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Abstract: Metallography is the study of the structure of metals and alloys. Metallographic analysis
can be regarded as a detection tool to assist in identifying a metal or alloy, to evaluate whether an
alloy is processed correctly, to inspect multiple phases within a material, to locate and characterize
imperfections such as voids or impurities, or to find the damaged areas of metallographic images.
However, the defect detection of metallography is evaluated by human experts, and its automatic
identification is still a challenge in almost every real solution. Deep learning has been applied to
different problems in computer vision since the proposal of AlexNet in 2012. In this study, we
propose a novel convolutional neural network architecture for metallographic analysis based on a
modified residual neural network (ResNet). Multi-scale ResNet (M-ResNet), the modified method,
improves efficiency by utilizing multi-scale operations for the accurate detection of objects of various
sizes, especially small objects. The experimental results show that the proposed method yields
an accuracy of 85.7% (mAP) in recognition performance, which is higher than existing methods.
As a consequence, we propose a novel system for automatic defect detection as an application for
metallographic analysis.

Keywords: metallographic analysis; deep learning; convolutional neural network; residual
neural network

1. Introduction

Metallography is the study of the physical structure and components of metals through the
examination of specimens with a metallurgical microscope. Microstructural characterization allows
knowing the components of a metallographic in order to determine the material species and properties.
In fact, a microstructure typically is a combination of different constituents, also known as phases,
which produce complex substructures that store information related to the origin and formation mode
of a material defining all its physical and chemical properties. Despite the dynamic development of
digital photography and computer systems, metallographic analysis remains the task of experts who
“manually” evaluate a given picture of the structure. In this case, defect detection of metallography
appears extremely difficult, especially in the cases when there are mixtures of different phases with
various substructures.

Since the success of the convolutional neural network (CNN) in pattern recognition, we have
recently witnessed huge advances in object detection in the field of computer vision. Object recognition
is crucial for autonomous cars, security, surveillance, and industrial applications which use deep
learning methods such as region-based convolutional neural networks (R-CNN) [1], single-shot
multibox detectors (SSD) [2], you only look once (YOLO) [3], and deep residual networks (ResNet) [4].
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This motivation has led us to develop a system for metallographic analysis based on artificial neural
networks, specifically on deep learning. In this study, we propose multi-scale Resnet (M-ResNet)—a
novel ResNet architecture. This new architecture inherits the advantages of both ResNet and YOLOv4 [5].
It achieves state-of-the-art performance for defect detection in metallographic analysis. Experimental
results validate the high accuracy of M-ResNet compared with other well-established baselines for
defect detection on our datasets.

The remainder of the paper is organized as follows. Section 2 briefly introduces related works. A
detailed description of the proposed strategy for object detection is given in Section 3. The experimental
results and comparisons with other representative object detection methods are discussed in Section 4,
and Section 5 gives the conclusion and proposes future work.

2. Related Works

The development of metallographic analysis is similar to that of general object detection.
Nowadays, image processing methods of analyzing metallographic images are the best, because
of their repeatability and consistency in digital image, and have been more accurate and faster than
human judgement [6]. Petersen et al. [7] also explore a textural approach, viz. variance and range
textural operators for ore type characterization and surface particle size estimation. Codaro et al. [8]
used a method based on image processing that can be used for pits examination and classification in
pitting corrosion evaluation. Lee et al. [9] used digital image analysis technique to automatically detect
and segment the particle cracks in wrought aluminum alloys. Han et al. [10] proposed a deep learning
method based on Inception-ResNet-v2 network for the industrial manufacturing defect defection field.
AlexNet architecture was found to be a promising solution for the detection of specific geometric
features in materials images [11]. Lin et al. [12] proposed the 3D convolutional neural network for
segmenting casting defect regions.

