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Abstract: A light pen coordinate measuring system (LPCMS) is a kind of vision-based portable
coordinate measuring technique. It implements coordinate measurement by analyzing the image of
a light pen, which has several control points and a probe. The relative positions of control points
need to be determined before measurement and serve as the measuring basis in LPCMS. How to
accurately calibrate the relative positions of control points is the most important issue in system
calibration. In this paper, a new method of control point position calibration based on a traditional
coordinate measuring machine (CMM) is proposed. A light pen is fastened to the measuring arm of
a CMM and performs accurate translational movement driven by the CMM. A camera is used to
capture the images of control points at different positions, and the corresponding readings of the
CMM are recorded at the same time. By establishing a separate coordinate system for each control
point, the relative positions of the control points can be transformed to the differences of a series of
translation vectors. Experiments show that the calibration repeatability of control point positions
can reach 10 µm and the standard deviation of measurement of the whole LPCMS can reach 30 µm.
A CMM is used to generate accurate translation, which provides a high accuracy basis of calibration.
Through certain mathematical treatment, tremendous data acquired by moving the light pen to tens
of thousands of different positions can be processed in a simple way, which can reduce the influence
of random error. Therefore, the proposed method provides a high-accuracy solution of control point
position calibration for LPCMS.

Keywords: coordinate measuring; vision metrology; light pen; control point position calibration;
CMM; PnP problem; structure from motion

1. Introduction

Coordinate measuring is a key technique in manufacturing and reverse engineering [1]. With the
development of the automobile industry, shipbuilding industry, and aerospace industry, coordinate
measuring techniques are increasingly applied to the in situ measurement of large workpieces.
Although a traditional coordinate measuring machine (CMM) has very high accuracy, it has poor
flexibility and requires strict environmental conditions, which makes it not competent for in situ
measurement [2,3]. Therefore, several kinds of portable coordinate measuring techniques have arisen
in the last two decades, including laser scanners [4], laser trackers [5], photogrammetry-based
devices [6], and so on. They have excellent flexibility, large measurement range, and relatively high
accuracy. Among them, the light pen coordinate measuring system (LPCMS) is indispensible for its
ability to measure the hidden features of a workpiece, including, but not limited, to deep holes [7–9].
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LPCMS is typically composed of a camera, a light pen, a laptop, and some data transmission wires.
The key component is the light pen, which has several control points and a probe on it. The control
points are generally active luminous infrared light emitting diodes (LEDs). Once they are installed on
the light pen, their relative positions are fixed. The fundamental principle of LPCMS is to determine
the relative position and orientation between the light pen and the camera, according to the control
point positions and the image of the control points. Therefore, it can be said that the relative positions
of control points serve as the measuring basis in LPCMS, and the accuracy of the whole system is
highly dependent on the calibration accuracy of the control point positions. The main issue of this
paper is how to fulfill high accuracy calibration of the control point positions.

There have been some methods to calibrate control point positions, which can be classified into
two categories: One kind is to measure the relative positions of the control points directly using
an image measuring apparatus together with a traditional CMM [10]. However, the control point is
not an ideal point but a luminous point of a certain size. Actually, what the calibration really needs to
determine is the position of the luminous center of the LED, which cannot be accurately and directly
located. Therefore, direct measurement methods can only obtain a rough result. The other kind is the
vision-based structure-from-motion (SFM) method, which uses a moving camera to obtain a group
of images of control points from different viewpoints [11]. Control point positions can be recovered
up to a scale from this group of images using bundle adjustment. Then the absolute dimension is
determined by a calibration bar that has accurate length. This is a nonlinear optimization process
and does not need to explicitly point out the luminous center of the control points. The problem
with this kind of method is that the calibration accuracy is strongly affected by the accuracy of the
camera calibration. In order to obtain higher calibration accuracy, the camera needs to move to more
viewpoints to give more information about control point positions. Each time a new camera viewpoint
is added, the number of variables to be optimized increases by six. These variables represent just the
position and orientation of the camera at different viewpoints, and have nothing to do with the relative
positions of the control points. Therefore, this will make the nonlinear least squares problem rather
complicated and the solving process unstable. In addition to this, the absolute dimension of control
point positions are determined by only a few lengths on the calibration bar, which makes the result
unreliable if the reference lengths are not accurate enough.

In this paper, a new high-accuracy method of control point position calibration is proposed.
It utilizes a traditional CMM to generate accurate translations in three orthogonal directions and makes
the light pen move with the measuring arm of the CMM. A stationary camera is placed in front of the
CMM to capture the images of control points at different positions. For each control point, a separate
coordinate system is established, which satisfies that, at each different position, the coordinate of each
control point in its respective coordinate system is equal to the reading of the CMM. With the images
of control points at different positions and the readings of the CMM, a nonlinear least squares problem
is established to optimize the translation vectors between all the control point coordinate systems
and camera coordinate system. After a simple conversion, the relative positions of control points can
be determined by the differences of these translation vectors. In its essence, the proposed method
is an improved version of the SFM method. The moving part changes from the camera to the light
pen, and the movement is pure translation that is accurately generated by CMM. Compared with
previous SFM method, the proposed method has more known information and far fewer variables
to optimize. Each position added to the calibration will give more information about the control
point positions and will not introduce any additional optimization variables. Although the proposed
method is a vision-based method, the calibration accuracy is more dependent on the accuracy of the
CMM. Tens of thousands of translations of the CMM serve as the calibration basis, which allows the
proposed method to reach high accuracy. The establishment of control point coordinate systems and
the acceleration method of the algorithm guarantee the speed and stability of the solving process.
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To be more intuitional, a simple summary of the advantages and disadvantages of the direct
measurement method in [10], the structure from motion method in [11], and the proposed calibration
method in this paper is presented in Table 1.

