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Abstract: Finite element model updating precision depends heavily on sufficient vibration feature
extraction. However, adequate amount of sample collection is generally time-consuming in frequency
response (FR) model updating. Accurate vibration feature extraction with insufficient data has
become a significant challenge in FR model updating. To update the finite element model with a
small dataset, a novel approach based on transfer learning is firstly proposed in this paper. A readily
available fault diagnosis dataset is selected as ancillary knowledge to train a high-precision mapping
from FR data to updating parameters. The proposed transfer learning network is constructed with
two branches: source and target domain feature extractor. Considering about the cross-domain
feature discrepancy, a domain adaptation method is designed by embedding the extracted features
into a shared feature space to train a reliable model updating framework. The proposed method
is verified by a simulated satellite example. The comparison results manifest that sample amount
dependency has prominently lessened this method and the updated model outperforms the method
without transfer learning in accuracy with the small dataset. Furthermore, the updated model is
validated through dynamic response out of the training set.

Keywords: model updating; frequency response; deep convolutional neural network; transfer
learning; domain adaptation

1. Introduction

Model updating is an important topic in dynamic analysis and structural engineering [1,2], which
is aimed at improving the finite element model reliability. Frequency response (FR) is commonly
regarded as the updating objective in the model updating algorithm [3–5]. The model updating
performance overwhelmingly relies on the sample amount [6,7]. Especially in methods based on
the deep neural network [8], the requirement of the training sample amount is generally extensive.
Unfortunately, adequate sample collection is extremely time-consuming in practice [9,10]. Insufficient
data problems become a common obstacle in FR model updating [11] and reducing sample dependency
would be desirable.

However, in previous model updating methods, researchers generally replace the repeated FR
data calculation by some approximate functions to address the small sample problem [12,13]. The
complicated dynamic propagation function is roughly displaced by a simplified formula. Fang et al.,
2015, employed the polynomial-based response surface model to reduce repeated natural frequency
calculation in interval model updating [14]. Yin et al., 2019, designed an acceleration FR objective
function and applied the Kriging model to replace this function [15]. Deng et al., 2017, used the radial
basis function model to simplify the natural frequency calculation [16]. These simplified meta models
are established by manual extracted FR features. It is unreliable to represent the complicated vibration
characteristic and distinguish the inconspicuous vibration signal [17,18]. Therefore, how to remedy
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the data mining problem, reduce the need and effort in training samples collection, and improve the
feature extraction reliability with limited amount of the training sample is becoming a particularly
important topic in model updating.

Transfer learning (TL) has recently emerged as a beneficial approach to tackle the small samples
problem [19]. It has attracted extensive attention in structure vibration analysis [20,21]. Transfer
learning aims at using adequate source knowledge to solve a different but related target task. The
target task can be completed by training a network with massive source domain data and fine-tune by
deficient target domain data [22]. The TL algorithm has been widely studied in structure vibration
analysis. Shen et al. trained a bearing fault diagnosis network by auxiliary data and similarity
verify [23]. Zhang et al. trained a deep neural network with small target samples and abundant source
samples in different working conditions [24]. Shao adopted ImageNet dataset [25] as the source data
and time-frequency spectrum to classify mechanical faults [26].

In TL, domain adaptation (DA) is an effective strategy to decrease domain discrepancy. It is
devoted to mapping sample features extracted from the source and target domain to a shared feature
space [27]. In particular, maximum mean discrepancy (MMD)-based domain adaptation is widely
used in TL [28]. Wen et al., 2019, proposed a DA method through weighted MMD term to lessen the
discrepancy penalty [29] and tested with three datasets. Tang et al. [30] and Wang et al. [31] combined
DA loss and classifier loss to design the network cost function. Yang et al., 2019, proposed a multi-layer
domain adaptation method to reduce different domain discrepancy [32]. In those aforementioned
TL research, the accessory source domain data are usually similar with target domain samples, such
as the vibration signal obtained from the same experiment system under different working load [24]
or the same machine signal in real-cases and laboratory [29]. However, in frequency-based model
updating, sufficient similar structure frequency dataset is usually unavailable. The available vibration
dataset like fault diagnose dataset are different from FR data in feature distribution. Hence, the domain
adaptation method is critical to minimize the cross-domain distribution discrepancy and learn more
cross-domain feature.