The recent surge of interest in deep learning methods [13,14] is due to the fact that they have been
shown to outperform previous state-of-the-art techniques in several tasks, as well as the abundance
of complex data from different sources (e.g., visual, audio, medical, social, and sensor). Generally
speaking, the field of object recognition has been dominated by CNN-based algorithms, which can be
roughly divided into two-stage approaches and one-stage approaches. Based on the two-stage method,
Girshick et al. [1] propose an object detector which applies a CNN to extract features for proposals
generated by selective search [15]. The authors of the method call it regions with convolutional neural
network (R-CNN). In the R-CNN family, model architectures are all region-based. Detection occurs in
two stages: the first stage identifies a manageable number of bounding-box object region candidates.
The second stage extracts CNN features from each region independently for classification. In 2015 [16],
Girshick improved on R-CNN to build a faster object detector called Fast R-CNN, which is significantly
faster in training and testing sessions over R-CNN. However, selective search is a time-consuming
process that degrades network performance, so Shaoqing Ren et al. [17] propose Faster R-CNN, which
eliminates selective search and lets the network learn the region proposals. The Mask R-CNN model
introduced in 2017 [18], the most recent variation of the R-CNN family, models and supports both
object detection and object segmentation. The R-CNN family may be among the most effective for
object detection, achieving state-of-the-art results on computer vision benchmark datasets. Although
accurate, the models can be slow when making predictions as compared to alternate models such as
one-stage methods, which are designed for real-time prediction with less accuracy. In the following
paper, we focus on model architectures which directly predict object bounding boxes for an image
using a one-stage approach. The single shot multibox detector (SSD) [2] reaches new records in terms
of performance and precision for object detection tasks. It is the first one-stage detector to achieve an
accuracy reasonably close to two-stage detectors while still retaining the ability to work in real-time.
The main advantage of this network is that it is fast, with reasonably good accuracy.

The YOLO (you only look once) model [3] is the first effort towards creating a fast real-time object
detector. In 2017, the author of the previous paper [3] proposed YOLOv2 in an effort to further improve
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model performance in [19]. However, the YOLOv2 architecture still lacks important elements (residual
blocks, shortcut connections, and upsampling) that are staples of most state-of-the art algorithms.
YOLOv4 [5] incorporates all of these. It uses a custom deep architecture—darknet-53—with shortcut
connections, upsampling, and concatenation, and it detects at three different scales. Although the
YOLOv4 detector detects medium and large objects in images, it still fails to detect small objects
in electron micrograph. Moreover, it is more accurate than YOLOv2, despite the larger time cost.
Fortunately, the author released a lite version called Tiny YOLOv4, which uses a lighter model with
fewer layers.

Though one-stage object detection algorithms such as SSD and YOLO detect objects in some
detection areas quickly and accurately, these methods usually do not achieve good performance in
optical micrographs. The main reason is that these methods perform poorly at detecting small objects
in optical micrographs. After the celebrated victory of AlexNet [20] in the LSVRC2012 classification
contest, the deep residual network (ResNet) [4] is currently the most outstanding work in the computer
vision or deep learning community. Taking advantage of its powerful representational ability has
boosted the performance of computer vision applications other than image classification, such as object
detection and face recognition. The core idea of ResNet is that every additional layer should contain
the identity function as one of its elements. Then, the depth level of ResNet is further expanded to
50 layers, 101 layers, and 152 layers. ResNet-X is a residual deep neural network with X layers; for
example, ResNet-101 refers to a Resnet constructed using 101 layers. Residual connections enable the
parameter gradients to propagate more easily from the output layer to earlier layers of the network,
which makes it possible to train deeper networks. This increases network depth, which results in
higher accuracies on more difficult tasks. He et al. [4] show that ResNet with 50/101/152 layers is more
accurate than plain 18/34-layer networks. The strong performance of ResNet on image recognition and
localization tasks show that depth is of central importance for many visual recognition tasks. However,
in comparison to YOLOv4 [5], for object detection ResNet-152 yields similar performance, but shows
poorer accuracy than YOLOv4 when finding small objects. For small object detection, YOLOv4 and
SSD are better able to detect small objects when using a multi-scale model. Therefore, we propose a
multi-scale Resnet (M-ResNet) detector especially designed for small object detection. Note that we
employ dilated convolution at three different scales with different dilation rates to adapt the receptive
fields for objects of different scales.

