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Abstract: In recent years, different techniques to address the problem of observability in traffic
networks have been proposed in multiple research projects, being the technique based on the
installation of automatic vehicle identification sensors (AVI), one of the most successful in terms of
theoretical results, but complex in terms of its practical application to real studies. Indeed, a very
limited number of studies consider the possibility of installing a series of non-definitive plate scanning
sensors in the elements of a network, which allow technicians to obtain a better conclusions when
they deal with traffic network analysis such as urbans mobility plans that involve the estimation of
traffic flows for different scenarios. With these antecedents, the contributions of this paper are (1) an
architecture to deploy low-cost sensors network able to be temporarily installed on the city streets as
an alternative of rubber hoses commonly used in the elaboration of urban mobility plans; (2) a design
of the low-cost, low energy sensor itself, and (3) a sensor location model able to establish the best set
of links of a network given both the study objectives and of the sensor needs of installation. A case of
study with the installation of as set of proposed devices is presented, to demonstrate its viability.

Keywords: plate scanning; low-cost sensor; sensor location problem; traffic flow estimation

1. Introduction

1.1. The Purpose and Significance of This Paper

The monitoring of traffic in urban networks, whatever their complexity, is a problem that has
been tackled for decades. The aim of this monitoring depends on the case and can involve managing
the daily traffic flow to perform urban mobility plans. Regarding the techniques and tools to identify
and quantify the vehicles on the network, traditional manual recording has been displaced by more
sophisticated techniques due to their economy, and also to collect the traffic information with enough
performance and quality. Basically, the emerging techniques consist of a sensor or device able to collect
a type of information through its interaction with a vehicle or the infrastructure. Therefore, the sensors
used for traffic analysis can be classified in different categories according to their physical characteristics,
type of collected information, and position with respect to the network among others. In particular, [1]
differs between in-vehicle and in-road sensors. The first are those that allow increasing the performance
of the driving and the connectivity of the vehicles with their environment. In this, the concepts of
communication between vehicle and the vehicular sensing networks (VSN) are called to be important
in the improvement of the quality and operability of transportation systems (see [2,3]). The second
are those installed in the transportation network and allows the monitoring of the performance of the
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system and, according to the extracted information, diagnose the problems, improve the resilient and
operational functioning, and inform the users helping them to make better choices. In this paper we
mainly focus in this last. Based on the works of [4,5], in-road sensors for traffic network analysis are
classified in two main groups according to the characteristics of the data collected (see Figure 1):

Type of Sensor

| Sensor for punctual data | | Sensor for section data |

Fixed

b) d) f) h) )]

Figure 1. Classification and examples of sensors according to the characteristics of the collected data,
their interaction with the vehicle and position on the road: (a) Inductive loop detector; (b) Microwave
radar; (c) Rubber hoses detector; (d) Hand electronic counter; (e) and (i) Automatic Number Plate
Recognition (ANPR) fixed sensors; (f) Bluetooth sniffer; (g) Police ANPR sensor on vehicle; (h) Police
ANPR portable sensor; (j) Bluetooth scanning sensor.

e Sensors for punctual data collect traffic information at a single point of the road, and can be
designed to obtain information for each single vehicle (e.g., vehicle presence, speed, or type), or for
the vehicles in a defined time interval (e.g., vehicles count, average speed, vehicles occupancy,
etc.). In addition, these sensors can be

O “Passive sensors” do not require any active information provided from a vehicle, i.e.,
they collect the information when a vehicle is passing in front of the sensor. In particular:

" “Passive fixed sensors” have a fixed position on the network. This group includes
inductive loop detectors, magnetic detectors, pressure detectors, piezoelectric
sensors, microwave radars, among others. These sensors are used to manage the
traffic and can also be used to elaborate traffic mobility plans using only the already
installed fixed sensors if the available budget is limited.

" “Passive portable sensors” have a fixed position on the network, but they are
installed for a defined-short period of time. This group includes counters made
with rubber hoses or manual counters that are used for example to elaborate traffic
mobility plans completing the information provided by fixed sensors.

O “Active sensors” require active information from the vehicle to be univocally identified.

In fact, these sensors can be included under the term “automatic vehicle identification”

(AVI). As well as the passive sensors they can be fixed or portable:
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. “Active fixed sensors” have a fixed position on the network. This group includes
automatic number plate recognition (ANPR) sensors, Bluetooth sniffer of bar-coded
tags. Despite these sensors being designed for other purposes far from the traffic
network analysis, recent researches have begun to use the data collected by these
sensors to estimate traffic flows.

“Active portable sensors” have to be designed to be installed for a very short period
of time to take info from vehicles. As far as we know this kind of sensor has a very
limited use for traffic management and more for Police controls, such as ANPR
sensors, both those that are temporarily installed on the road and those installed on
vehicles (although this latter could be also considered as in-vehicle sensors).

e  “Sensors for section data” are those that collect information in different sections on the network
providing the number of vehicles traveling from different points in the network, travel times
between these points, entrances and exits between reidentification devices, etc. This group
includes mainly sensors for license plate recognition, but other approaches that allow vehicle
re-identification to match measurements at two (or more) data collection sites that belong to the
same vehicle. In general, all these sensors are installed fixed in the network.