Table 1. Comparison table of the pros and cons of calibration methods.

Calibration Method Advantages Disadvantages

Direct Measurement Method in [10]
Fast calibration speed;

Easy operation;
No need of calculation

Unable to locate luminous center;
Low accuracy

Structure from Motion Method in [11]
No need of extra equipment;

High flexibility;
Able to calibrate in real-time

Complicated calculation;
Low reliability

The Proposed Method
High accuracy;

Simple calculation process;
Able to process tremendous data

High time consumption;
Complex calibration procedure

Section 2 gives a brief introduction of LPCMS. Section 3 gives a detailed description of the proposed
method of control point position calibration. Some experimental results are presented in Section 4 to
demonstrate the performance of the proposed method. Section 5 concludes this paper.

2. Brief Description of LPCMS

As shown in Figure 1a, a typical LPCMS is composed of a camera, a light pen, a laptop, and some
data transmission wires. Figure 1b shows the light pen structure adopted in this paper. It has 13 control
points. nine of them are coplanar and form an isosceles triangle. The other four are located in a line
that is parallel to the front plane.
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Figure 1. Introduction of light pen coordinate measuring system. (a) The typical composition of the
light pen coordinate measuring system; (b) the light pen structure adopted in this paper.

In order to describe more clearly, two coordinate systems are established, which are fixed to
the camera and the light pen, respectively. The camera coordinate system is denoted as Oc − xcyczc,
and the light pen coordinate system is denoted as Ol − xlylzl. Since the position of the camera is fixed
during the measurement, Oc − xcyczc can be regarded as the reference coordinate system. The final
measuring result is the coordinate in Oc − xcyczc of the measured point. For any point P, its coordinate
in Oc − xcyczc can be denoted as Pc = (xc, yc, zc)

T, and its homogeneous coordinate in Ol − xlylzl
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can be denoted as P̃l = (xl, yl, zl, 1)T. The coordinates in these two coordinate systems satisfy three
dimensional rigid body transformation, which can be denoted as:

Pc = [R |T ]P̃l (1)

where R and T are the rotation matrix and translation vector between these two coordinate
systems, respectively.

The homogeneous pixel coordinate of its image point can be denoted as p̃ = (u, v, 1)T. According to
the pinhole model of camera. The following relationship can be obtained:

λp̃ = KPc = K[R |T ]P̃l (2)

where K is the intrinsic parameter matrix of the camera, and λ is a nonzero scale factor. What needs to
be emphasized here is that lens distortion is not considered here, because it is not the main issue of this
paper. In practice, distortion compensation is needed to obtain the undistorted pixel coordinate of the
image point.

During the measurement, a stationary camera is placed in front of the object to be measured.
The operator holds the light pen and guarantees all the control points can be seen by the camera.
At the same time, the probe on the light pen is made to touch the surface of the object. The coordinate
of the point that the probe touches in Oc − xcyczc can be obtained. LPCMS implements coordinate
measurement by analyzing the image of control points on the light pen. With the relative positions of
control points and the pixel coordinates of their image points, the rotation matrix R and translation
vector T between the camera coordinate system and the light pen coordinate system can be determined.
According to Equation (1), the coordinate of the probe tip center in light pen coordinate system
Ol − xlylzl can be converted to the coordinate in camera coordinate system Oc − xcyczc. As Oc − xcyczc

is regarded as the reference coordinate system in LPCMS, the coordinate of the measuring point can be
obtained from the coordinate of the probe tip center after a simple radius compensation.

Before actual measurement, LPCMS needs to be carefully calibrated to guarantee accuracy.
The system calibration includes camera calibration, control point position calibration, and probe tip
center calibration. Camera calibration determines the imaging model of the camera, which includes
intrinsic parameters and the distortion coefficients [12–14]. In general, the intrinsic parameter matrix is
an upper triangular matrix having the following form [15]:

K =


fx s cx

0 fy cy

0 0 1

 (3)

It uses fx and fy to describe effective focal length in two orthogonal directions of the imaging
sensor. s describes the slope of the two axes of the imaging sensor, which results from that the imaging
sensor is not strictly vertical to the optical axis. cx and cy are the position of the optical center of the
pixel coordinate. Camera calibration is a well-solved problem in computer vision. There is a standard
procedure for camera calibration.

Control point position calibration determines the coordinates of control points in the
light pen coordinate system Ol − xlylzl. Suppose there are n control points for the light pen.
Their homogenous coordinates in Ol − xlylzl can be denoted as P̃i = (xi, yi, zi, 1)T, (i = 1, 2, · · · , n).
After image processing, the homogenous pixel coordinates of their image points can be denoted as
p̃i = (ui, vi, 1)T, (i = 1, 2, · · · , n). For each control point, two equations can be obtained according to
Equation (2) after a simple transformation. A system of 2n equations can be established to calculate
the unknown R and T, which represent the rotation matrix and translation vector between camera
coordinate system and light pen coordinate system. This is a well-known problem in computer vision,
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which is called perspective-n-point (PnP) problem. There have been a large number of studies on this
issue [16–18].