Therefore, to overcome the challenge of insufficient data problems encountered in model updating
and improving the performance of cross-domain learning, a TL technique-based model updating
method is proposed in this paper. The bearing fault diagnosis dataset from the Western Reserve
University Bearing Data Center (CWRU) [33] is introduced as the source domain sample to help train
the network. The main contributions of this method (termed as “TLNet method” in the following
context) are as follows. (1) The deep transfer neural network is built with two branches. It has
more capability in high-level feature extracting in source and target domain than manual feature
methods. (2) Two-layer domain adaptation strategy based on maximum mean discrepancy is designed
to adapt different datasets. (3) More precise inverse mapping is achieved under inadequate samples.
Through this end-to-end framework, the model updating precision can be efficiently improved under
sample-deficient problem compared to the method without transfer learning in reference [8].

This paper is organized as follows. Section 2 introduces the basic theory of model updating and
transfer learning. Domain adaptation based on maximum mean discrepancy is also presented in
Section 2. In Section 3, a detailed introduction of the proposed method and the network architecture
manifests. A simulated satellite example is updated to demonstrate the feasibility of this method in
Section 4. To evaluate the accuracy of the updated model, the model is validated in Section 5. Some
conclusions are drawn for this research in Section 6.

2. Theoretical Background

2.1. Model Updating

In frequency response model updating methods, a residual function is usually designed to describe
the deviation between simulate and experiment FR feature extracted manually. Then, the model
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updating problem will be transformed to a forward optimization problem where the optimal result is
the final updating result. This optimization problem is as follows [7]:

θ = argmin F, s.t. θiL ≤ θi ≤ θiU, (1)

where F represents residual function and the optimization objective, θiL and θiU stand for the lower
and upper bound of updating parameter θi, respectively. The residual function is designed as follows:

F =

nθ∑
n=1

nω∑
i=1

wi

(
An

e (ωi) −An
a (ωi)

An
e (ωi)

)2

, (2)

where wi denotes weights, nθ is the number of measured sample location, nω is the number of selected
frequency points of FR, ωi is the selected frequency points, An

e (ωi) and An
a (ωi) denote the experimental

and simulated acceleration frequency response amplitude at ωi.
Whereas, the residual function is inadequate to represent the structure dynamic feature and the

manual feature extractor is inexact for complex FR feature. Hence, a high-precision inverse mapping
from raw FR data to the updating parameter is proposed to overcome precision diminution in artificial
feature extraction [8]. The inverse mapping can be formulated as follows:

θ = IAθ(At), (3)

where IAθ is the inverse mapping from experiment FR data At to updating parameters θ. However,
massive samples are essential to train a reliable network. Thus, transfer learning technique is adopted
to reduce the quantity requirement of FR samples.

2.2. Transfer Learning

Transfer learning is proposed to apply the available knowledge and skills in previous domains to
a novel domain. The known domain is source domain Ds =

{
χs, Ps(Xs)

}
and the new domain with

different distribution is the target domain Dt =
{
χt, Pt(Xt)

}
[34], where χs and χt refer to the sample

space of source and target domain. Xs denotes the sufficient source domain sample for the source task
Ts and Xt denotes the scanty target domain sample for the target task Tt, where χs ∈ Xs and χt ∈ Xt. In
this paper, the labeled bearing fault diagnosis data is in the sample space of source domain with the
distribution Ps(Xs). Pt(Xt) stands for the distribution of the frequency response data in target sample
space as described in Figure 1. In various research field, it is an effective strategy to fine-tune the
pre-trained network when the source and target data has the same distribution [35]. However, in this
paper, the feature distribution is different in FR data and fault vibration signal (namely Ps(Xs) , Pt(Xt)).
Obviously, the model updating problem is inappropriate to be solved through directly fine-tuning a
pre-trained network with target data. Therefore, the domain adaptation technology is necessary for
feature mapping in different sample spaces.
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2.3. Maximum Mean Discrepancy

Domain adaptation is an important technology in transfer learning [26]. It aims to map the data
of source and target domain into a similar feature space and minimizing the discrepancy between the
two feature spaces simultaneously. Then, the target knowledge in the shared feature space is learnt to
improve the accuracy of the target task. Maximum mean discrepancy (MMD) is widely utilized in
domain discrepancy quantification in DA, which is defined as follows [27]:

Dis[Ψs(Xs), Ψt(Xt)] = ‖
1
ns

ns∑
r=1

(Ψs(χsr)) −
1
nt

nt∑
r=1

(Ψt(χtr))‖
2
H, (4)

where Dis[Ψs(Xs), Ψt(Xt)] is the discrepancy function, H represents the reproducing kernel Hilbert
space (RKHS), Ψs(Xs) and Ψt(Xt) refer to the nonlinear mapping function in source and target domain
from the original feature space to RKHS, ns and nt are the amount of source and target samples, χsr

and χtr refer to the sample in Xs and Xt, respectively. After feature mapping, the sample distribution in
the new feature space will be diminished, namely Ps(Xs) ≈ Pt(Xt).

3. Procedure of Proposed Method

In this section, the procedure of the TLNet method is introduced. In reference [8] (hereafter this
text will be abbreviated as the UCNN method), a high precious updated model is achieved with
sufficient training data. Therefore, the UCNN method is introduced as a comparison. The procedure
of these two methods is displayed in Figure 2.
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The detailed steps of the TLNet method are as follows:

Target domain data preparation

(1) Insufficient FR data are calculated from the finite element model. (2) The FR data are
transformed to the FR image as network input and the corresponding updating parameters are labelled.

Source domain data preparation

(1) Massive fault diagnose vibration signal samples are acquired from the CWRU dataset. (2)
Vibration samples are sliced to frames and the fault types are labelled.

Transfer learning

(1) A deep convolutional neural network with model updating and fault diagnose branch is built
according to the target and domain sample dimension and label type. (2) The source and target features
are extracted by the network. (3) Source and target features are embedded to a shared space through
two domain adaptation. (4) The network is trained with the shared features.

Model updating

(1) The experiment FR data are transformed into the FR image as the network input. (2) The
network forward propagation results are the final updated parameters.

It can be inferred that the two methods are similar in target data preparation, and forward
propagation process, but different in transfer learning and network architecture. Source domain
knowledge is learnt in auxiliary training in the TLNet method, which is the major difference between
the two methods. Additionally, domain adaptation is necessary to learn the cross-domain assistant
knowledge in the TLNet method.

3.1. Domain Adaptation

The features extracted from the network is used to quantify the discrepancy between source and
target domain, as formulated in Equation (4). After embedding source and target domain data into
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a shared feature space, the distribution discrepancy is diminished by training the parameters of the
nonlinear mapping function by minimizing MMD. Define matrices K and L as follows [34]:

K =

[
Ks,s Ks,t

Kt,s Kt,t

]
, (5)

and

L =

 1
n2

s
−

1
nsnt

−
1

ntns
1

n2
t

, (6)

where:
Ks,s = Ψs(Xs)Ψs(Xs)

T Ks,t = Ψs(Xs)Ψt(Xt)
T

Kt,s = Ψt(Xt)Ψs(Xs)
T Kt,t = Ψt(Xt)Ψt(Xt)

T , (7)

and:

KL =


1

n2
s
Ψs(Xs)Ψs(Xs)

T
−

1
nsnt

Ψs(Xs)Ψt(Xt)
T

· · ·

· · ·
1

n2
t
Ψt(Xt)Ψt(Xt)

T
−

1
ntns

Ψt(Xt)Ψs(Xs)
T

 (8)

Then discrepancy function can be simplified as follows:

Dis[Ψs(Xs), Ψt(Xt)] = tr(KL), (9)

where tr(KL) stands for the trace of KL. Generally, ns and nt are the same in one batch. Therefore, the
minimizing discrepancy function can then be eventually written as follows:

Dis[Ψs(Xs), Ψt(Xt)] = tr
(
K
[

1 −1
−1 1

])
. (10)

Considering the substantial distribution difference between original source and target data, the
domain adaptation is utilized in two parts of the network to enhance the effect.

3.2. Source Domain Sample

The CWRU dataset is chosen as the auxiliary training knowledge. This source domain dataset was
acquired from the accelerometers of the motor driving mechanical system [33]. Artificial damage on
rolling bearing and single point fault was arranged. The damage diameters were 0.007 inch (0.1778 mm),
0.014 inch (0.3556 mm), and 0.021 inch (0.5334 mm). The damage points of the outer ring of the bearing
at the drive end and the fan end are respectively placed at three different positions: 3 o’clock, 6 o’clock,
and 12 o’clock [36]. In this paper, the bearing data will be classified to 10 categories: normal, inner
ring, outer ring, ball with different damage positions and different damage diameters.