To enable robust defect detection, we need many pictures from the different metallic classes in
order to train the computer to essentially convert pixel numbers to symbols. Nevertheless, to the
best of our knowledge, there is no proper metallographic benchmark dataset for defect detection of
metallography. The American Society for Metals (ASM) micrograph database [21] is a growing online
collection of more than 4100 metallographic micrographs. However, the ASM micrographic database
is not suitable for deep learning-based defect detection due to the micrographs of undamaged metallic
structures shown in the dataset. Thus, we collect the metallographic database from the metallographic
analysis laboratory of the Metal Industries Research and Development Centre (MIRDC). All of these
metallographs are collected using the Zeiss Axiovert 200 Mat optical microscope, as shown in Figure 1.



Sensors 2020, 20, 5593 4 of 13

Sensors 2020, 20, x FOR PEER REVIEW 3 of 13 

 

art algorithms. YOLOv4 [5] incorporates all of these. It uses a custom deep architecture—darknet-
53—with shortcut connections, upsampling, and concatenation, and it detects at three different 
scales. Although the YOLOv4 detector detects medium and large objects in images, it still fails to 
detect small objects in electron micrograph. Moreover, it is more accurate than YOLOv2, despite the 
larger time cost. Fortunately, the author released a lite version called Tiny YOLOv4, which uses a 
lighter model with fewer layers. 

Though one-stage object detection algorithms such as SSD and YOLO detect objects in some 
detection areas quickly and accurately, these methods usually do not achieve good performance in 
optical micrographs. The main reason is that these methods perform poorly at detecting small objects 
in optical micrographs. After the celebrated victory of AlexNet [20] in the LSVRC2012 classification 
contest, the deep residual network (ResNet) [4] is currently the most outstanding work in the 
computer vision or deep learning community. Taking advantage of its powerful representational 
ability has boosted the performance of computer vision applications other than image classification, 
such as object detection and face recognition. The core idea of ResNet is that every additional layer 
should contain the identity function as one of its elements. Then, the depth level of ResNet is further 
expanded to 50 layers, 101 layers, and 152 layers. ResNet-X is a residual deep neural network with X 
layers; for example, ResNet-101 refers to a Resnet constructed using 101 layers. Residual connections 
enable the parameter gradients to propagate more easily from the output layer to earlier layers of the 
network, which makes it possible to train deeper networks. This increases network depth, which 
results in higher accuracies on more difficult tasks. He et al. [4] show that ResNet with 50/101/152 
layers is more accurate than plain 18/34-layer networks. The strong performance of ResNet on image 
recognition and localization tasks show that depth is of central importance for many visual 
recognition tasks. However, in comparison to YOLOv4 [5], for object detection ResNet-152 yields 
similar performance, but shows poorer accuracy than YOLOv4 when finding small objects. For small 
object detection, YOLOv4 and SSD are better able to detect small objects when using a multi-scale 
model. Therefore, we propose a multi-scale Resnet (M-ResNet) detector especially designed for small 
object detection. Note that we employ dilated convolution at three different scales with different 
dilation rates to adapt the receptive fields for objects of different scales. 

To enable robust defect detection, we need many pictures from the different metallic classes in 
order to train the computer to essentially convert pixel numbers to symbols. Nevertheless, to the best 
of our knowledge, there is no proper metallographic benchmark dataset for defect detection of 
metallography. The American Society for Metals (ASM) micrograph database [21] is a growing online 
collection of more than 4100 metallographic micrographs. However, the ASM micrographic database 
is not suitable for deep learning-based defect detection due to the micrographs of undamaged 
metallic structures shown in the dataset. Thus, we collect the metallographic database from the 
metallographic analysis laboratory of the Metal Industries Research and Development Centre 
(MIRDC). All of these metallographs are collected using the Zeiss Axiovert 200 Mat optical 
microscope, as shown in Figure 1. 

 
Figure 1. Zeiss Axiovert 200 Mat optical microscope. Figure 1. Zeiss Axiovert 200 Mat optical microscope.

