
sensors

Letter

Design of a High Sensitivity Microwave Sensor for
Liquid Dielectric Constant Measurement

Honggang Hao *, Dexu Wang, Zhu Wang, Bo Yin and Wei Ruan

College of Electronic Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; S180401004@stu.cqupt.edu.cn (D.W.); S180431033@stu.cqupt.edu.cn (Z.W.);
yinbo@cqupt.edu.cn (B.Y.); ruanwei@cqupt.edu.cn (W.R.)
* Correspondence: haohg@cqupt.edu.cn; Tel.: +86-1399-609-1768

Received: 11 August 2020; Accepted: 28 September 2020; Published: 29 September 2020
����������
�������

Abstract: In order to improve the sensitivity of liquid dielectric constant measurements, a liquid
dielectric constant sensor based on a cubic container structure is proposed for the first time. The cubic
container, which consists of a dielectric substrate with a split resonant ring (SRR) and microstrip
lines, can enhance the electric field intensity in the measuring area. High sensitivity can be obtained
from measuring the dielectric constant with the characteristics of the structure resonate. The research
results show that the resonant frequency of the sensor is shifted from 7.69 GHz to 5.70 GHz, with
about a 2 GHz frequency offset, when the dielectric constant of the sample varied from 1 to 10. A
resonance frequency offset of 200 MHz for the per unit dielectric constant is achieved, which is
excellent regarding performance. The permittivity of oil with a different metal content is measured
by using the relation between the fitted permittivity and the resonant frequency. The relative error is
less than 1.5% and the sensitivity of measuring is up to 3.45%.
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1. Introduction

The accurate measurement of dielectric constants of solid and liquid materials has an important
significance in medical, industrial, chemical and biological fields [1–3]. At present, the instruments used
to measure the dielectric constant of objects are relatively expensive. The resonant cavity method [4,5],
transmission reflection method [6–8] and free space method [9] are used to measure the relative dielectric
constant. The resonant cavity method has the highest precision, but it has higher requirements for
sample size and a narrower measurement range [10]. The transmission reflection method is easy
to operate, and the measurement frequency range is larger, while the error is higher [11]. The free
space method is mainly used to measure the dielectric constant of the millimeter-wave frequency
band, but the area of the object to be measured needs to be large enough to ensure the measurement
accuracy [12]. The measurement of permittivity by microwave method is converting the variation
of the permittivity to the variation of the electromagnetic parameter of the sensor [13–15]. In recent
years, the microwave method is getting more and more attention because of its advantages, including
contactless detection, automatic detection, a wide application range of the detection objects, a fast
detection rate and a long continuous working time [16,17]. At present, there are two major ways
to measure the permittivity of a liquid solution using the microwave method, the submersible type
and container type. The submersible type puts the microwave resonance device into the liquid
under test (LUT) for measurement by treating the microwave resonance device as a probe [18,19].
For the container type, it adds the LUT in a container, and places the container in the place where
the electric field resonates most strongly. Usually, the material of the container is quartz or a plastic
tube. The LC resonance circuit on the metamaterial structure is loaded in Reference [20]. The LUT is
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placed on the plastic tube of the dielectric substrate to measure the dielectric constant. The measured
frequency range was 2–3 GHz. Reference [21] loads the photonic band gap and variable capacitance
on the substrate-integrated waveguide. The LUT in the plastic container is located in the middle of
the sensor. The relative dielectric constant is calculated by using the cavity perturbation technology.

Because the resonance unit of the sensor is mostly planar, the electric field distribution in
the container area is generally a two-dimensional section. The container type cannot fully make contact
with the LUT as does the submersible type. It can effectively avoid the mutual contamination between
the LUT and the sensor, but the electric field generated by the sensor could attenuate when it passes
through the container. This attenuation leads to a reduction in the intensity of the electric field in
the container and a significant decrease in the sensitivity of the sensor.