The data collected by the sensors can be used for multiple purposes but, since this paper is focused
on the topic of traffic flow estimation, only those used as inputs for these models are going to be
analyzed. These sensors have to satisfy two objectives: accuracy and coverage [6] and, due to their
ease installation and capability of data collection, passive sensors (e.g., fixed loop detectors or portable
rubber hoses) have been widely used in mobility studies in large urban areas.

As exposed above, sensors as rubber hoses count the number of vehicles that pass over it, obtaining
the needed traffic counts used by traditional methods to estimate origin—destination (O-D), route
and link flows on a network. The quality of the results of this estimate may be enough for some
cases, but when the technicians or the authorities look for a better degree of observability (or even
full observability) of traffic flows to achieve a high quality of estimation, the traffic count data has
been proved to be not sufficient. For this, it is expected that these sensors are going to be gradually
replaced by new active sensors (as ANPR) that, taking advantage of the available technology and
the added value provided by the data, allows the development of models to better estimate the
non-observed flows.

1.2. State of the Art of Sensors for ANPR

The automatic number plate recognition (ANPR) system is based on image processing techniques
to identify vehicles by their number plates, mainly in real time (for automatic control of traffic rules).
In [7] or also in [8] a review is made regarding the most significant research work conducted in this
area in recent years.

The general process of automatic number plate recognition can be summarized in several
well-defined steps [9,10]. Each step involves a different set of algorithms and/or considerations:

1.  Vehicle image capture: This step has a critical impact on the subsequent steps since the final result
is highly dependent on the quality of the captured images. The task of correctly capturing images
of moving vehicles in real time is complex and subject to many variables of the environment,
such as lighting, vehicle speed, and angle of capture.

2. Number plate detection: This step focuses on the detection of the area in which a number plate
is expected to be located. Images are stored in digital computers as matrices, each number
representing the light intensity of an individual pixel. Different techniques and algorithms give
different definitions of a number plate. For example, in the case of edge detection algorithms,
the definition could be that a number plate is a “rectangular area with an increased density of
vertical and horizontal edges”. This high occurrence of edges is normally caused by the border
plates, as well as the limits between the characters and the background of the plate.
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3.  Character segmentation: Once the plate region has been detected, it is necessary to divide it
into pieces, each one containing a different character. This is, along with the plate detection
phase, one of the most important steps of ANPR, as all subsequent phases depend on it. Another
similarity with the plate detection process is that there is a wide range of techniques available,
ranging from the analysis of the horizontal projection of a plate, to more sophisticated approaches
such as the use of neural networks.

4. Character recognition: The last step in the ANPR process consists in recognizing each of the
characters that have been previously segmented. In other words, the goal of this step consists in
identifying and converting image text into editable text. A number of techniques, such as artificial
neural networks, template matching or optical character recognition, are commonly employed
to address this challenge. Since character recognition takes place after character segmentation,
the recognizer system should deal with ambiguous, noisy or distorted characters obtained from
the previous step.

Once the data is collected by the sensors, it has to be properly processed to be used for a great
amount of traffic analysis. In particular, focusing on the scope of traffic flow analysis, the data allows to

e  Develop models where the observable flows are directly related with the routes followed by the
vehicles [11-13]. Since both link flows and O-D flows can be directly derived from route flows,
these models are a powerful tool for traffic flow estimation.

e  Extract a great amount of information compared with traffic counts which in turn permits
developing a model with more flow equations for the same number of variables [14].

e  Obtain the full observability of the traffic flows if the budget is sufficient to buy the needed number
of sensors [15,16].

e  Being combined with other sources of data to improve the results [17].

e  Measure other variables as travel times in traffic networks if the location of sensors is adequate [4,18].

An extra step to complement the aforementioned steps is the error recovery that may occur
when recognizing plate numbers. This problem is a very important issue to deal with when plate
scanning data is used for traffic flow estimation, which some authors have been faced using different
approaches [16,19,20].

However, the increasing development of these ANPR systems faces some problems such as: they
are fixed sensors and they incur a high cost in terms of hardware [21] (about $20,000 per camera)
and installation and maintenance (about $4000 per camera). This makes necessary to develop new
architectural approaches that allow these types of services to be deployed on a larger scale to face
transportation problems such as urban mobility plans. It is worth noting the survey collected in [22],
which analyzes the sensors to monitor traffic from the point of view of various criteria, including
cost. In this study;, it is highlighted that the new sensors tend to be of reduced dimensions, of low
energy consumption and that, with a certain number of them, it is possible to design and configure
a sophisticated wireless sensor network (WSN) that can cover multiple observations in a certain
region [23,24].

