47 ± 3.24 9.02 ± 3.99

random2
Proposed Method 2.04 ± 0.02 2.38 ± 1.09 3.08 ± 1.90 4.10 ± 2.07 4.47 ± 2.65

PID Method 3.67 ± 0.65 5.93 ± 1.10 7.60 ± 2.07 7.78 ± 3.86 8.16 ± 4.67

Table A4. Tracking results of UAV in the sensor noise environment. The TSR and data confidence
interval are shown in this table.

Movement Type
Method

Noise
σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

linear
Proposed Method 94.8 ± 2.5 86.5 ± 6.5 47.08 ± 7.6 34.5 ± 8.5 20.0 ± 4.3

PID Method 63.8 ± 2.5 50.8 ± 2.6 29.8 ± 4.2 11.8 ± 1.7 7.0 ± 4.1

circular
Proposed Method 63.8 ± 1.5 50.8 ± 2.1 26.8 ± 4.3 18.5 ± 2.3 18.3 ± 4.2

PID Method 65.5 ± 0.2 36.8 ± 2.3 35.0 ± 2.9 14.0 ± 10.5 0.25 ± 0.01

random1
Proposed Method 45.3 ± 1.2 36.8 ± 2.5 26.8 ± 3.6 24.8 ± 4.3 23.0 ± 5.2

PID Method 27.5 ± 0.2 25.0 ± 3.5 14.0 ± 4.8 11.3 ± 6.3 10.3 ± 6.4

random2
Proposed Method 37.2 ± 1.8 35.8 ± 2.4 32.2 ± 3.5 27.6 ± 3.7 25.6 ± 4.3

PID Method 20.3 ± 0.1 6.8 ± 0.1 5.0 ± 0.1 2.5 ± 0.13 1.25 ± 0.2

Appendix C

In this paper, the number of neurons is one of the important parameters that affect the UAV
tracking performance. Therefore, we analyze the model sensitivity of the proposed method from
the perspective of the neuron parameter settings. All tracking tests have the same environment: the
tracking phases were trained in simulation throughout approximately 60 k training steps. Table A5
shows the RMSE and TSR values of the tracking module with different neural parameters, from which
we can see that the result is acceptable, and the performance of the models are better than that of the
PID method.
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Table A5. Tracking results of UAV in the sensor noise environment with different neural parameters.
The RMSE and TSR are shown in this table.

Network
Parameters Method

Noise
σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

Cells (FC1) = 36
Cells (FC3) = 36

x-axis 2.83 ± 0.17 3.43 ± 1.57 4.18 ± 1.98 4.78 ± 3.99 4.08 ± 3.74
y-axis 1.97 ± 0.12 3.14 ± 1.89 3.56 ± 3.41 4.08 ± 3.13 4.95 ± 3.74
TSR 40.0 ± 1.6 34.6 ± 2.7 22.2 ± 3.9 18.0 ± 4.2 16.8 ± 2.7

Cells (FC1) = 30
Cells (FC3) = 30

x-axis 2.67 ± 0.01 2.97 ± 0.99 3.58 ± 1.95 4.47 ± 2.15 4.69 ± 2.73
y-axis 2.04 ± 0.02 2.38 ± 1.09 3.08 ± 1.90 4.10 ± 2.07 4.47 ± 2.65
TSR 37.2 ± 1.8 35.8 ± 2.4 32.2 ± 3.5 27.6 ± 3.7 25.6 ± 4.3

Cells (FC1) = 24
Cells (FC3) = 24

x-axis 2.04 ± 0.06 3.11 ± 1.59 4.06 ± 1.63 5.02 ± 3.72 5.41 ± 4.18
y-axis 3.31 ± 0.09 4.05 ± 1.15 5.22 ± 2.80 5.43 ± 1.92 6.07 ± 3.48
TSR 37.5 ± 1.7 22.8 ± 2.4 12.4 ± 1.5 9.4 ± 2.3 7.2 ± 0.7

References

1. Kim, J.; Jung, Y.; Lee, D.; Shim, D.H. Outdoor autonomous landing on a moving platform for quadrotors
using an omnidirectional camera. In Proceedings of the IEEE International Conference on Unmanned
Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 1243–1252.

2. Li, K.; Liu, P.; Pang, T.; Yang, Z.; Chen, B.M. Development of an unmanned aerial vehicle for rooftop landing
and surveillance. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems
(ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 832–838.