Probe tip center calibration gives the coordinate of the probe tip center in the light pen coordinate
system Ol − xlylzl, which can be denoted as P̃p. With the R and T solved from the PnP problem,
the coordinate of the probe tip center in camera coordinate system Oc − xcyczc can be obtained from P̃p

after a three-dimensional rigid body transformation according to Equation (1). After compensating for
the radius of the probe tip, the coordinate of the measuring point is acquired. Usually, probe tip center
can be calibrated using a cone hole [19].

From the description above, control point position calibration is very important to LPCMS.
The accuracy of these positions directly impact the solving accuracy of light pen posture R and T,
and then impact the accuracy of the final measuring result. However, there are few high-accuracy
methods of control point position calibration, which limits the accuracy improvement of LPCMS.

3. Control Point Position Calibration

3.1. Calibration Procedure

In this paper, a new high accuracy method of control point position calibration, which utilizes
a traditional CMM, is proposed. The light pen is fastened to the measuring arm of a CMM with
a specially customized fixture, so that there is no relative displacement between the light pen and
the measuring arm during the movement of the measuring arm of the CMM. A stationary camera
is located in front of the CMM at a proper distance, so that the whole movement range of the CMM
is in the view field of the camera. The measuring arm drives the light pen to move along with the
pre-programming three-dimensional grid route. At each node of the grid, the image of the light pen is
captured by the camera and the reading of the CMM is recorded. For each control point on the light
pen, a separate coordinate system is established. The pixel coordinates of the image of the control
points can be obtained after image processing. With these image coordinates and the corresponding
CMM readings, the translation vectors between all the control point coordinate systems and the camera
coordinate system can be calculated. The relative positions of the control points can be defined by the
differences of these translation vectors. According to these translation vectors, the light pen coordinate
system is established and the coordinates of the control points in the light pen coordinate system can
be obtained after a three-dimensional rigid body transformation.

3.2. Calibration Method Derivation

As shown in Figure 2, the measuring arm of the CMM drives the light pen to move along with
the pre-programming three-dimensional grid route. The machine system of the CMM is denoted as
Om − xmymzm and the probe tip center of the CMM is denoted as point M. The coordinate of point M in
the machine system Om − xmymzm is exactly the reading of the CMM. The control points are denoted as
Li, (i = 1, 2, · · · , n). For each control point, an individual coordinate system is established, which can
be denoted as Oi − xiyizi, (i = 1, 2, · · · , n). Their origins are denoted as point Oi, (i = 1, 2, · · · , n).
The control point coordinate system satisfies the condition that, the coordinate of each control point
in its own control point coordinate system is equal to the reading of the CMM, at each position of
the moving route. If the control point coordinate systems are established like this, then the three
axes of the control point coordinate systems have the same direction as the homonymous axes of the
machine coordinate system. In other words, the difference between any two coordinate systems is only
a pure translation.
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The detail derivation process can be formulized as follows. The condition that control point
coordinate system satisfies can be expressed in vector form:

−−−→
OmM =

−−→
OiLi (4)

Then the four points Om, M, Oi,Li form a parallelogram. Thus, the following relation is
also satisfied:

−−−→
OmOi =

−−→
MLi, (i = 1, 2, · · ·, n) (5)

Take the first and second control point for example, the following relation can be derived:

−−−→
OmO1 =

−−→
ML1,

−−−→
OmO2 =

−−→
ML2

−−−→
OmO2 −

−−→
OmO1 =

−−−→
ML2 −

−−→
ML1

−−−→
O1O2 =

−−→
L1L2

(6)

From Equation (6), it can be concluded that the relative positions of the origins of the control
point coordinate systems Oi, (i = 1, 2, · · · , n) is the same as the relative positions of the control points
Li, (i = 1, 2, · · · , n). Then the control point position calibration problem is converted to determining
the relative positions of the origins of control point coordinate systems.
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As shown in Figure 3, for each control point coordinate system Oi − xiyizi, (i = 1, 2, · · · , n),
its relationship relative to the camera coordinate system can be represented by a three-dimensional
rigid body transformation. The translation vectors are denoted as Ti, (i = 1, 2, · · · , n). The physical
meaning of Ti is the vector form the origin of camera coordinate system to the origin of the control
point coordinate system, which can be formulated as:

−−−→
OcOi = Ti, (i = 1, 2, · · · , n) (7)

Take the first and second control points for example, the following relationship can be derived:

−−−→
OcO1 = T1,

−−−→
OcO2 = T2

−−−→
O1O2 =

−−−→
OcO2 −

−−−→
OcO1 = T2 −T 1

(8)

From Equation (8), it can be concluded that the relative positions of the origins of control
point coordinate systems can be determined by calculating the differences of a series of translation
vectors, which represent the translation between the control point coordinate systems and the camera
coordinate system.

Sensors 2020, 20, x FOR PEER REVIEW  7 of 17 

 

of 
iT   is the vector form the origin of camera coordinate system to the origin of the control point 

coordinate system, which can be formulated as: 

, ( 1,2, , )c i i i n O O T


   (7) 

Take the first and second control points for example, the following relationship can be derived: 

1 1 2 2

1 2 2 1 2 1

, 

   

 

  
c c

c c

O O T O O T

O O O O O O T T
  (8) 

From Equation (8), it can be concluded that the relative positions of the origins of control point 

coordinate systems can be determined by calculating the differences of a series of translation vectors, 

which  represent  the  translation  between  the  control  point  coordinate  systems  and  the  camera 

coordinate system. 