Regarding existing software libraries and tools focused on automatic plate recognition,
“OpenALPR” (2.5.103) [25] stands out. This open source library, written in C++, is able to analyze
images and video streams to automatically identify license plates. The generated output is a text
representation that comprises the set of characters associated with each one of the identified plate
numbers. The hardware required to run OpenALPR depends on the number of frames per second that
the system must handle. From a general point of view, a resolution of 5-10 fps is required for low-speed
contexts (under 40 km/h), 10-15 fps for medium speed contexts (40-72.5 km/h), and 15-30 fps for high
speed contexts (over 72.5 mph). The library requires significant computing power, with the use of
several multi-core processors at 3 GHz to process images at 480 p in low-speed contexts. From the
point of view of the success rate, OpenALPR represents the software library with the best results on
the market (more than 99% success in a first estimation [26]).
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“Plate Recognizer” (1.3.8) [27] offers cloud-based license plate recognition services for projects
with special needs such as diffuse, low-light, or low-resolution imaging. The cloud processing pricing
plan offers different configurations per processing volume. There are also other specific purpose
platforms for automatic license plate identification in the market, such as “SD-Toolkit” (1.2.50) [28],
“Anyline” (24) [29], or the framework “Eocortex” (3.1.39) [30].

In recent years, conventional ANPR systems are strengthening their services through the use of
Al techniques [31]. “Intelli-Vision” (San Jose, CA, USA) [32], the company that offers intelligent image
analysis services using Al and deep learning techniques, has specific license plate recognition services
that can be integrated, via an existing SDK, in Intel processors or provided as a web service in the
cloud. The Canadian company “Genetec” (Montreal, Quebec, Canada) [33] announced, at the end of
2019 an ANPR camera that includes an Intel chip designed to feed neural networks improving the
identification of license plates at high speed or in bad weather conditions.

Finally, it is very important to keep in mind if the ANPR systems can respect the users’ privacy
rights in the entire process in which the vehicle data is collected according to the different locations all
along the network [34]. All this means that, when designing a type of sensor that can be implemented
in an architecture that serves to monitor the traffic network, the cost criteria for manufacturing and
installation, operability and resilience, and information processing must been taken into account.

1.3. Contributions of This Paper

It is being seen how the sensors based on the capture of vehicle images constitute an efficient traffic
monitoring system for its features. However, there is still a challenge in terms of manufacturing and
installation costs, since well-designed equipment and materials are required in terms of performance
and functionality to face different network conditions [19,34]. This is a very important challenge
because the large number of papers published by researchers in recent years (see [35] or [4] for a good
review), stated that in order to achieve good traffic flow estimation results, a large number of sensors
has to be installed. Even when trying to minimize this number the model developed in [36] proposed
to install 200 ID-sensors to obtain the full observability of a real size city with 2526 links. Depending
on the case of study, this can be an unaffordable cost. In addition, the sensor location models have to
be designed to take into account the particular characteristics of installation of the type of sensor to
be used.

Therefore, all the context exposed in this section motivates the preparation of this original paper,
whose main contributions are as follows:

e A novel architecture to deploy low-cost sensor networks able to automatically recognize plate
numbers, which can be temporarily installed on city streets as an alternative to rubber hoses
commonly used in the elaboration of urban mobility plans.

e A design of a low-cost, low-energy sensor composed of a number of hardware components
that provides flexibility to conduct urban mobility experiments and minimize the impact on
maintenance, installation, and operability.

e A methodology to locate the sensors able to establish the best set of links of a network given both
the study objectives and of the sensor needs of installation. This model integrates the estimation
of traffic flows from the data obtained by the proposed sensors and also establishes the best set of
links to locate them taking into account the special characteristics of its installation. Furthermore,
using the proposed methodology, we have proved that the expected quality of the traffic flow
estimation results are very similar if the sensor can be located in any link compared with avoiding
links with certain problems to install the sensor.

The rest of the paper is organized as follows: in Section 2, the proposed low-cost sensor and its
associated system for traffic networks analysis are deeply described. In Section 3 the proposed system
is applied in a pilot project in Ciudad Real (Spain). Finally, some conclusions are provided in Section 4.
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2. The Proposed Low-Cost ANPR System for Traffic Networks Analysis

This section deals with the description of the proposed system which is composed of three
elements: (1) the proposed architecture to deploy the sensor networks, (2) the devised low-cost sensor
prototype, and (3) the adopted method to decide the best set of links where the sensors have to
be installed.

2.1. Architecture to Deploy Low-Cost Sensor Networks

2.1.1. General Overview

Figure 2 shows the multi-layer architecture designed to deploy low-cost sensor networks for
automatic license plate detection. The use of a multi-layer approach ensures the scalability of the
architecture, as it is possible to carry out modifications in each of the layers without affecting the rest.
In particular, the architecture is composed of three layers:

1.  The perceptual layer, which integrates the self-contained sensors responsible for image capture.
Each of these sensors integrates a low-power processing device and a set of low-cost devices that
carry out the image capture. The used camera enables different configurations depending on the
characteristics of the urban environment in which the traffic analysis is conducted.

2. The smart management layer, which provides the necessary functionality for the definition and
execution of traffic analysis experiments. This layer integrates the functional modules responsible
for the configuration of experiments, the automatic detection of license plates, from the images
provided by the sensors of the perceptual layer, and the permanent storage of information in the
system database.