3. Multi-Scale ResNet for Defect Detection

This section describes the proposed framework for metallographic analysis. We briefly review the
powerful ResNet framework and present the proposed multi-scale ResNet detector. Finally, we discuss
the retraining policy.

3.1. Deep Residual Network

ResNet [4], one of the most successful architectures in image classification, provides shortcut
connections that allow a signal to bypass one layer and move to the next layer in the sequence. It
allows for very deep networks of up to 152 layers by learning the residual representation functions
instead of learning the signal representation directly. In actuality, with the shortcut connections, a
linear shortcut is added to link the output of a residual block to its input thus enabling the flow of the
gradient directly through these connections, which makes training a CNN much easier by reducing the
vanishing gradient effect.

3.2. Architecture of Multi-Scale Resnets

In general, we define a small object as an object whose size is less than 1% of the total image area.
In the ResNet architecture, the representation of fine details for small objects is totally lost in the coarse,
semantic deepest layer. Therefore, in this work we attempt to detect objects of various sizes by making
full use of residual blocks with rich fine details, increasing spatial resolution by dilated convolution
and upsampling, and by merging using concatenation.

The proposed framework for metallographic analysis is shown in Table 1. Unlike the original
ResNet-50, M-ResNet-50 predicts boxes at three different scales. That is, M-ResNet divides the input
image using three different grid sizes to detect small, medium, and large objects, respectively. Take
M-ResNet-50, for example: the M-ResNet-50 network uses ResNet-50, a custom variant of the ResNet
architecture with a 50 layer network. For object detection, 50 more layers are stacked on top, yielding
a 154-layer fully convolutional architecture as the basis for M-ResNet-50. In Table 1, it contains
the feature extractor (Conv1–Conv5) and the detector. The feature extractor starts with a standard
convolutional layer with 64 filters of size 3 × 3. To improve the accuracy of object detection and detect
small objects, M-ResNet-50 is implemented with a feature pyramid network (FPN) [22]. FPN is a
feature extractor designed around the pyramid concept with accuracy and speed in mind. It replaces
the feature extraction of detectors such as Faster R-CNN and generates multiple feature map layers
(multi-scale feature maps) with better quality information than the regular feature pyramid for object
detection, especially for small objects.
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Table 1. M-Resnet-50 architecture.

Layer Operation Type Input (Pixel) Filter Stride Dilation Output
(Pixel)

0 Convolution 416× 416× 3 64 2 − 208× 208× 64
Conv11 Max pooling 208× 208× 64 − 2 − 104× 104× 64

2–5 Bottleneck residual network
Network 104× 104× 64 256 1 − 104× 104× 256

Conv26–9 Bottleneck residual network 104× 104× 256 − 1 − 104× 104× 256
10–13 Bottleneck residual network 104× 104× 256 − 1 − 104× 104× 256

14–17 Bottleneck residual network 104× 104× 256 512 2 − 52× 52× 512

Conv3
18–21 Bottleneck residual network 52× 52× 512 − 1 − 52× 52× 512
22–25 Bottleneck residual network 52× 52× 512 − 1 − 52× 52× 512
26–29 Bottleneck residual network 52× 52× 512 − 1 − 52× 52× 512

30–33 Dilated residual network 52× 52× 512 1024 2 3 26× 26× 1024

Conv4

34–37 Dilated residual network 26× 26× 1024 − 1 3 26× 26× 1024
38–41 Dilated residual network 26× 26× 1024 − 1 3 26× 26× 1024
42–45 Dilated residual network 26× 26× 1024 − 1 3 26× 26× 1024
46–49 Dilated residual network 26× 26× 1024 − 1 3 26× 26× 1024
50–53 Dilated residual network 26× 26× 1024 − 1 3 26× 26× 1024

54–57 Dilated residual network 26× 26× 1024 2048 2 3 13× 13× 2048
Conv558–61 Dilated residual network 13× 13× 2048 − 1 3 13× 13× 2048