 

Figure 3. The relationship between the control point coordinate systems and the camera coordinate 

system. Determining the relative positions of the origins of control point coordinate systems can be 

converted to calculating the translation vectors between the control point coordinate systems and the 

camera coordinate systems. 

From  the  derivation  above,  the  calibration  of  the  control  point  positions  is  transformed  to 

calculating  the  translation  vector  between  the  control  point  coordinate  systems  and  the  camera 

coordinate system. If each control point is processed separately, this calculation can be regarded as 

an instance of the PnP problem, and the rotation matrix between control point coordinate system and 

camera coordinate system is calculated at the same time. Suppose there are  m   positions on the three 

dimensional grid route of  the CMM. The homogeneous  form of  the readings of  the CMM can be 

denoted as  T( 1) ( 1 2 )j j j jx y z j m Q , , , , , , ,  . According to the establishment condition of the control 

point  coordinate  systems  mentioned  above,  T( 1) ( 1 2 )j j j jx y z j m Q , , , , , , ,    are  also  the 

coordinates of a control point in its own control point coordinate system. After image processing, the 

homogeneous  pixel  coordinates  of  the  image  of  control  points  can  be  denoted  as 
T( 1) ( 1 2 1 2 )i j i j i ju v i n j m  q , , ,, , , , , , ; , , ,   . The rotation matrixes and translation vectors between 

Figure 3. The relationship between the control point coordinate systems and the camera coordinate
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converted to calculating the translation vectors between the control point coordinate systems and the
camera coordinate systems.

From the derivation above, the calibration of the control point positions is transformed to
calculating the translation vector between the control point coordinate systems and the camera
coordinate system. If each control point is processed separately, this calculation can be regarded as
an instance of the PnP problem, and the rotation matrix between control point coordinate system
and camera coordinate system is calculated at the same time. Suppose there are m positions on
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the three dimensional grid route of the CMM. The homogeneous form of the readings of the CMM
can be denoted as Q̃ j = (x j, y j, z j, 1)T, ( j = 1, 2, · · · , m). According to the establishment condition

of the control point coordinate systems mentioned above, Q̃ j = (x j, y j, z j, 1)T, ( j = 1, 2, · · · , m) are
also the coordinates of a control point in its own control point coordinate system. After image
processing, the homogeneous pixel coordinates of the image of control points can be denoted
as q̃i, j = (ui, j, vi, j, 1)T, (i = 1, 2, · · · , n; j = 1, 2, · · · , m). The rotation matrixes and translation
vectors between control point coordinate systems and camera coordinate systems can be denoted as
Ri, (i = 1, 2, · · · , n) and Ti = (tx,i, ty,i, tz,i)

T, (i = 1, 2, · · · , n), respectively.
Take the i-th control point for example: The following equations can be derived from Equation (2)

at each position of the route:

λ


ui, j
vi, j
1

 =


fx s cx

0 fy cy

0 0 1

[Ri|Ti ]


x j
y j
z j
1

, ( j = 1, 2, · · · , m) (9)

where Ri is a 3 × 3 orthogonal matrix. An orthogonal matrix has only three degrees of freedom,
and there are several methods to parameterize it. In this paper, rotation angles around coordinate
axes, which can be denoted as (αi, βi,γi),(i = 1, 2, · · · , n), are used to parameterize the rotation matrix
as follows:

Ri =


cos βi cosγi
cos βi sinγi

cosγi

sinαi sin βi cosγi − cosαi sinγi
sinαi sin βi sinγi + cosαi cosγi

sinαi cos βi

cosαi sin βi cosγi + sinαi sinγi
cosαi sin βi sinγi − sinαi cosγi

cosαi cos βi

 (10)

What needs to be emphasized here is that the rotation matrix has several different denotations
parameterized by rotation angles around the coordinate axes, depending on the order of three rotations.
The denotation in Equation (10) is only one of them. Expanding Equation (9), the scale factor λ can be
eliminated. An equation system composed of 2m nonlinear equations with six unknown variables
(α1, βi,γi, tx,i, ty,i, tz,i) is established. Because the detailed form of the equations is too complicated,
the following abbreviated form is used in this paper:

gi, j(αi, βi,γi, tx,i, ty,i, tz,i) − ui, j = 0

hi, j(αi, βi,γi, tx,i, ty,i, tz,i) − vi, j = 0

( j = 1, 2, · · · , m) (11)

This is a general nonlinear least squares problem, and there are many mature solutions to this
problem. Then the translation vector between the i-th control point coordinate system and camera
coordinate system Ti = (tx,i, ty,i, tz,i)

T is determined.
For each control point, the same process is repeated, and the only change is to use different

image coordinates. Then all the translation vectors Ti = (tx,i, ty,i, tz,i)
T, (i = 1, 2, · · · , n) are determined.

According to the derivation in Equations (6) and (8), the relative positions of the control points can be
calculated from the differences of these translation vectors.