3. The online monitoring layer, which allows the visualization, through a web browser, of the
evolution of an experiment as it is carried out. Thanks to this layer, it is possible to query
the state of the different sensors of the perceptual layer, through interactions via the smart
management layer.

[ Real-Time Monitoring Layer ]
4 Smart Management Layer N
Experiment Definition Processing Database Management

Module Module & Storage Module
\ 4
IS N

Perceptual Layer

Sensor 1 Sensor 2 J Sensor N

([Cameraj (o ) (eworkng ) | | ((camera) (s ) (et ) | | (camere ) (o ) (meoworn )
" %

Figure 2. Multi-layer architecture for the deployment of low-cost sensor networks for automatic license
plate recognition.

2.1.2. Perceptual Layer

The perceptual layer is the lowest-level layer of the proposed architecture. It contains the set of
basic low-cost processing sensors that will be deployed in the physical environment to perform the
image capture. In this layer, these sensors are not aware of the existence of the rest of the sensors.
In other words, each sensor is independent of the others and its responsibility is limited to taking
pictures at a certain physical point, sending them to the upper-level layer, and, periodically, notifying
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they are working properly. Since the sensor design represents a major component of the proposed
architecture, a detailed description of its main characteristics is done in Section 2.2.

2.1.3. Smart Management Layer

The smart management layer provides the functionality needed to (i) facilitate the deployment of
low-cost sensor networks and the execution of experiments, (ii) process the images captured by the
perceptual layer sensors, performing automatic license plate detection, and (iii) persistently store all
the information associated with an experiment for further forensic analysis.

This layer of the architecture follows a Platform-as-a-Service (PaaS) model, i.e., using the
infrastructure deployed in the cloud, which provides the computational needs of the traffic analysis
system. This approach makes it possible to offer a scalable solution that responds to the demands of
the automatic license plate detection system, avoiding the complexity that would be introduced by
deploying our own servers to provide functional support.

Particularly, “Google App Engine” [37] has been used as a functional support for the system’s
server, using the Python language to develop the different components of the system and the Flask
web application framework to handle web requests. The information retrieval with respect to the
sensors of the perceptual layer is materialized through web requests, so that these can ask for the initial
configuration of a sensor, or send information, as the so-called “control packages”, as the state of a
traffic analysis experiment evolves.

In this context, the control package concept stands out as the basic unit of information to be
handled by the smart management layer. The control package is composed of the following fields:

e  (lient ID. Unique ID of the sensor that sends the packet within the sensor network.

e  Timestamp. Temporal mark associated with the time when the sensor captured the image.

e Latency. Latency regarding the previously sent control packet. Its value is 0.0 for the first
control packet.

e  Plates. List of candidate plate numbers, together with their respective confidence values, detected
in the image captured by the sensor.

e Image. Binary serialization of the image captured by the sensor.

There are three different modules in this layer, which are detailed next:

1.  Experiment definition module: This module is responsible for managing high-level information
linked to a traffic analysis experiment. This information includes the start/end times of the
experiment and the configuration of the parameters that guide the operation of the perceptual
layer sensors. This configuration is retrieved by each of these sensors through a web request
when they start their activity, so that it is possible to adjust it without modifying the status of the
sensors each time it is necessary.

2. Processing module: This module provides the functionality needed to effectively perform
automatic license plate detection. Thus, the input of this module is a set of images, in which
vehicles can potentially appear, and the output is the set of detected plates, together with the
degree of confidence associated with those detections. In the current version of the system,
the commercial, web version OpenALPR library is used [26]. This module is responsible for
attending the image analysis requests made by the sensors of the perceptual layer. Both the
images themselves and the license plate detections associated with them are reported to the
database management and storage module.

3.  Database management and storage module: This module allows the permanent storage of all the
information associated with a traffic analysis and automatic license plate detection experiment.
At a functional level, this module offers a forensic analysis service of all the information generated
as a result of the execution of an experiment.
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It is important to note that the processing module offers two modes of operation: (i) online and
(ii) offline. In the online mode, the processing module carries out an online analysis of the images
obtained from the perceptual layer, parallelizing the requests received by them to provide results in an
adequate time. In contrast, the offline mode of operation is designed to analyze large sets of images
associated with the past execution of a traffic analysis experiment.

2.1.4. Online Monitoring Layer

The general objective of this layer is to facilitate the monitoring, in real time, of the evolution of a
traffic analysis experiment. In order to facilitate the use of the system and avoid the installation of
software by the user, the interaction through this layer is made by means of a web browser. From a
high level point of view, the online monitoring layer offers the following functionality:

e Overview of the system status: Through a grid view, the user can visualize a subset of sensors in
real time. This view is designed to provide a high level visual perspective of the sensors deployed
in a traffic analysis experiment. It is possible to configure the number of components of the grid.

e  Analysis of the state of a sensor: This view makes it possible to know the status, in real time,
of one of the previously deployed sensors (see Figure 3). In addition to visualizing the last
image captured by the sensor, it is possible to obtain global statistics of the obtained data and the
generated information if an online analysis is performed.