62–65 Dilated residual network 13× 13× 2048 − 1 3 13× 13× 2048

66 Convolution 13× 13× 2048 2048 1 − 13× 13× 2048
67 Convolution 13× 13× 2048 18 1 − 13× 13× 18

68 Large-object detection

69 Route 29

70–73 Dilated residual network 52× 52× 512 1024 2 2 26× 26× 1024

Conv4

74–77 Dilated residual network 26× 26× 1024 − 1 2 26× 26× 1024
78–81 Dilated residual network 26× 26× 1024 − 1 2 26× 26× 1024
82–85 Dilated residual network 26× 26× 1024 − 1 2 26× 26× 1024
86–89 Dilated residual network 26× 26× 1024 − 1 2 26× 26× 1024
90–93 Dilated residual network 26× 26× 1024 − 1 2 26× 26× 1024

94–97 Dilated residual network 26× 26× 1024 2048 2 2 13× 13× 2048
Conv598–101 Dilated residual network 13× 13× 2048 − 1 2 13× 13× 2048

102–105 Dilated residual network 13× 13× 2048 − 1 2 13× 13× 2048

106 Convolution 13× 13× 2048 1024 1 − 13× 13× 1024
107 2 × Upsampling 13× 13× 1024 1024 26× 26× 1024
108 Concatenation 107, 33
109 Convolution 26× 26× 2048 1024 1 − 26× 26× 1024
110 Convolution 26× 26× 1024 18 1 − 26× 26× 18

111 Medium-object detection

112 Route 29

113–116 Dilated residual network 52× 52× 512 1024 2 1 26× 26× 1024

Conv4

117–120 Dilated residual network 26× 26× 1024 − 1 1 26× 26× 1024
121–124 Dilated residual network 26× 26× 1024 − 1 1 26× 26× 1024
125–128 Dilated residual network 26× 26× 1024 − 1 1 26× 26× 1024
129–132 Dilated residual network 26× 26× 1024 − 1 1 26× 26× 1024
133–136 Dilated residual network 26× 26× 1024 − 1 1 26× 26× 1024

137–140 Dilated residual network 26× 26× 1024 2048 2 1 13× 13× 2048
Conv5141–144 Dilated residual network 13× 13× 2048 − 1 1 13× 13× 2048

145–148 Dilated residual network 13× 13× 2048 − 1 1 13× 13× 2048

149 Convolution 13× 13× 2048 512 1 − 13× 13× 512
150 4 × Upsampling 13× 13× 512 512 52× 52× 512
151 Concatenation 150, 17
152 Convolution 52× 52× 1024 512 1 − 52× 52× 512
153 Convolution 52× 52× 512 18 1 − 52× 52× 18

154 Small-object detection

In the following subsections, we discuss in detail the M-ResNet components: upsampling,
concatenation, bottleneck residual blocks, feature pyramid networks, and dilated convolution.
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3.2.1. Upsampling and Concatenation

Detection at different layers helps to facilitate the detection of small objects, which is a known
weakness of ResNet. In the M-ResNet architecture, upsampled layers concatenate with previous layers,
helping to preserve the fine-grained features which help in detecting objects of various sizes. Table 1
shows the concatenation of the feature maps of the upper layers with the lower layer features through
upsampling layers. In addition, low-layer features that possess limited representation power are
enriched by the concatenation of higher-layer features, resulting in good representation power for
small object detection without incurring significant additional computational costs.

3.2.2. Bottleneck Residual Blocks

As shown in Figure 2a,b, a bottleneck residual network is similar to the original residual network.
In the ResNet-50 architecture [4], a bottleneck architecture is used to reduce computational time. The
bottleneck residual networks are composed of a sequence of three convolutional layers with filters
of size 1 × 1, 3 × 3, and 1 × 1, respectively. This amounts to using a 1 × 1 convolution to reduce the
channels of the input before performing the expensive 3 × 3 convolution, and then using another 1 × 1
convolution to project it back into the original shape. When the input and output feature maps are of
the same dimensions, the shortcut connections can be used directly. In the M-ResNet architecture, the
main features of metallographic images are extracted by the dilated residual network (described in
Section 3.2.4).
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Figure 2. (a) Basic block of residual network; (b) bottleneck residual network; (c) dilated
residual network.