3.3. Algorithm Acceleration

At the beginning of Section 3.2, it was mentioned that the way that control point coordinate
systems are established guarantees that the difference between any two control point coordinate
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systems is a pure translation. Thus, their rotation matrices relative to the camera coordinate system are
the same, which can be represented by the following formula:

αi1 = αi2 = α

βi1 = βi2 = β

γi1 = γi2 = γ

(i1, i2 = 1, 2, · · · , n; i1 , i2) (12)

With these conditions satisfied, a better way to calculate the translation vectors is to take all control
points into consideration at the same time rather than calculate them separately. If all control points
are handled at the same time, two equations can be derived from Equation (2) for each control point,
at each position of the CMM route. The equation system in Equation (11) for all the control point can
be merged together. As a result, an equation system which is composed of 2mn equations with 3n + 3
variables (αi, βi,γi, tx,i, ty,i, tz,i),(i = 1, 2, · · · , n) is established, which has a similar form to Equation (11):

gi, j(α, β,γ, tx,i, ty,i, tz,i) − ui, j = 0

hi, j(α, β,γ, tx,i, ty,i, tz,i) − vi, j = 0

(i = 1, 2, · · · , n; j = 1, 2, · · · , m) (13)

This equation system can be solved as a general nonlinear least squares problem. In computer
vision, the solving process is also known as the bundle adjustment method [20,21].

In practical calibration process, there are tens of thousands different positions on the CMM route
to guarantee the calibration accuracy, so m is a quite large number. Take the light pen in Figure 1b for
example, n = 13 and there are totally 42 variables in the equation system. This means the equation
system in Equation (13) will be very large. Solving it directly will be time and space consuming.

Take the classical Gauss–Newton method with line search for example [22]. It starts from an initial
solution vector, and uses a gradient-based iteration framework to approximate the locally optimal
solution. Suppose X represents the solution vector of the system. The initial solution vector can be
denoted as X(0) = (α(0), β(0),γ(0), t(0)x,i , t(0)y,i , t(0)z,i ), (i = 1, 2, · · · , n) and the solution vector in the k-th

iteration can be denoted as X(k) = (α(k), β(k),γ(k), t(k)x,i , t(k)y,i , t(k)z,i ), (i = 1, 2, · · · , n). The iteration criterion
is as follows:

X(k+1) = X(k)
− d(k)Z(k) (14)

where Z(k) is the iteration direction at X(k) and d(k) is the step length along Z(k). Z(k) is the solution of
a linear equation system. It can be calculated through the following formula:

Z(k) = (J(k)
T
J(k))

−1
J(k)

T
R(k) (15)

where J(k) and R(k) are the Jacobian matrix and residual vector of the equations system at X(k),
respectively. The entry of J(k) is the first-order partial derivative of the equations with respect to all
variables. The value of d(k) can be calculated through one-dimensional line search along Z(k). For the

equation system in Equation (13), J(k) is a 2mn× (3n + 3) matrix, which is very large, and J(k)
T
J(k) is

a (3n + 3) × (3n + 3) matrix. The storage of J(k) will occupy quite a large amount of memory and the

computation of J(k)
T
J(k) will consume a great deal of time. This computation will be conducted once

during each iteration, so special treatment is needed to accelerate the algorithm.
Although there are 3n + 3 variables in the whole equation system, any single equation has only

six variables, including three rotation angles and three translation components. The 2m equations of
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one control point have nothing to do with the translation vectors of the other control points. Therefore,
the following partial derivatives are zero:

∂hi1, j
∂tx,i2

=
∂hi1, j
∂ty,i2

=
∂hi1, j
∂tz,i2

= 0

∂gi1, j
∂tx,i2

=
∂gi1, j
∂ty,i2

=
∂gi1, j
∂tz,i2

= 0

(i1, i2 = 1, 2, · · · , n; i1 , i2)

( j = 1, 2, · · · , m)

(16)

In other words, the Jacobian matrix J is a sparse matrix, whose most entries are zero. The algorithm
can be accelerated by taking advantage of the sparsity of J [23,24]. The Jacobian matrix J can be
organized in partitioned form as:

J =



A1

A2
...

An

B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bn


(17)

where Ai, (i = 1, 2, · · · , n) is a 2m× 3 matrix composed of partial derivatives with respect to rotation
angles (α, β,γ), and Bi, (i = 1, 2, · · · , n) is a 2m× 3 matrix composed of partial derivatives with respect
to translation components (txi, tyi, tzi),(i = 1, 2, · · · , n). They have the following form:

Ai =



∂hi,1
∂α

∂hi,1
∂β

∂hi,1
∂γ

∂gi,1
∂α

∂gi,2
∂β

∂gi,3
∂γ

...

∂hi,m
∂α

∂hi,m
∂β

∂hi,m
∂γ

∂gi,m
∂α

∂gi,m
∂β

∂gi,m
∂γ



, Bi =



∂hi,1
∂tx,i

∂hi,1
∂ty,i

∂hi,1
∂tz,i

∂gi,1
∂tx,i

∂gi,1
∂ty,i

∂gi,1
∂tz,i

...

∂hi,m
∂txi

∂hi,m
∂tyi

∂hi,m
∂tzi

∂gi,m
∂tx,i

∂gi,m
∂ty,i

∂gi,m
∂tz,i



(18)

Then JTJ can be computed in partitioned form:

JTJ =



n∑
i=1

AT
i Ai AT

1 B1 · · · AT
nBn

BT
1 A1 BT

1 B1 · · · 0
...

...
. . .