In both cases, the information represented in this layer, through a web browser, is obtained by making
queries to the layer of the immediately lower level, that is, the smart management layer. The latter,
in turn, will obtain the information from the perceptual layer, where the sensors deployed in the
physical scenario are located.

Date: 2018-09-10T08:12:49.876043

Candidates:
5JNP 95.0

2737.606ms
Figure 3. Visualization obtained from one of the sensors. (To protect personal data, the first three digits
of the license plate have been blurred.)

2.1.5. Systematic Requirements

This subsection presents a well-defined set of systematic requirements provided by the devised
architecture, considering the practical deployment of low-cost sensor networks for ANPR. These
requirements are as follows:
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e  Scalability, defined as the architectural capacity and mechanisms provided to integrate
new components.

e  Availability, defined as the system robustness, the detection of failures, and the consequences
generated as a result of these failures.

e  Evolvability, defined as the system response when making software or hardware modifications.

e Integration, defined as the capacity of the architecture to integrate new devices.

e  Security, defined as the ability to provide mechanisms devised to deal with inadequate or
unauthorized uses of the deployed sensor networks.

e Manageability, defined as the capacity to interact between the personnel responsible to conduct
the experiments and the software system.

Regarding scalability, the architecture proposed in this work provides support (i) when new
low-cost sensors need to be integrated and (ii) when new physical locations need to be monitored.
The integration of new sensors is carried out in the perceptual layer. Thus, this systematic requirement
is guaranteed thanks to the existing independence between sensors. As mentioned before, each sensor
is responsible for a single physical point. Similarly, when a new physical location needs to be added,
then it is only necessary to deploy a new sensor which, in turn, will send information to the upper-level
layer and will notify whether it is working properly. This is why integration is also guaranteed in
terms of adding new devices when they are required. In other words, this requirement is strongly
related to scalability of the devised architecture.

The systematic requirement named availability has been achieved thanks to the adopted
cloud-based approach, since it is easy to incorporate multiple layers of license plate analysis so
that processing errors are identified. Although the currently deployed system only uses OpenALPR,
the architecture easily allows the incorporation of other license plate identification platforms that
minimize potential errors. On the other hand, all processing sensors run the same software on the same
hardware. Replacing a sensor implies changing its identifier and the server address that are specified
in the configuration file stored in the memory stick. In other words, replacing a faulty sensor is a
simple and straightforward task. This decision is related to the systematic requirement evolvability.

With respect to security, multiple methods have been considered to protect the information
exchanged between the different components of the architecture, ensuring its integrity. Particularly,
the extension hypertext transfer protocol secure (HTTPS) has been used to guarantee a secure
communication so that the information is encrypted using secure sockets layer (SSL). Finally, regarding
manageability, the devised architecture aims at facilitating the deployment process of sensor networks.
In fact, there is a component, named experiment module definition, which has been specifically
designed to address this systematic requirement. As previously stated in Section 2.1.3, it is possible to
set up experiments and adjust the configuration of the sensors in a centralized way, without having to
individually modify the internal parameters of every single sensor.

2.2. Low Cost Sensor Prototype Description

2.2.1. Production Cost

From a hardware point of view, each low-cost sensor (€62.27) is composed of the following
components (see Figure 4):

e  Raspberry Pi Zero W: €11.97

e  Raspberry Pi Camera Module V2.1: €23.63

e  Power bank PowerAdd Slim2 5000 mAh: €8.29
e 3D plastic box (PLA): €1.18

e  MicroSD card U1l 16 GB: €6.49

e  Memory stick 128 MB: €1.97

e Tripod: €10.74
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Raspberry Pi is a low-cost single board computer running open source software. The multiple
versions of the board employ a Broadcom processor (ARM architecture) and a specific camera connector.
Thanks to the use of this hardware, the versions of the Raspberry Pi OS (formerly called “Raspbian”),
derived from the GNU/Linux distribution Debian, can be used. Thus, the development in a number of
general-purpose programming languages is possible.

For the development of the sensor previously introduced, the version of the board called Pi Zero
W has been used, which incorporates the Broadcom BCM2835 microprocessor. This has a single-core
processor running at 1 GHz, 512 MB of RAM, a VidoCore IV graphics card, and a MicroSD card as a
storage device. Based on the Pi Zero model, this version offers Wi-Fi connectivity, which allows online
monitoring. In the conducted tests, the connectivity with the cloud has been done by using 3G/4G
connection sensors, using the existing institutional Wi-Fi network of the University of Castilla-La
Mancha whenever possible.

Figure 4. Prototype of the designed sensor.

The 8 megapixel Raspberry Pi Camera V2.1 features Sony’s IMX219RQ image sensor with
high sensitivity to harsh outdoor lighting conditions, with fixed pattern noise and smear reduction.
The connection is made using the camera’s serial interface port directly to the CSI-2 bus via a 15-pin
flat cable. The camera automatically performs black level, white balance, and band filter calibrations,
as well as automatic luminance detection (for changing conditions) of 50 Hz in hardware. In the
configuration of each sensor, the resolution with which each photograph is taken can be specified,
up to the maximum of 3280 x 2464 pixels.