3.2.3. Feature Pyramid Network

The feature pyramid network, proposed by T.-Y. Lin et al. [22], is used in work on object detection
or image segmentation. In contrast to other detection methods, FPN detects multiscale objects by
upsampling the feature maps of the CNN feature extractor, resulting in considerable performance gains
in multi-scale object detection, as shown in Figure 3. Because higher-resolution feature maps are used
for smaller-scale object detection, many FPN variants enrich those features. This feature pyramid has
high resolution to capture fine structures, sufficiently rich semantics to accurately predict class labels
and capture multi-scale information to predict the original images at all levels, and is built quickly
from a single input image scale. Therefore, to achieve accurate predictions, FPN is used for this work.
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3.2.4. Dilated Convolution

To increase feature resolution, which is necessary to generate high quality results, recent top
methods [23,24] rely heavily on the use of dilated convolution [25]. Dilated convolution decreases
computational costs by adding dilation rate to the conv2D kernel. The dilation rate is the spacing
between each pixel in the convolutional filter. A 3 × 3 kernel with a dilation rate of 2 has the same
field of view as a 5 × 5 kernel. Increasing the field of view has the added advantage of increasing the
receptive field, and thus helps the filter to capture more contextual information. For large objects,
M-ResNet uses a larger dilation rate to increase the receptive field. In contrast, we use a smaller dilation
rate for small objects. Moreover, by detecting details at higher resolutions, we detect finer details in
the images. As seen in Figure 4, dilated convolution enlarges the receptive field of a convolutional
kernel without increasing the number of parameters. In FPN feature extraction, we adopt a dilated
convolution with rates 1, 2, and 3 to extract features from the original images. By comparing with
the normal convolutional kernel, the dilated convolutional kernel gleans more information from the
extended receptive field.Sensors 2020, 20, x FOR PEER REVIEW 7 of 13 
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Figure 4. A 3D example of dilated convolution. Convolution layer with kernel size 3 × 3, (a) normal
dilated convolution with rate = 1; (b) dilated convolution with rate = 2; (c) dilated convolution with
rate = 3.

3.3. Retraining Strategy

Modern object detection models have millions of parameters. Training them using the M-ResNet
architecture requires many labeled training data and much computing power. Transfer learning is
a technique that shortcuts much of this by taking a piece of a model that has already been trained
on a related task and reusing it in a new model. In this paper, we propose a retraining strategy that
promotes high performance in object detection. In general, there are never enough training images for
object detection models, due to a lack of object samples or because of the cumbersome image labeling
process. Therefore, in each testing phase, we use the results of testing to enhance the robustness of
the proposed model, as shown in Figure 5. For poor results, we compare with previously labeled
images and correct them to implement retraining. Automated pre-labeling employs the last models to
label the test images automatically, saving much manual labeling time. The M-ResNet models achieve
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outstanding performance for object detection through the use of retraining strategies that cater to the
final application.
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Figure 5. M-ResNet retraining strategy.

4. Experimental Results and Analysis

In this section, we evaluate M-ResNet on MIRDC metallographic dataset. All the experiments are
implemented in CUDA C++ API on a machine with NVIDIA 1080Ti GPUs. We use the well-trained
ResNet-50/101/152 models as the pre-trained model for M-ResNet training, and then fine-tuned the
model on the MIRDC metallographic dataset. The performance is measured by average precision
(AP) [26]. AP is a measure that combines recall and precision for ranked retrieval results. We compared
the results with the state-of-the-art CNN in terms of AP and inference speed. The input metallographs
were resized to 736× 416 pixels. For all experiments, the weight decay was set to 0.0005, the momentum
to 0.9, and the learning rate to 0.001. The overlap threshold for a region of interest (ROI) to be considered
as foreground is 0.5, and the number of ROIs per batch is 32.