...
BT

nAn 0 · · · BT
nBn


(19)

From Equation (19), it can be seen that, with the acceleration method, only one Ai and one Bi
are stored at any moment of the algorithm. Once the 3× 3 subblocks AT

i Ai, AT
i Bi, BT

i Bi are calculated,
the values of Ai and Bi can be updated. Therefore, the memory occupied by Jacobian matrix J reduces
from 2mn× (3n + 3) to 2m× 6. There are 3n subblocks to calculate in total, and the time complexity of
one calculation is 2m× 32. Therefore, the time complexity to calculate JTJ reduces from 2mn× (3n + 3)2

to 3n× 2m× 32. It can be seen that the proposed method above, which utilizes the sparsity of Jacobian
matrix, can accelerate the solving algorithm of Equation (13) significantly.
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3.4. Light Pen Coordinate System Establishement

After solving the equation system in Equation (13), the translation vectors Ti = (tx,i, ty,i, tz,i)
T,

(i = 1, 2, · · · , n) between the control point coordinate systems and camera coordinate system are
obtained. According to the derivation in Equations (8) and (10), the relative positions of the control
points can be determined by the differences of these translation vectors. However, these relative
positions are represented with the coordinates in the camera coordinate system, which vary with the
position of the camera during the calibration process. For convenience, there is a need to establish
the light pen coordinate system Ol − xlylzl according to the structure of the light pen. The light pen
coordinate system can be established in many ways. For the light pen in Figure 1b, the light pen
coordinate system can be established as follows:

1. Determine the origin of Ol − xlylzl. The first control point is used as the origin. Then a new set of

translation vectors T′i = (tx,i
′, ty,i

′, tz,i
′)T, (i = 1, 2, · · · , 13) is calculated:

tx,i
′ = tx,i − tx,1

ty,i
′ = ty,i − ty,1

tz,i
′ = tz,i − tz,1

(i = 1, 2, · · · , 13) (20)

2. Determine the z-axis of Ol − xlylzl. The fifth to 13th control points are designed to be coplanar.
Actually, they are not strictly coplanar because of the machining and installation error. Therefore,
a plane is fitted using their new translation vectors T′i = (tx,i

′, ty,i
′, tz,i

′)T, (i = 5, 6, · · · , 13).
The direction of its unit normal vector, which can be denoted as q, is used as the z-axis
of Ol − xlylzl.

3. Determine the y-axis of Ol − xlylzl. For the same reason, the first to fourth control points are not
strictly collinear. They are projected to the plane fitted before. A line is fitted using the coordinates
of their projections. The unit direction vector of this line is denoted as p. Since the fitted line is in
the plane, p⊥q is satisfied. The direction of p can be used as the y-axis of Ol − xlylzl.

4. Determining the x-axis of Ol − xlylzl. Given the direction of y-axis p and z-axis q, the direction of
x-axis, which is denoted as o, can be determined by the cross product:

o = p× q (21)

5. Determining the relative positions of control points with coordinates in Ol − xlylzl. With the
origin and axes determined, the coordinates of control points in Ol − xlylzl, which can be denoted
as Pi, (i = 1, 2, · · · , 13) can be calculates as follows:

Pi =


oT

pT

qT

T′i , (i = 1, 2, · · · , 13) (22)

4. Experiment

4.1. Actual Control Point Position Calibration Experiment

Figure 4a shows the scene of one actual experiment, and Figure 4b shows how the light pen is
fastened to the measuring arm with the special customized fixture.
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The light pen is made of carbon fiber reinforced materials and manufactured by the use of
a customized mold, which is designed according to the light pen structure shown in Figure 1b.
The control points are infrared LEDs, which are assembled to the light pen by a screw joint. There is also
a small control board on the light pen, which can receive the instruction from the laptop. The luminance
of the LEDs can be adjusted as required. The CMM is Global Silver Classic SR supplied by Hexagon,
Qingdao, Shandong Province, China. Its positioning accuracy is 2.3 µm. The camera is an industrial
camera with 5 million pixels, which is supplied by Ximea, Münster, North Rhine-Westphalia, Germany.
The lens is an industrial lens with 16 mm focal length, which is supplied by Satoo, Saitama, Japan.
The camera is located in front of the CMM at a proper distance, so that the light pen is always
in the view field of the camera during the calibration process. Take the calibration experiment
in Figure 4a for example: the camera is located about 1.5 m in front of the CMM. The movement
ranges in three directions are all 400 mm, which is limited within the movement range of the CMM.
The three-dimensional grid route has m = 20 × 20 × 20 = 8000 nodes and, therefore, the distance
between two adjacent nodes is 20 mm. It takes about 2.5 h to finish the calibration.

In order to eliminate the influence of room ambient light, two approaches are adopted in the
calibration procedure as well as the actual measurement process. First, the control points are infrared
LEDs, and an infrared light filter is installed in front of the camera lens. Then the visible light component
of the room ambient light is filtered out. Second, the frame that is used for image processing is not
a frame directly captured by the camera. It is obtained by calculating the difference between two
adjacent frames, one is the frame that the LEDs are lighted and the other is a frame that only contains
the background. These two approaches will reduce the influence of room ambient light to a large
extent, if the environmental light condition does not change rapidly.