In order to improve the sensitivity of the microwave method to measure the dielectric constant of
the LUT, a liquid dielectric constant microwave sensor based on the structure of the cube containers is
proposed in this paper. The function of the complementary split resonant ring (CSRR), split resonant
ring (SRR) structure and the microstrip line in the design is discussed and the electric field in the testing
area is studied. Using the prepared sample, the accuracy and sensitivity of the proposed structure are
investigated. The results show that the proposed microwave sensor has a high accuracy and sensitivity
due to the design of the cubic structure.

2. Theoretical Analysis

According to the electromagnetic theory, the complex dielectric constant of an object can be
divided into real and imaginary components [22]:

ε = ε0εr = ε0(ε′ − jε′′ )
tan δ = ε′′/ε′

(1)

where ε0 represents the dielectric constant of a vacuum; εr is the relative dielectric constant; and tanδ
is the tangent of the dielectric loss angle. The resonant frequency and electric field distribution of
the sensor are fixed in a certain resonant mode. When the LUT is placed in the concentrated part of
the electric field of the sensor, the electric field distribution of the sensor will be disturbed by the liquid
to change its resonant frequency [23–25]. According to the change in resonance frequency, the relative
dielectric constant of the LUT can be calculated by the formula. The calculation formula of the real
part of the relative dielectric constant is as follows [26]:

ε′ = 1 +
V0

V1

( f0 − f1)
2 f0

, (2)

where ε′ is the real part of the relative dielectric constant; V0 and V1 are the volume of the sensor
and the LUT; and f 0 and f 1 represent the resonant frequency of the empty cavity and the resonant
frequency of the filled cavity. When the physical dimensions of the sensor and the LUT are determined,
V0
V1

is constant, then Equation (2) can be simplified into

ε′ = 1 + A
∆ f
2

, (3)

where

∆ f =
( f0 − f1)

f0
. (4)

A is a constant, representing the effective volume ratio of perturbation. The larger A is, the more
sensitive the sensor is.
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3. Sensor Design

The key to ameliorate the performance of the dielectric constant measurement based on
the microwave method is to optimize the distribution of the electric field in the measuring area.
It can increase the effective volume ratio of the perturbation to load the SRR of the side wall of
the container. Based on this, a liquid dielectric constant sensor based on a cubic container structure is
proposed in this paper, as shown in Figure 1.
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The dimensions are as follows: l50 = 14.0 mm, w50 = 2.4 mm, lp = 9.6 mm, wp = 0.8 mm, l4 = 10.0 mm,
w4 = 1.0mm, as = 12.3 mm, ts = 0.127 mm, s = 0.1 mm, g = 0.2 mm, hs = 6.5 mm, wa = 12.6 mm, d1 =

4.0 mm, d2 = 4.4 mm, d3 = 5.2 mm, and cs = 1.1 mm.

The container of the LUT is composed of the dielectric substrate loaded with the microstrip line
and SRR structure. As the substrates of the container are relatively thin, the substrates of the different
planes are connected through the welding points of the microstrip line. The capacity of the container is
about 1.86 mL. To evade the contamination between the LUT and sensor, a replaceable plastic film with
a thickness of 0.008 mm was added along the internal face of the container; a new one is applied per
measurement. The influence of thin films has been considered in the simulation process to eliminate
measurement errors. By quantitatively obtaining the liquid, the repeatability of the measurements
is satisfied. The outer walls of the container are microstrip lines. The inner sides are four SRRs with
the same structure as the bottom CSRR. The container transfers the electric field in the plane to the four
sides through the coupling line.

The material of the sensor’s dielectric substrate and three-dimensional container is Rogers5880,
with a relative dielectric constant of 2.2 and dielectric loss of 0.0009. The thickness of the dielectric
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substrate is 0.787mm. The thickness of the four side walls of the container is 0.127mm. The input
and output ports are 50-ohm microstrip lines, and the middle part is a radiation patch loaded with
the CSRR structure. The radiation patch and microstrip line are matched by the λ/4 step impedance
(SIR).

The electromagnetic properties of the SRRs make them very easy to be coupled by the electric
field or the magnetic field in the near field range. The SRR is composed of two concentric metal rings
of different sizes inside and outside, with a gap at each symmetrical position in the center of both rings.
Its structure and equivalent circuit are shown in Figure 2 [27].
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Figure 2. (a) The structure of the split resonance ring (SRR). (b) The equivalent circuit.