Since the dimensions of the source and target domain data are different, preprocessing is necessary
before feature extraction. The source domain sample is continuous time-domain response, which
needs to be Fourier transformed to the frequency-domain space. A part of the small stable signal
with 1024 signal sampling points is sliced as a frame, as described in Figure 3. Frames are acquired
overlapped, which is not continuously. The sample distance between the start positions of two adjacent
frames is called the shift. The frame shift length in this paper is 512 sampling points, and the length of
overlapping is 512 sampling points. It infers that the longer the overlap part is, the shorter the frame
shift length will be, and more frames can be obtained. Therefore, using frames with overlap is an
effectively sample expanding method. Finally, the source domain sample size is transformed to be 1 ×
11 × 1024.
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3.3. Target Domain Sample

In this paper, the FR image and corresponding updating parameters are the training pair for
neural network training. In the TLNet method, a matrix transformed from the FR data will be firstly
normalized into 0–255. After normalization, the FR data will be converted to multichannel image
without artificial feature extraction, such as principal component analysis, reduction, and fitting. The
channels, width, and height denote the acceleration orientation, number of the sampling location, and
frequency measured sampling location of the FR signal, which is described in Figure 4. In Section 4,
horizontal acceleration FR data of 11 sampling locations are measured from 0 to 100 Hz for every 1 Hz.
Consequently, the FR size image is 1 × 11 × 101. The target training set is established by the simulation
result of the updating model.Sensors 2020, 20, x FOR PEER REVIEW 7 of 15 
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3.4. Network Architecture

In this paper, the deep convolutional neural network is adopted as the feature extractor for training
samples. Aiming at taking advantage of target and source data, the network is designed to have two
branches: target branch for model updating task and source branch for fault diagnose branch. The
feature of FR data will be extracted layer-by-layer in the target branch of the network and the bearing
vibration frames will be learnt in the source branch. Figure 5 displays the detail of the proposed
network. The network structure is designed as follows:
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1. NetT1 block: four convolutional layers block to extract feature of FR data at different sample
locations and reshape the feature map to the size of 1 × 1 × 101.

2. NetS1 block: four convolutional layers with one flatten layer block to extract feature of bearing
vibration and reshape the feature map to the same size as the output of NetT1 block.

3. NetT2 block: five layers network block to extract feature of NetT1 output.
4. NetS2 block: the same structure as NetT2 to extract feature of NetS1 output.
5. Output layers: a flatten layer followed by two fully connected layers to reshape the feature map

to source and target task respectively.
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Figure 5. Network architecture of the TLNet.

In the TLNet method, the network is trained with scanty FR samples and massive fault diagnose
samples. The training pairs in the two domains are sent to each branch of the network separately. In
each branch, the low-level features are firstly extracted. Through convolution layers in the NetT1 and
NetS1 block, the target features and the source features are transformed to the same size to compute
domain discrepancy. Secondly, the features in the two domains are mapped to a shared feature space
by first domain adaptation. Thirdly, the NetT1 and NetS1 output are sent to two network branches
with the same structure (namely the ShareNet) to extract the deep-level feature. Fourthly, the second
domain discrepancy is calculated, the output features of the two shared branches are mapped to a
same feature space again by the second enhanced domain adaptation. Finally, the task of source and
target domain is complete through output layers. The kernel size, stride size, and the channel number
of TLNet parameter are listed in Table 1.
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Table 1. Details of the proposed network.

NetT1 NetS1

Layer name InputT T1 T1 T1 T1 InputS S1 S2 S3 S4
Kernel size - (1,3) (1,3) (1,3) (1,3) - (3,1) (3,1) (3,1) (3,1)
Stride size - (1,2) (1,2) (1,2) (1,2) - (2,1) (2,1) (2,1) (2,1)
Channel 1 1 1 1 1 1 2 4 6 8

NetT2 NetS2

Layer name T5 T6 T7 T8 T9 S5 S6 S7
Kernel size (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
Stride size (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
Channel 8 16 24 32 40 8 16 24

It can be inferred that the feature from the prior layer is sufficiently propagated to the post layer
with the feature map in TLNet. The domain discrepancy is narrowed through two domain adaptation
strategy. Eventually, the fault diagnosis task and the model updating task is completed through
this network.