The accuracy of the translational movement of the light pen is guaranteed by the CMM.
Another factor that affects the accuracy of the calibration is the accuracy of the pixel coordinates of the
control points’ images. To achieve high accuracy, an image processing method with sub-pixel accuracy
is required. For the reason that the energy distribution of the infrared LEDs on the imaging sensor is
approximate to a two-dimensional Gaussian distribution, the center of the image point can be obtained
by Gaussian surface fitting from the gray values of the feature area. In practice, the repeatability of the
pixel coordinate is 0.05 pixels.
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With the proposed method, the rotation angles between control point coordinate systems and
camera coordinate system are α = 91.717◦, β = 0.782◦, γ = −1.255◦. The translation vectors
Ti = (tx,i, ty,i, tz,i)

T, (i = 1, 2, · · · , 13) are listed in Table 2.

Table 2. Translation vectors between control point coordinate systems and the camera coordinate
system at the position in Figure 4a (mm).

Control Point Index tx,i ty,i tz,i

1 −31.343 −319.578 1542.853
2 −130.327 −317.944 1544.784
3 −230.340 −316.726 1546.672
4 −410.261 −314.924 1550.004
5 −571.145 −309.694 1452.690
6 −486.863 −266.087 1451.879
7 −402.882 −222.740 1451.028
8 −318.265 −179.508 1450.131
9 −319.429 −234.657 1449.130
10 −322.394 −394.058 1447.287
11 −323.049 −449.060 1446.452
12 −405.913 −402.371 1448.562
13 −488.814 −355.599 1450.688

Using the method in Section 3.4 to establish the light pen coordinate system, the direction of the
three axes are:

o = (−0.01445,−0.9998,−0.01335)T

p = (−0.9997, 0.01421, 0.01883)T

q = (−0.01864, 0.01362,−0.9997)T

Then the control point positions in the light pen coordinate system Pi = (xi, yi, zi)
T,

(i = 1, 2, · · · , 13), which are the final result of this calibration, can be calculated from Equations (20)
and (22). The results are listed in Table 3.

Table 3. Control point positions in the light pen coordinate system (mm).

Control Point Index xi yi zi

1 0.000 0.000 0.000
2 −0.228 99.159 −0.064
3 −0.025 199.053 −0.071
4 0.730 379.013 −0.024
5 −0.874 538.094 100.333
6 −45.681 454.440 100.167
7 −90.222 371.082 100.043
8 −134.657 287.086 99.951
9 −79.488 287.447 100.223

10 79.949 288.113 99.950
11 134.962 287.970 100.048
12 89.451 371.514 100.119
13 43.858 455.096 100.176

To illustrate the repeatability of the proposed calibration method, 10 calibrations are conducted by
locating the camera at different positions. Due to the existence of error, the results of 10 calibrations
are slightly different. Therefore, the light pen coordinate systems established in these calibrations
are also slightly different. It is more reasonable to use the distances of any two control points, rather
than the coordinates in the light pen coordinate system, to measure the repeatability of the proposed
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method. For 13 control points, there are 78 distances to calculate in total. Owing to space constraints,
only seven representative distances are listed in Table 4 to illustrate the repeatability. From Table 4,
it can be concluded the repeatability of calibration with the proposed method is about 10 µm.

Table 4. Repeatability of nine representative distances between two control points. Ave is the
abbreviation of average value. Std is the abbreviation of standard deviation. (mm).

Calibration Index 1–4 1 1–5 5–8 5–11 8–11 1–8 1–11

1 379.014 547.369 284.435 284.629 269.620 332.471 333.393
2 379.022 547.385 284.446 284.611 269.599 332.476 333.425
3 379.012 547.355 284.461 284.603 269.625 332.483 333.420
4 379.030 547.344 284.447 284.622 269.615 332.450 333.409
5 379.005 547.363 284.452 284.631 269.603 332.456 333.396
6 379.024 547.359 284.458 284.615 269.621 332.464 333.433
7 379.019 547.388 284.432 284.623 269.608 332.469 333.401
8 379.008 547.354 284.441 284.618 269.619 332.472 333.422
9 379.027 547.376 284.459 284.607 269.618 332.456 333.411

10 379.016 547.371 284.429 284.614 269.603 332.448 333.430

Ave 379.018 547.366 284.446 284.617 269.613 332.465 333.414
Std 0.00818 0.01408 0.01158 0.00911 0.00909 0.01165 0.01417

Range 0.025 0.044 0.032 0.028 0.026 0.035 0.040
1 The denotation i-j means the distance between the i-th and j-th control points.