The used Lithium battery holds a capacity of 5000 mAh, with an output of 5 V/2.1 A and a very
small size and weight (100 x 33 x 31 mm, 195 g).

The installed operating system is based on Debian Buster, with kernel version 4.19. The installation
image has a size of 432 MB which, once installed on the system partition, uses 1.7 GB. The current
version of the prototype uses a UHS Speed Class 1(U1) microSD card, with a write speed of 10 MB/s
required to record high-definition pictures in short intervals. Each 8 MP photograph may require
around 4 MB in jpg format if stored at full resolution (depending on the scene complexity and
lighting conditions).

In the conducted tests, each sensor made the captures with a resolution of 1024 x 720 pixels.
Each image occupied an average of 412 KB, size that was reduced to 151 KB after the optimization
process with capture sub-regions. The capture frequency was established to 1 image per second.
This requires a disk storage of 1.4 GB for every hour of capture without optimization. Thus, with more
than 14 GB available on the SD card for data, it is possible to store more than 8 h of images without
optimization, and more than 24 h by defining capture sub-regions.
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The 128 MB Flash Drive is used to store the processing sensor configuration parameters, such as
the unique identifier of the processing sensor, the address of the web server associated with the
intelligent experiment management layer, and the network configuration.

For the integration of all hardware components of the system, a basic prototype has been made
using 3D printing, with a size of 103 X 78 x 35 mm, and a unit cost of 1.18 (59 g of PLA of 1.75 mm).

The cost of the designed sensor is similar to some of the low-cost sensors discussed in [22].
However, the offered functionality can be compared to commercial systems with a significantly greater
cost. Plus, the devised architecture enhances the global functionality of the sensor networks deployed
from the architecture, and this is a major improvement regarding existing work in the literature.

2.2.2. Energy Cost

The energy cost of the system depends mainly on the use of the processor. In the deployed
system, the most expensive computational stage is done in the cloud, so three working states can be
defined in the sensors: the “idle” mode, in which the sensor is waiting for work orders, the “capture”
mode, in which de sensor accesses the camera and saves the image in the local storage, and the
“networking” mode, which optimizes the image with the defined sub-regions and sends them to the
smart management layer.

Table 1 summarizes the power consumption between different versions of Raspberry Pi (all fice
versions). The ZeroW version was chosen because it provides wireless connectivity (not available
on Zero), and because of the very low power consumption it requires (0.6 Wh in idle mode, 1 Wh
in capture mode, and 1.19 Wh in networking mode). In this way, a small 10 W solar panel could be
enough to provide the energy required by the sensor.

7

Table 1. Power consumption comparison in mAh of different versions of Raspberry Pi.

Zero ZeroW A B Pi2B Pi3B

Idle 100 120 140 360 230 230
Capture 140 200 260 420 290 290
Networking - 230 320 480 350 350

2.2.3. Maintenance, Installation, and Operability

The use of a general purpose processor, such as the Broadcom BCM2835, facilitates rapid
prototyping, as well as the integration of existing software modules. In particular, the integration of
the functionality offered to the smart management layer is done in a straightforward way thanks to
this approach.

On the other hand, the impact of maintenance costs and the addition of new functionality
is minimized by using a cloud-based approach where each sensor is configured through specific
parameters. A unique identifier and server address are specified for each sensor. From the server,
the sensor receives a JSON message with the parameters to be used in each analysis experiment.
By using this configuration package per sensor, it is possible to adjust the specific capture configuration
of each sensor in the network, based on its position, weather conditions, or lighting level at each time
of day. For example, a sensor that may be better positioned to identify license plates will be able to
take lower resolution captures (saving processing costs) than a sensor that is located further away from
the traffic. Even the same sensor may need to make higher resolution captures in adverse weather
situations, such as rain or fog.

The JSON message has the same format:

“begTime”: “2020-06-10T09:00:00”,
“endTime”: “2020-06-10T11:00:00”,
“resolution”: “1024x720”,
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v,

“mode”: “manual”,
“exposure_time”: 1000,
“freq_capture”: 1000,
“iso”: 320,
“rectangle_pl”: [

280,

262

“rectangle_p2”: [
1024,
574

The fields begTime and endTime indicate the date and time of the start and the end of the
capture session. Resolution indicates the capture resolution of the sensor with values supported by
the hardware up to a maximum of 3280 x 2464 pixels. If the field mode is set to manual, it is possible
to indicate the shutter speed or exposure time, which defines the amount of light that enters the
camera sensor. The parameter exposure_time defines the fraction of a second (in the form 1/exposure
seconds) that the light is allowed to pass through. The field freq_capture indicates the number of
milliseconds that will pass between each capture. The field iso defines the sensitivity of the sensor to
light (low values for captures with good light level). Finally, the fields that begin with the keyword
rectangle allow us to define capture sub-regions within an image. The upper left and lower right
corners define the valid capture rectangle within the image. The rest of the pixels are removed from
the image, facilitating the transmission of the image through the network and avoiding storage and
processing costs in regions where plate numbers will never appear (see Figure 5).