4.1. Metallographic Dataset

There are currently no appropriate metallographic datasets for deep learning. Thus, we collected
the metallographic images from metallographic analysis laboratory of MIRDC. The metallographic
datasets contain five different classes of metallographs under the optical microscopy 100×magnification,
such as carbon steel, medium carbon steel, medium carbon Cr-Mo alloy steel, chrome vanadium
steel and chromium-molybdenum steel, as shown in Figure 6. Each class varies from 100 to 200
metallographs and contains a different number of normal and defective images. Therefore, the
metallographic dataset is composed of 818 images in the 24-bit JPEG format. In the metallographic
dataset, we note that there are far fewer positives (defective images) than negatives (normal images).
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It is a generally accepted notion that bigger datasets result in better deep learning models [27].
Therefore, we can improve the performance of the model by augmenting the data. Image data
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augmentation is a technique that can be used to artificially expand the size of a training dataset by
creating modified versions of images in the dataset. In addition, this data augmentation helped reduce
overfitting when training a deep neural network. In Figure 7, we used the most common three main
policies of data augmentation techniques for image data, such as flipping, rotation, and zooming.
Each policy consists of three associated parameters. Thus, in this study, the data augmentation with
9 operations is used to train the models for each image. In total, we used 8180 metallographs to
evaluate our proposed method, including 6261 normal images and 1919 defective images. We divided
the metallographic datasets into training and testing sets by randomly splitting the dataset. In our
experiments, we used 80% of the dataset for training, and the remaining 20% for testing.
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4.2. Experimental Results and Analysis

During testing, predicted boxes with confidence scores greater than 0.5 were regarded as defective
areas of metallographic images. The proposed M-ResNet framework has been implemented by a
window-based program shown in Figure 8. Based on the concept of “What You See Is What You Get”
(WYSIWYG), the window consists of two parts, which are called the parameter setting and the main
image windows, respectively. The user can explore the detection result of the entire image in the main
image window. There are five different classes in metallographic datasets, so the program includes five
different models for metallographic analysis. Therefore, the user can easily change Cls (name of class),
Cfg (configuration file), and Wei (model weights) to find the most suitable model. By clicking the run
button, the program will execute batch processing of images after the parameters are determined. In
Figure 9, the window shows several selected metallographs outputted from the program. In recent
years, some research papers [28–30] on object detection based on deep learning methods also use
the sized category of APXS, APS, APM, APL, for the evaluation of the effectiveness of the proposed
methods. The size of the defective area is defined by the number of pixels in the defective area of the
metallograph. We assigned each defective object to a size category depending on the percent of the
defective area in the metallographic image. In this work, the sizes of defective areas were divided into
extra small (XS: under 0.3%), small (S: 0.3–1%), medium (M: 1–5%), and large (L: above 5%).

Table 2 shows our detection results on the MIRDC dataset for various ResNet architectures,
including APXS, APS, APM, APL (AP at different scales: extra-small, small, medium, and large), mean
average precision (mAP), and computational costs. The results show that the proposed M-ResNet
architectures with the MIRDC dataset achieve better mAPs. For instance, M-ResNet-50 achieves better
performance than ResNet-50, improving the mAP from 65.1% to 78.5%. In addition, we also show the
results for the different categories to demonstrate the strong performance for small-object detection. For
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single-object detection with extra-small objects, the proposed method (M-ResNet-50/101/152) yields APs
of 78.5%, 81.4%, and 85.7%, respectively. Among the ResNet architectures, ResNet-152/101/50 models
are faster than M-ResNet-152/101/50 models in computational costs. M-ResNet-152 is the slowest in
this regard. Unfortunately, the M-ResNet-152/101/50 models contain more layers than the original
ResNet-152/101/50, leading to greater computational costs. This is because multi-scale architectures
that make use of upsampling, concatenation, and FPN as in M-ResNet increase computational costs.
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Figure 9. Selected examples of defect detection results on the Metal Industries Research and
Development Centre (MIRDC) dataset for various methods. Left column is original images, and middle
and right columns are results of ResNet-50 and M-ResNet-50 models.

Table 2. Detection results under various ResNet architectures.