3. Baca, T.; Stepan, P.; Spurny, V.; Hert, D.; Penicka, R.; Saska, M.; Thomas, J.; Loianno, G.; Kumar, V. Autonomous
landing on a moving vehicle with an unmanned aerial vehicle. J. Field Robot. 2019, 36, 874–891. [CrossRef]

4. Araar, O.; Aouf, N.; Vitanov, I. Vision based autonomous landing of multirotor UAV on moving platform.
J. Intell. Robot. Syst. 2017, 85, 369–384. [CrossRef]

5. Borowczyk, A.; Nguyen, D.-T.; Nguyen, A.P.; Nguyen, D.Q.; Saussié, D.; Le Ny, J. Autonomous landing of a
multirotor micro air vehicle on a high velocity ground vehicle. IFAC PapersOnLine 2017, 50, 10488–10494.
[CrossRef]

6. Xu, Y.; Liu, Z.; Wang, X. Monocular Vision based Autonomous Landing of Quadrotor through Deep
Reinforcement Learning. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China,
25–27 July 2018; pp. 10014–10019.

7. Mo, H.; Farid, G. Nonlinear and adaptive intelligent control techniques for quadrotor uav—A survey. Asian J.
Control. 2019, 21, 989–1008. [CrossRef]

8. Yang, T.; Ren, Q.; Zhang, F.; Xie, B.; Ren, H.; Li, J.; Zhang, Y. Hybrid camera array-based uav auto-landing on
moving ugv in gps-denied environment. Remote Sens. 2018, 10, 1829. [CrossRef]

9. Yang, B.; Dutta, P. Cooperative Navigation for Small UAVs in GPS-Intermittent Environments. In Proceedings
of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; p. 3515.

10. Van den Meijdenberg, J.; Totu, L.; Schiøler, H.; Leth, J. Stochastic Controller Design for multi-rotor UAV
under Intermittent Localization. In Proceedings of the IEEE Australian & New Zealand Control Conference
(ANZCC), Melbourne, VIC, Australia, 6–8 December 2018; pp. 56–61.

11. Arora, S.; Jain, S.; Scherer, S.; Nuske, S.; Chamberlain, L.; Singh, S. Infrastructure-free ship deck tracking for
autonomous landing. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 323–330.

12. Skoczylas, M. Vision analysis system for autonomous landing of micro drone. Actamech. Automat. 2014, 8,
199–203. [CrossRef]

13. Rucco, A.; Sujit, P.; Aguiar, A.P.; De Sousa, J.B.; Pereira, F.L. Optimal rendezvous trajectory for unmanned
aerial-ground vehicles. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 834–847. [CrossRef]

14. Vlantis, P.; Marantos, P.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Quadrotor Landing on an Inclined Platform of
a Moving Ground Vehicle. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2202–2207.

15. Wenzel, K.E.; Masselli, A.; Zell, A. Automatic take off, tracking and landing of a miniature UAV on a moving
carrier vehicle. J. Intell. Robot. Syst. 2011, 61, 221–238. [CrossRef]

http://dx.doi.org/10.1002/rob.21858
http://dx.doi.org/10.1007/s10846-016-0399-z
http://dx.doi.org/10.1016/j.ifacol.2017.08.1980
http://dx.doi.org/10.1002/asjc.1758
http://dx.doi.org/10.3390/rs10111829
http://dx.doi.org/10.2478/ama-2014-0036
http://dx.doi.org/10.1109/TAES.2017.2767958
http://dx.doi.org/10.1007/s10846-010-9473-0


Sensors 2020, 20, 5630 16 of 17

16. Talha, M.; Asghar, F.; Rohan, A.; Rabah, M.; Kim, S.H. Fuzzy Logic-Based Robust and Autonomous Safe
Landing for UAV Quadcopter. Arab. J. Sci. Eng. 2019, 44, 2627–2639. [CrossRef]

17. Prach, A.; Gürsoy, G.; Yavrucuk, L. Nonlinear Controller for a Fixed-Wing Aircraft Landing. In Proceedings
of the IEEE American Control Confefrence (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 2897–2902.

18. Rossi, E.; Bruschetta, M.; Carli, R.; Chen, Y.; Farina, M. Online nonlinear model predictive control for tethered
uavs to perform a safe and constrained maneuver. In Proceedings of the IEEE European Control Conference
(ECC), Naples, Italy, 25–28 June 2019; pp. 3996–4001.

19. Beul, M.; Houben, S.; Nieuwenhuisen, M.; Behnke, S. Fast autonomous landing on a moving target at
MBZIRC. In Proceedings of the European Conference on Mobile Robots, Paris, France, 6–8 September 2017;
pp. 1–6.

20. Kamath, A.K.; Tripathi, V.K.; Yogi, S.C.; Behera, L. Vision-based Fast-terminal Sliding Mode Super Twisting
Controller for Autonomous Landing of a Quadrotor on a Static Platform. In Proceedings of the IEEE
International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India,
14–18 October 2019; pp. 1–6.