Sensor 1 Sensor 6 Sensor 13
Resolution: 1024x720 Resolution: 1024x720 Resolution: 1024x720

Filesize: 429KB Filesize: 531KB Filesize: 384KB

L+

Rectangle: [126,315], [1024,720] Rectangle: [280,262], [1024,574] Rectangle: [147,330], [1024,609]
Filesize: 235KB Filesize: 161KB Filesize: 144KB

Figure 5. Example of definition of clipping parameters in capture sub-regions in three sensors of the
deployed system, with comparative analysis of storage size for each frame. (To protect personal data,
the first three digits of the license plate have been blurred).

The use of parameters that are used to define sub-regions in the captured images, their size can be
drastically reduced. Any 3G connection is more than enough to cover the bandwidth requirements of
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each processing sensor, without any loss of image quality. Even under more adverse transmission
conditions (such as Enhanced Data rates for GSM Evolution (EDGE) or General Packet Radio Service
(GPRS) coverage with maximum speeds between 114 and 384 Kbps), the frame could be stored using a
higher level of JPG compression without significant loss of image quality (up to a level of 65 would be
acceptable), and therefore without putting at risk the identification of the license plate (see Figure 6).

Compression Level: 95 Compression Level: 65 Compression Level: 30
Filesize: 144KB Filesize: 35KB Filesize: 23KB

Detail: Detail: Detail:

Figure 6. Different compression levels of the JPG standard. With values below 60, with significant loss
of high frequency information, the image quality significantly compromises the success rate of the
license plate detection algorithms. (To protect personal data, the first three digits of the license plate
have been blurred).

2.2.4. Information Processing

The proposed architecture, and particularly the smart management layer that was previously discussed,
improves the processing costs, offering results that can be in real time or with programmed offline execution.
In this way, the use of the platform as a whole can even be shared between different sets of sensors, avoiding
the unnecessary complexity of local management at the level of each sensor or group of sensors.

From the point of view of information processing, it is possible to minimize the information traffic
between the image analysis system (in the cloud) and the processing sensors. As a way of example, Figure 7
shows how the sensors can make fewer requests by encoding multiple captures into one single image.

1 view: frontal 2 view: frontal 3 view: frontal 4 view: frontal
category: CAR (score: 0.9) category: CAR (score: 0.9) category: CAR (score: 0.9) category: CAR (score: 0.9)
make: Renault (score: 0.99) make: BMW (score: 0.99) make: VW (score: 0.99) make: VW (score: 0.99)
model: Kangoo (score: 0.99) model: 3 (score: 0.99) model: Tiguan (score: 0.99) model: Tiguan (score: 0.99)
generation: Mk | (2003) (0.99) generation: E46 (2001) (0.99) generation: (2011) (score: 0.99) generation: (2011) (score: 0.99)
color: WHITE (score: 0.99) color: BLACK (score: 0.49) color: RED (score: 0.97) color: WHITE (score: 0.99)
LP(E): 3CVK (score: 0.68) LP(E): 5DYN (score: 0.95) LP(E): 7JBK (score: 0.92) LP(E): 7JBK (score: 0.64)

Figure 7. Detection of vehicles in a 3 X 3 image matrix, which allows, by means of a single sending to the
cloud, to summarize 9 s of traffic analysis of a given sensor. The system detects both the number plate
and certain characteristics of the vehicle, assigning a confidence value to each detection. (To protect
personal data, the first three digits of the license plate have been blurred).
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2.3. Methodology to Locate ANPR Sensors in a Traffic Network

Having described the sensors to be located and its operating system, the next step is to determine
their best locations on the network. To do this, given (1) a reference demand and traffic flow conditions;
(2) a traffic network, defined by a graph (N,A), where N is the set of nodes and A is the set of links;
and (3) the budget of the project (i.e., a number of available sensors), the next aim is to obtain the
locations that allow obtaining the best possible traffic flow estimation. Depending on the number of
sensors to be located, we can achieve total or partial observability of the network according to the
flow conditions and the number of routes modelled on it. The suitable locations for these sensors are
determined from the use of two algorithms that integrate the previous three elements. In this section,
these two algorithms are described.

2.3.1. Algorithm 1: Traffic Network Modelling

The method used to build an appropriate network model, given a graph (N,A), for traffic analysis
using plate-recognition based data is the one proposed in [13]. We assume that every node of the
network can be the origin and the destination of trips, and therefore the classic zone-based D-D matrix
has to be transformed into a node-based O-D matrix used as reference. This matrix is assigned to
the network using a route enumeration model. Then, a route simplification algorithm is proposed
based on transferring to adjacent nodes the generated or attracted (reference) demand of those nodes
that generate or attract fewer trips than a given threshold. Figure 8 shows the operation of this first
algorithm that involves the modeling of the network, and whose steps are described below.

e INPUT: A traffic network (N,A) and its link parameters (links cost, links capacities, etc.); an
out-of-date O-D matrix defined by traffic zones; capacities of links to attract and generate trips;
the k parameter of the MNL assignment model; and the threshold flow (Fy,s) to simplify the
node-based O-D matrix and its corresponding routes.

e OUTPUT: A set Q of representative routes of the network and its corresponding route flow fqo,
and a set of “real” data necessary to check the efficiency of the estimation.