The two metal rings of the SRR can be considered as equivalent inductance LSRR. The gap between
the inner and outer rings can be regarded as equivalent capacitance CSRR. CSRR can be thought
to be the series of capacitors between two half rings [28,29]. M represents the magnetic coupling
between SRR and the microstrip line, and Cs is the capacitance between the SRR and microstrip line.
The resonance frequency of the SRR can be obtained as follows:

fSRR =
1

2π
√

LSRR(CSRR + CS)
(5)

The equivalent capacitance and inductance are related to the size parameters of the resonance
ring. The resonance frequency can be tuned by adjusting the size parameters of the SRR.

As a complementary structure of SRR, CSRR is also widely used in the design of microwave
resonance devices. Its structure and equivalent circuit are shown in Figure 3. The symbols LCSRR and
CCSRR represent the inductance and capacitance of the CSRR, respectively, and L1 is the line inductance;
CS is the coupling capacitance between the CSRR and microstrip line. The orange part is the metal
layer. White is the gap etched in the shape of the SRR. Under perfect circumstances, CSRR and SRR
share the same parameters as well as resonate frequency. Thus, the resonate frequency of the CSRR can
be tuned via its parameters [30].
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The equivalent LC circuit model of the container-based sensor can be seen in Figure 4, where M1

and C1 represent the magnetic coupling and electric coupling between the parallel coupling lines.
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Figure 4. The equivalent circuit of the sensor. The electrical parameters are CSRR = 0.258 pF, LSRR =

1.031 nH, CS = 0.157 pF, L1 = 3.471nH, C1 = 0.347 nH, CcSRR = 0.258 pF, LCSRR = 1.031 nH, Cc = 0.157
pF, and CSRR = 0.258 PF.

According to the parameter extraction method reported in [31], the circuit parameters of
the equivalent circuit model of Figure 4 are obtained. The comparison of the electromagnetic
simulation and the equivalent circuit simulation is depicted in Figure 5.
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Figure 5. The comparisons of the electromagnetic simulation and the equivalent circuit simulation: (a)
magnitude response; (b) phase response.

The 3dB method to estimate the quality factor Q of the resonant cavity is based on the following
equation [32,33]:

Q =
f0

∆ f3dB
(6)

where f 0 represents the resonance frequency and ∆f 3dB is the 3dB bandwidth of S21. According to
Equation (6), the Q-factor of sensor is 73.33.

Figure 6 shows the electric field distribution of the sensor without the LUT at 7.689 GHz, which is
the resonant frequency of the sensor when unloaded.
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Figure 6. The electric field distribution of the sensor.

As can be seen from Figure 6, the electric field of the sensor is mainly concentrated at the CSRR
in the middle of the dielectric substrate. In addition, due to the SRRs, the electric field gets stronger
at the inner side of the container. In order to discuss the influence of microstrip lines and SRR
on the electric field focusing effect on the container wall, the electric field distribution diagram of
the sample area under different container structures is studied, as shown in Figure 7.
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When there is no microstrip structure on the side wall of the container, the maximum electric field
intensity in the liquid area to be measured is 2585 V/m, as shown in Figure 6. The highest electric
field intensities are 6455 V/m and 4925 V/m, when only the microstrip lines or SRR are loaded. When
the microstrip line and SRR were simultaneously loaded, the electric field intensity reached a maximum
of 25,628 V/m. The simulation results illustrate that the electric field intensity can be significantly
enhanced by loading the microstrip line and SRR resonance structure on the dielectric substrate of
the container. The sensitivity of the sensor is improved in this way. When the LUT dielectric constant
changes, the resonance frequency of the sensor will be shifted, as shown in Figure 8.
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The simulation results show that the resonant frequency of the sensor is shifted from 7.689 GHz to
5.699 GHz, with a 1.99 GHz frequency offset, when the dielectric constant of the LUT varied from 1 to
10. In order to further study the influence on the dielectric constant sensitivity from the cubic structure,
all the side walls were removed. The LUT is placed in glass or plastic containers on the CSRR structure.
Considering the manufacture, the thickness of the two containers were set to 0.1 mm. The variation in
the dielectric constant of the LUT and the resonant frequency are as shown in Figure 9.