21. Huang, Y.; Zheng, Z.; Sun, L.; Zhu, M. Saturated adaptive sliding mode control for autonomous vessel
landing of a quadrotor. IET Control. Theor. Appl. 2018, 12, 1830–1842. [CrossRef]

22. Fei, Q.; Zhang, J.; Wang, Z.; Huang, X. Sliding Mode Control with Uncertain Model for a Quadrotor UAV’s
Automatic Visual Landing Problem. In Proceedings of the Chinese Intelligent Automation Conference; Springer:
Cham, Switzerland, 2019; pp. 226–233.

23. He, S.; Wang, H.; Zhang, S. Vision Based Autonomous Landing of the Quadrotor Using Fuzzy Logic Control.
In Proceedings of the IEEE Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June
2019; pp. 1943–1948.

24. Rabah, M.; Rohan, A.; Mohamed, S.A.; Kim, S.-H. Autonomous moving target-tracking for a UAV quadcopter
based on fuzzy-PI. IEEE Access 2019, 7, 38407–38419. [CrossRef]

25. De Souza, J.P.C.; Marcato, A.L.M.; De Aguiar, E.P.; Jucá, M.A.; Teixeira, A.M. Autonomous landing of UAV
based on artificial neural network supervised by fuzzy logic. J. Control Automat. Electr. Syst. 2019, 30,
522–531. [CrossRef]

26. Ananthakrishnan, U.; Akshay, N.; Manikutty, G.; Bhavani, R.R. Control of Quadrotors Using Neural Networks
for Precise Landing Maneuvers. In Artificial Intelligence and Evolutionary Computations in Engineering Systems;
Springer: Singapore, 2017; pp. 103–113.

27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef] [PubMed]

28. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient
Algorithms. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June
2014.

29. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of the International Conference on Machine
Learning, New York, NY, USA, 19–24 June 2016; pp. 1928–1937.

30. Polvara, R.; Patacchiola, M.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R.; Cangelosi, A. Toward End-to-End
Control for UAV Autonomous Landing via Deep Reinforcement Learning. In Proceedings of the IEEE
International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018;
pp. 115–123.

31. James, S.; Wohlhart, P.; Kalakrishnan, M.; Kalashnikov, D.; Irpan, A.; Ibarz, J.; Levine, S.; Hadsell, R.;
Bousmalis, K. Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical
Adaptation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Los Angeles, CA, USA, 16–20 June 2019; pp. 12627–12637.

32. Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De la Puente, P.; Campoy, P. A deep reinforcement learning
strategy for UAV autonomous landing on a moving platform. J. Intell. Robot. Syst. 2019, 93, 351–366.
[CrossRef]

33. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

http://dx.doi.org/10.1007/s13369-018-3330-z
http://dx.doi.org/10.1049/iet-cta.2017.0998
http://dx.doi.org/10.1109/ACCESS.2019.2906345
http://dx.doi.org/10.1007/s40313-019-00465-y
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/s10846-018-0891-8


Sensors 2020, 20, 5630 17 of 17

34. Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Scaramuzza, D. Vision-based autonomous quadrotor
landing on a moving platform. In Proceedings of the IEEE International Symposium on Safety, Security and
Rescue Robotics, Shanghai, China, 11–13 October 2017; pp. 200–207.

35. Sondik, E.J. The optimal control of partially observable Markov processes over the infinite horizon: Discounted
costs. Oper. Res. 1978, 26, 282–304. [CrossRef]

36. Gautam, A.; Sujit, P.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings of
the IEEE 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30
May 2014; pp. 1210–1218.

37. Puterman, M.L. Markov decision processes: Discrete stochastic dynamic programming. J. Oper. Res. Soc.
1995, 46, 792.

38. Tan, L.; Wu, J.; Yang, X.; Song, S. Research on Optimal Landing Trajectory Planning Method between an UAV
and a Moving Vessel. Appl. Sci. 2019, 9, 3708. [CrossRef]

39. Forsmo, E.J. Optimal Path Planning for Unmanned Aerial Systems. Master’s Thesis, Norwegian University
of Science and Technology, Trondheim, Norway, 2012.

40. Kirk, D.E. Optimal Control Theory: An Introduction; Courier Corporation; Dover Publications: Mineola, NY,
USA, 2004.

41. Degris, T.; Pilarski, P.M.; Sutton, R.S. Model-Free Reinforcement Learning with Continuous Action in Practice.
In Proceedings of the IEEE American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012;
pp. 217–218.

42. Von Neumann, J. Various techniques used in connection with random digits. Appl. Math. Ser. 1951, 12, 36–38.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/opre.26.2.282
http://dx.doi.org/10.3390/app9183708
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Definition 
	UAV Autonomous Landing System 
	POMDP Mathematical Model 

	UAV Autonomous Tracking and Landing Method Based on Hybrid Strategy 
	Hybrid Strategy Method 
	Network Model Training 

	Simulation Results 
	Simulation Environment 
	Autonomous Tracking Tests 
	Autonomous Landing Tests 

	Conclusions and Future Work 
	
	
	
	References