In this paper, the network is implemented onto the machine learning framework PyTorch 1.4.0 [37].
The first-order gradient-based stochastic optimization algorithm Adam is utilized in training [38].

3.5. Model Updating

After training, the measured FR image of the real structure will be sent to this trained model
updating network. Then, the network is the value of target parameters, namely the final updated
parameters of the observed FE model.

4. Case Study

A satellite model is present to demonstrate the feasibility and effectiveness of the TLNet method.
Figure 6 plots the FE model of the satellite and the sampling locations.
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4.1. Example Introduction

The updating parameters are the material parameter and the thickness of the structure: elastic
model of the major structure θ1, density of the major structure θ2, thickness of the upper platform
θ3, thickness of the lower platform θ4, thickness of the central cylinder θ5, and thickness of the shear
panels θ6. The real value of these parameters is listed in Table 2.
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Table 2. Model updating result with 4000 samples.

Method θ1 (1010

pa)
θ2 (103

kg·m−3)
θ3 (mm) θ4 (mm) θ5 (mm) θ6 (mm) Average

Error

Real 7.00 2.70 2.00 1.000 2.00 2.00 -
UCNN 6.947 2.677 1.979 0.994 2.959 1.969 1.032%
NetT 6.810 2.703 2.016 1.004 3.046 2.009 1.005%

MMDMSE 7.007 2.700 2.000 0.997 2.985 2.012 0.257%
MMD2 7.015 2.702 2.001 0.997 3.001 2.005 0.145%

Horizontal acceleration FR data of 11 sampling locations are collected from 0 to 100 Hz for every
1 Hz by finite element software MSC. Patran and Nastran repeated simulations are implemented to
build the data base of the initial model. FR data of X orientation is firstly normalized to 0–255 and then
transformed into the FR image by sequence. In this section, FR data and the CWRU dataset are chosen
to train the network. After training, the Z orientation data out of the training set are sent to the trained
network in model validation.

In this paper, the loss function (MMD2) is defined as follows:

Loss = η1Dis[Ψs(Xs), Ψt(Xt)] + η2MSE
(
θtoutput ,θtlabel

)
+ η3CE + η4Dis

[ ~
Ψs

(~
Xs

)
,

~
Ψt

(~
Xt

)]
, (11)

where θtoutput and θtlabel represent network output and label in target domain, X and
~
X stand for the

input of NetT1 and NetT2 (or NetS1 and NetS2) block, Ψ and
~
Ψ denote the output of NetT2 (or NetS2)

block, CE refers to the cross-entropy loss for source classify task, MSE refers to the MSE loss for the
target regress task, η stands for the feature loss factor of each loss function. In this paper, another loss
function (MMDMSE) is designed as the comparison, which is defined as follows:

Loss = η1Dis[Ψs(Xs), Ψt(Xt)] + η2MSE
(
θtoutput ,θtlabel

)
+ η3CE + η4MSE

[ ~
Ψs

(~
Xs

)
,

~
Ψt

(~
Xt

)]
. (12)

4.2. Result and Discussion

After training, the experiment FR data will be sent to the trained network, and the network output
is the updating result. The parameters updated by two methods without TL (UCNN method and
TLNet without source branch) and two methods with TL (MMDMSE and MMD2 loss function) are
compared. Figure 7 shows the average errors corresponding to the mentioned four methods with
the number of training sample increasing. From this figure, it is observed that the methods with
domain adaptation (MMDMSE and MMD2) outperform with insufficient data. The average errors of
TL methods are 3.302%, and 3.070% with 100 FR samples, while the average errors of the methods
without transfer learning are 8.980% and 7.352%. With the increase of the sample amount, the average
errors of those four methods all tend to decrease. When the sample number reaches to 4000 or even
more, the accuracy appears to be stable. The result infers that the proposed method can performs
better than the method without transfer learning when target training samples is extremely insufficient.
This indicates that the representational ability of the proposed network can be improved with the help
of vibration features learnt from the source data. Then, the precision of network output result can be
improved even with inefficient data.
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The FR signal of the No.1 sampling location with increasing training sample size is plotted in
Figure 8. Visually comparing the model frequency response with the experiment data implies that the
updated model closely coincides with the real structure in the FR curve. The resonance peak amplitude
and position resemble the experiment amplitude curve, which confirms that the model precision is
substantially improved by the proposed method. With the increasing of the sample size, the FE model
updated by TL methods still works better than those without TL technique. Specifically, the MMD2
loss is slightly better than the MMDMSE loss. The result suggests that the loss function based on
MMD works well on mapping the domain-cross features to a more similar feature space, and it can
also achieve better result in domain discrepancy diminution.