Sensors 2020, 20, 5598 8 of 14Sensors 2019, 19, x  8 of 14 

 

 
(a) 

 
(b) 

Figure 9. Simulated reflection coefficients under various dielectric constants of the LUT with ordinary 
containers: (a) glass container; (b) plastic container. 

As can be seen in Figure 9, the resonance frequency of the sensor corresponding to the glass 
container is shifted from 6.704 GHz to 5.916 GHz, with an offset of 788 MHz, and the PVC container 
is shifted from 6.784 GHz to 6.190 GHz, with an offset of 594MHz, when the dielectric constant of the 
LUT changes from 1 to 10. In addition, when the permittivity is larger than 6, the frequency offset 
caused by the change of permittivity is faint. 

Comparing Figures 8 and 9, the resonance frequency offset of the cubic container structure is 
much larger than that the ordinary container, which verifies that the three-dimensional electric field 
is better in sensing the dielectric property change of the LUT. Figure 10 illustrates that the resonant 
frequency curve varies with the permittivity. The red high light part represents the location of the 
resonant frequency point, and the white dotted line describes the curve of the resonance frequency 
change with a dielectric constant. The fitting relationship between the dielectric constant and 
resonance frequency (GHz) is listed as Equation (7): 

2=2.07 31.97 124.64f fε ′ − + . (7) 

To get the permittivity of the LUT through Equation (7), the resonating frequency of the sensor 
loaded with the LUT can be measured by a vector network analyzer. 

 
Figure 10. The resonant frequency curve varies with the permittivity. 

  

5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
-30

-25

-20

-15

-10

-5

0

 ε′=1
 ε′=2
 ε′=3
 ε′=4
 ε′=5
 ε′=6
 ε′=8
 ε′=10

dB
(S

(1
,1

))

Frequency (GHz)
5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

-40

-35

-30

-25

-20

-15

-10

-5

0

dB
(S

(1
,1

))

Frequency (GHz)

 ε′=1
 ε′=2
 ε′=3
 ε′=4
 ε′=5
 ε′=6
 ε′=8
 ε′=10
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containers: (a) glass container; (b) plastic container.

As can be seen in Figure 9, the resonance frequency of the sensor corresponding to the glass
container is shifted from 6.704 GHz to 5.916 GHz, with an offset of 788 MHz, and the PVC container
is shifted from 6.784 GHz to 6.190 GHz, with an offset of 594MHz, when the dielectric constant of
the LUT changes from 1 to 10. In addition, when the permittivity is larger than 6, the frequency offset
caused by the change of permittivity is faint.

Comparing Figures 8 and 9, the resonance frequency offset of the cubic container structure is much
larger than that the ordinary container, which verifies that the three-dimensional electric field is better
in sensing the dielectric property change of the LUT. Figure 10 illustrates that the resonant frequency
curve varies with the permittivity. The red high light part represents the location of the resonant
frequency point, and the white dotted line describes the curve of the resonance frequency change with
a dielectric constant. The fitting relationship between the dielectric constant and resonance frequency
(GHz) is listed as Equation (7):

ε′ = 2.07 f 2
− 31.97 f + 124.64. (7)
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Figure 10. The resonant frequency curve varies with the permittivity.

To get the permittivity of the LUT through Equation (7), the resonating frequency of the sensor
loaded with the LUT can be measured by a vector network analyzer.
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4. Experiment and Discussion

Figure 11 shows the fabricated sensor. The Agilent N5242A vector network analyzer was used for
the S parameter measurement; the measurement system is shown in Figure 12.
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Figure 12. The measurement system for the fabricated sensor.