Dataset Method APXS (%) APS (%) APM (%) APL (%) mAP (%) Speed
(FPS)

MIRDC
dataset

M-ResNet-50 67.5 78.7 83.1 84.7 78.5 45

M-ResNet-101 73.4 80.1 85.4 86.7 81.4 32

M-ResNet-152 78.9 85.4 88.3 90.2 85.7 27

ResNet-50 55.8 60.7 68.1 75.7 65.1 87

ResNet-101 62.5 67.1 72.4 78.4 70.1 58

ResNet-152 69.7 73.4 76.3 82.2 75.4 44
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4.3. Comparison with Other Object Detectors

As YOLOv4 is a state-of-the-art object detection algorithm, we trained YOLOv4 on MIRDC dataset
and compared the results with that of the proposed method. YOLOv4 yielded a mAP of 78.1%. In
addition, we also compared our method with other well-known algorithms, as shown in Table 3.
M-ResNet-152 clearly outperforms previous deep learning algorithms such as SSD300, Faster R-CNN,
and YOLOv4. It also significantly improves the accuracy of one-stage object detection, e.g., the accuracy
of M-ResNet-152 increases by 11% and 7.6% compared to the state-of-the-art one-stage detectors SSD300
and YOLOv4, respectively. The main reason is that these two detectors are less sensitive to small
objects than M-ResNet-152. However, the M-ResNet-152/101/50 mAP results in Table 3 suggest that
these performance gains come at added computational expense: we note the large speed differences
between the various methods. In Table 3, ResNet-50 is among the fastest models in our experiments.
Faster R-CNN is slowest in this regard. Unfortunately, the M-ResNet-152/101/50 models contain more
layers than SSD300, YOLOv4, and the original ResNet-152/101/50, leading to greater computational
costs. Nevertheless, the M-ResNet-50 model is still useful for real-time object detection.

Table 3. Comparison between object detectors.

Method Backbone Network mAP (%) Speed (FPS)

Faster R-CNN ResNet-101 77.8 -

SSD300 VGG-16 74.7 48

YOLOv4 darknet53 78.1 47

ResNet-50 ResNet-50 65.1 87

M-ResNet-50 ResNet-50 78.5 45

ResNet-101 ResNet-101 70.1 58

M-ResNet-101 ResNet-101 81.4 32

ResNet-152 ResNet-152 75.4 44

M-ResNet-152 ResNet-152 85.7 27

In these experiments, some defective objects are still not accurately detected by the proposed
algorithm. Analysis of the testing results reveals that some objects are hidden, or are too tiny, and that
some kind of defective object shapes are not part of training. It is quite a challenging job to solve these
problems for future research. Automatically recognizing defective objects is essential for handling
metallographs. We hope to further improve the classifier using more advanced model ablation and
auxiliary methods, to facilitate the accurate recognition of metallographs when scientists use these
methods to analyze metallography.

5. Conclusions

In this work, we propose a new deep learning method and apply it to metallographic analysis. In
addition to normal bottleneck ResNet networks, we also employ the state-of-the-art FPN and dilated
ResNet networks in the M-ResNet architecture. This improvement enlarges the receptive field in
multi-scale feature maps and extracts more object information. In addition, we present a new dataset to
evaluate the effectiveness of M-ResNet for metallographic analysis. Most previous methods are ill-suited
to metallographic applications, due to low mAPs and slow computing speed. Fortunately, for the
defect detection of metallographic analysis, deep learning methods greatly improve detection accuracy.
As illustrated in the Table 3, for the MIRDC dataset, the APs of Faster R-CNN, SSD300, YOLOv4 and
the proposed M-ResNet-152 are 77.8%, 74.1%, 78.1%, and 85.7%, respectively, which indicates that
deep learning is to play an increasingly important role in defect detection in metallographic analysis.
On the whole, the results of this research are not outstanding, but inspire a novel way of thinking
with metallographic analysis. In future work, we will compile a larger dataset based on generative
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adversarial networks (GANs) [31,32] and further improve the algorithm to boost detection accuracy.
We believe that M-ResNet will find use in many successful metallographic applications.
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