The final updating results with 4000 samples are presented in Table 2. The deviation between the
updated and the real parameters is significantly lessened. The average error of the updated parameters
with transfer learning is 0.257% and 0.145%, which is lower than the methods without transfer learning.

Furthermore, the frequency response assurance criterion (FRAC) is selected to assess the similarity
between the updated simulation outputs and the experimental measurements [39]. When the data
amount reaches to 200, the FRAC with MMD2 loss method is 0.963, while that with the UCNN method
is 0.73. When the number of data volume increase to 2000, the FRAC is 0.999 with MMD2 and is 0.755
with the UCNN, respectively. This indicates that the outputs of the simulation model updated by the
proposed method is closer to the experimental response, which proves the superiority of the TLNet
method when the sample size is limited. A review of the updating results indicates that the model
updating accuracy is successfully improved lacking samples.
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5. Model Validation

To further evaluate the updated model, it is validated to by FR data at the Z orientation and the
first five natural frequencies, which are unused in the training data. These two kinds of dynamic
data are both excluded from the training set. Figure 9 displays the model frequency response at Z
orientation corresponding to four updated FE models with above introduced methods, and meanwhile,
the size of training sets increases gradually. For the situation of the 100 simple size, the simulated
outputs, namely the FR signal of the FE model updated by MMD2 loss, can have a better effect in
matching with the measured FR signal. It can be observed in this figure that the frequency response of
the updated model coincides better with that of the real structure, though the Z orientation sample is
excluded for training.
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Furthermore, the updated model is also validated by natural frequency. Figure 10 manifests
the average error of the first natural frequency updated by 4 methods. It implies that the average
error is lower in the MMD2 method with limited training samples. With training samples increasing,
the model accuracy of MMD2 is still higher than the method without TL. Table 3 shows the natural
frequency of the updated model with 4000 training samples. The average error of natural frequency of
the MMD2 method is 0.012%, which is 0.586% lower than that of the UCNN method. This implies that
the MMDMSE and MMD2 loss also have better performance in nature frequency prediction.
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Table 3. Model updating result with 4000 samples.

Natural Frequency Experimental UCNN NetT MMDMSE MMD2

f 1 19.11 19.22 19.16 19.16 19.12
f2 20.01 20.13 20.05 20.06 20.01
f 3 23.31 23.43 23.35 23.36 23.31
f 4 27.71 27.89 27.75 27.79 27.72
f 5 28.07 28.26 28.31 28.15 28.07

Average error - 0.598% 0.311% 0.250% 0.012%

These validation results illustrate that TLNet method performs well in and out of the training set.
The updated model can achieve better accuracy by using this method. The proposed approach has the
capability to mitigate sample size requirement in model updating.

6. Conclusions

A model updating method based on transfer learning is proposed to tackle the small dataset
problem. Using a two-branch deep neural network, a high-level feature extractor is employed to
analyze the inverse relationship between FR data and the updating parameters. To make full use of the
source domain knowledge, a two-layer domain adaptation strategy is adopted through mapping the
cross-domain vibration feature into a shared space. Therefore, the cross-domain knowledge can be
used in training a more reliable learning system. Finally, a high-precision inverse mapping from FR
data to update parameters can be achieved.

The proposed method is tested by a satellite example with various number of training samples.
Material or geometry parameters of the satellite model are updated. The results indicate that the
proposed method has achieved higher-precision updating parameters. The model updated by the
proposed method is more accurate than those updated by comparison methods without transfer
learning. It can prove that the vibration feature from fault diagnose can be grasped in the learning
system and it can provide more useful information for vibration analysis. Results also reveal that TLNet
has higher ability in feature extraction than the networks trained only by target samples. Through this
method, it can achieve significant superiority in model updating with insufficient data. The updated
model can also have a more accurate prediction in response out of training set.

The future studies can be extended to applications that are sensitive to sample size, like
the uncertainty model updating problem. It can be used to reduce sample need in uncertainty
propagation analysis.
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