The binary mixture of F20W/30 lubricating oil and iron powder was selected as the test object. Ten
groups of 10 mL oil were placed in the measuring cylinder, with different amounts of iron powder, as
shown in Figure 11. In order to reduce the influence of the environment’s temperature, the laboratory
temperature was controlled at 25 ◦C. The dielectric constants of the lubricating oil samples with
different iron powder contents are shown in Table 1 [34]

Table 1. The dielectric constants of the lubricating oil samples with different iron powder contents.

No 1 2 3 4 5 6 7 8 9 10

Content (µg/g) 0 20 40 50 70 110 130 170 190 250
Permittivity 2 2.2 2.4 2.6 2.8 3.3 3.6 3.9 4.4 4.8

A plastic film with a thickness of 0.008 mm was added to the inner wall of the container. Ten
groups of 1 mL LUT was placed in the container respectively for S11 parameter measuring. Each
group of samples was measured for 15 times. After removing the abnormal data, the mean value was
calculated. Figure 13 shows the comparison of the measured and simulated results.
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Figure 13. Comparison of the simulation and measured results: (a) ε′ = 1, no ULT; (b) ε′ = 2, content =

0 µg/g; (c) ε′ = 2.6, content = 50 µg/g; (d) ε′ = 3.3, content = 110 µg/g; (e) ε′ = 3.9, content = 170 µg/g; (f)
ε′ = 4.4, content = 190 µg/g.

Figure 13a–f demonstrates that the measuring results are basically consistent with the simulated
ones. The distribution of the resonance frequency of the ten groups of samples tested combined with
the fitting curve is displayed in Figure 14. It shows that the sample points are basically located on
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the fitting curve. According to the resonant frequency acquired by the measurement, the comparison
of the permittivity calculated by Equation (7) and the reference value from Table 1 is shown in Table 2.
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Table 2. Comparison of the measurement results.

No 1 2 3 4 5 6 7 8 9 10

ε′ (Reference) 2 2.2 2.4 2.6 2.8 3.3 3.6 3.9 4.4 4.8
ε′ (Measured) 2.00 2.21 2.39 2.61 2.79 3.31 3.58 3.92 4.35 4.74

Relative error % 0.09 0.30 0.28 0.25 0.24 0.26 0.55 0.63 1.06 1.30

Referring to Table 2, using the proposed sensor to measure the dielectric constant of LUT can
control the error rate within 1.5%. According to the definition of sensitivity [21,35],

s =
∆ f [%]

∆εr
=

f2 − f1
f1(ε2 − ε1)

, (8)

where f 2 and f 1 represent the measured frequency and the initial frequency, respectively. The initial
dielectric constant and measured one are ε2 and ε1. According to the measurement results, the sensitivity
of the sensor is up to 3.45%. Compared to the references in Table 3, the proposed sensor has a significant
advantage in sensitivity.

Table 3. Comparison of sensitivity.

Approach Type Q-Factor Sensitivity

[18] submersible 252 2.20%
[19] submersible 59 3.04%
[20] container 42 0.27%
[21] container 25 1.00%

Proposed Sensor container 73.3 3.45%

It is noteworthy that the dielectric constant measured is a real part. It is the limitation of
the proposed sensor. This paper only focuses on the frequency of the S parameter, not on the phase
and amplitude. It is found in other literatures that the complex dielectric constant can be calculated by
using the amplitude and phase information of the S parameter. In the future, measuring the complex
dielectric constant by the frequency, amplitude and phase of S11 and S21 will be more meaningful. In
addition, the portability of the sensor is also affected by the vector network analyzer. The challenge for
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sensors is to develop a supporting data display and data processing modules that meet the needs of
miniaturization, thereby satisfying the requirement of portable measurement.

5. Conclusions

In this paper, a liquid dielectric constant microwave sensor based on a cubic container structure is
designed for the measurement of the liquid dielectric constant by using the resonance characteristics
of CSRR and SRR. The electric field in the plane structure is spread on the side wall of the cube
container structure by loading the microstrip line and SRR on the dielectric substrate. The sensitivity of
the variation in the dielectric constant is enhanced. Compared with the existing work, the sensitivity of
the dielectric constant measurement has been greatly improved. Compared with other market devices,
the proposed sensor can achieve a high accuracy with lower costs.
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