4.2. Simulation Experiment

Since the true values of control point positions are unknown, actual calibration experiments can
only reflect the repeatability of the proposed method. As to accuracy, we can only resort to simulation
experiments. The procedure of the simulation experiment is performed as follows: Given a set of
control point positions as the true value, the rigid body transformation between the CMM and the
camera and the readings at each node of the CMM route are also given. Equations (9), (20) and (22) are
used to trace back to obtain the ideal pixel coordinates of the image points. To verify the accuracy of
the proposed method, random errors of different ranges that obey the normal distribution are added to
the readings of the CMM and the ideal image coordinates to simulate the actual situation. With the
disturbed data, calibration calculation is performed to obtain the simulation result. The performance
of the proposed method can be evaluated by comparing the calibration result and the given true value.
In addition to random errors, the influence of the number of nodes on calibration accuracy is also
studied. Figure 5a shows the calibration errors when different ranges of random errors, which obey
the normal distribution, are added to the CMM readings and image coordinates. The deviation
sequences of two random errors adopted in the simulation experiment are [1.0, 2.0, 3.0, 4.0, 5.0] µm
and [0.01, 0.02, 0.05, 0.1, 0.2] pixels, respectively. At the same time, the number of nodes on the CMM
route is fixed at m = 30 × 30 × 30 = 27, 000. Figure 5b shows the calibration errors with different
numbers of nodes on the CMM route, when the deviation standards of two random errors are fixed at
0.1 pixel and 4 µm, respectively. The sequence of node numbers is [1000, 8000, 27000, 64000, 125000].
The movement ranges in three directions are all fixed at 400 mm and, therefore, the distance sequence
of two adjacent nodes is [40, 20, 13.333, 10, 8] mm.

From Figure 6a, it can be seen that the simulated calibration error is approximately proportional to
the deviation of the random error added to the CMM readings and image coordinates. From Figure 6b,
it can be seen that when the number of nodes is small, the calibration error decreases significantly
with the increase of the node number. However, when the node number exceeds a certain number,
the calibration error is almost unchanged. Under this circumstance, the increase in the number of
nodes takes a great deal of time, but provides little benefit to the calibration.
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4.3. Measurement Experiment of LPCMS

With the calibration results in Table 3, LPCMS is used to measure three standard gauges and
a standard cylindrical bore on a standard module, which are shown in Figure 6, 10 times at distances
from 2 to 10 m. The nominal lengths of the gauges are 100 mm, 250 mm, and 1000 mm, respectively,
and the nominal diameter of the cylindrical bore is 2.5 inches, i.e., 63.5 mm. What needs to be explained
here is that, once the relative positions of the control points are determined, the light pen can translate
and rotate arbitrarily as long as it can be seen in the view of field of the camera. The light pen is held
by hand during the measuring process and, therefore, not only translation but also rotation inevitably
occurs in the measurement. For each measured point, the current posture of the light pen is calculated
by solving the PnP problem. Owing to space constraints, only the statistical results are shown in Table 5.
From the results in Table 5, it can be concluded that the standard deviation of the measurement of the
whole LPCMS can achieve 30 µm within 10 m.
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cylindrical bore.

To compare the performance of the existing and proposed calibration methods quantitatively,
three different groups of control point positions, which are calibrated with the methods in [10,11] and
the proposed method in this paper, respectively, are used in the LPCMS to measure the 250 mm gauge
at different distances from 2 to 10 m. The statistical results are shown in Table 6. From Table 6, it can be
seen that the proposed method is superior to existing methods in terms of accuracy.
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Table 5. The results of measurement experiment of LPCMS. The meanings of the abbreviations Ave
and Std are the same as in Table 4 (mm).

Distance
100 Gauge 250 Gauge 1000 Gauge Cylinder

Ave Std Ave Std Ave Std Ave Std

2 m 99.994 0.0025 250.009 0.0028 999.982 0.0062 63.502 0.0022
4 m 100.002 0.0037 250.014 0.0049 999.994 0.0133 63.507 0.0027
6 m 100.006 0.0048 249.983 0.0072 1000.015 0.0187 63.513 0.0042
8 m 99.988 0.0056 250.003 0.0123 999.989 0.0227 63.505 0.0053

10 m 99.992 0.0071 250.007 0.0158 999.979 0.0315 63.519 0.0085

Table 6. Measurement results of 250 mm gauge with different calibration results. The meanings of the
abbreviations Ave and Std are the same as in Table 4 (mm).

Distance
Method in [10] Method in [11] Proposed Method

Ave Std Ave Std Ave Std

2 m 250.033 0.0258 250.019 0.0121 250.009 0.0028
4 m 249.976 0.0376 250.033 0.0213 250.014 0.0049
6 m 249.982 0.0627 249.975 0.0381 249.983 0.0072
8 m 250.041 0.1032 250.029 0.0419 250.003 0.0123

10 m 249.963 0.1523 250.038 0.0688 250.007 0.0158

5. Conclusions

In this paper, a high-accuracy CMM-based method of control point position calibration for LPCMS
is proposed. A traditional CMM is used to drive the light pen to move along a three dimensional grid
route. Through establishing a coordinate system for each control point in a certain way, the relative
positions of control points can be transformed to the differences of the translation vectors between
control point coordinate systems and camera coordinate system. A nonlinear least squares problem
is established to solve these translation vectors. Since the number of variables is only relative to the
number of control points, there can be tens of thousands of nodes on the CMM route so that the
influence of random error is significantly reduced. The positional accuracy of each node is guaranteed
by the CMM, so the CMM can be seen as the calibration basis of the proposed method. Since the
nonlinear least squares problem above is quite sparse, a method to accelerate the algorithm is also
proposed, which makes it possible to handle the vast number of nodes.

Although the proposed method is a vision-based method, the calibration accuracy is more
dependent on the accuracy of the CMM. Therefore, compared with existing vision-based methods,
the proposed method is more accurate. The establishment of control point coordinate systems and
the acceleration method of the algorithm guarantees the speed and stability of the solving process.
Experiments show that, with the proposed calibration method, the whole LPCMS can reach a rather
high accuracy.
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