INPUT: Step 2: Obtain the set of reference routes
: T'.—a‘flc Network (N,4) Step 1: Obtain the node based O-D matrix * Apply a route enumeration model to
* Link parameters ubhiﬁ R and f°
i N . ’ ai {0 % £ d .
* Reference O-D matrix Ty;z; Apply (1) to obtain Ty; from Tz + Apply a route enumeration model to

* Attraction and Generation capacities obtain a set of “real” data
« Parameters k, Fipres

Step 3: Initialize the traffic network model
simplification

* LetQ=R

Step 6: Update Q, f;, T}; ’—-I Step 4: Evaluate A;; G; V i no OUTPUT: )
* SetQand fy
yes

Route elimination
%:

no

Step 5: Transfer

Demand transmission <— yes
& the demand

Figure 8. Flowchart of the algorithm defined for the traffic network modelling.

STEP1: Obtain the node-based O-D matrix: Given an O-D matrix by traffic zones in the network,
and from some data on the attraction and trip generation capacities of the links that form it
(see [13] for more details), it is possible to obtain an extended O-D matrix by nodes, defined
as follows:
Tij = T7i7;PAPG; 1)
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STEP2:

STEP 3:

STEP 4:

STEP5:

STEP 6:

where Tj; is the number of trips from node i to node j; T2z j is the number of trips from zone
of node 7 to the zone of node j; PA; is the proportion of attracted trips at node i; and PG; is
the proportion of generated trips at node j which depends on its capacity to attract or to
generate trips.

Obtain the set R of reference routes: After defining the O-D matrix, an enumeration model,
based on Yen's k-shortest path algorithm [38], is used to define those k-shortest routes between
nodes, which are then assigned to the network through a MNL Stochastic User assignment
model. This model makes it possible to build an “exhaustive reference set of routes” R
between nodes, with its respective route flows 2 ,which will be operated by the algorithm,
and whose size will vary according to the value adopted by the parameter k. Along with these
reference data, other data considered as “real” will also be defined that will serve to check
the effectiveness of the model in the flow estimation results obtained from the information
collected by the sensors.

Initialize the traffic network model simplification: The intention of this step is to adapt the
modelled traffic network as close to the actual network as possible, simplifying those routes
by O-D pairs whose attraction/generation trip flow is below a given threshold flow value.
To do this, we initialize the set Q of modelled routes to the set R of reference routes.
Evaluate the trip generations or attractions of the nodes: The algorithm evaluates the trips
generated and/or attracted of each node of the network and compares them with the threshold
flow value Fyjes. If there is any node that holds this condition, go to Step 5, otherwise the
algorithm ends and a simplified set of routes Q will be obtained, whose size will be a function
of the value of the Fy,,,; flow considered.

Transfer the demand: The node that meets with the condition in Step 4, would lose its
generated/attracted demand, which would also imply that no route could begin or end from
that node. Therefore, it will be necessary to transmit these flow routes to another node close
enough (which could receive or emit demand) with an implicit route, whenever possible.
If the demand transfer could not be carried out, the evaluated demand is lost and all the
involved routes as well.

Update the set of routes: Q. The set Q and its associated flows f,? have to be updated with
the deleted or updated routes. The O-D Matrix T;; must also be updated. Go to Step 4.

2.3.2. Algorithm 2: The ANPR Sensor Location Model

After defining the traffic network, i.e., the set of routes and its associated reference flows, both are
introduced in the location model so that from these, and with the particularities of the sensor to be
used, this model allows us to obtain a set of links, SL, to locate a certain number of sensors to collect
data able to obtain the best possible estimation of the remaining flows of the network. This can be
a difficult combinatorial problem to solve, especially when it is required to locate sensors in large
networks with a great number of existing routes (this justify the use the set of routes Q instead of set
R). Next, we propose an iterative problem-solving process to find the best possible solution given
a series of restrictions. Figure 9 shows the operation of this second algorithm, and whose steps are

described below.

e INPUT: A traffic network (N,A); Sets of routes R and Q, with their associated flows; the budget to
install sensors B; an optional set of non-candidate scanned links NSL; and maximum number of

iterations to be performed iter

max

e  OUTPUT: The set of scanned links SL”* and the evolution of the RMARE value according to the
performed iterations.
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INPUT:

» Traffic Network (N,A)

» Sets R and @ with associated flows
* Parameter B

* Set NSL (optional)

+ Maximum iterations iter™

iter=1

+
Step 1: Solve problem (2)-(7) Update stter
+ Obtain SLe" ) iter = iter +1

Step 2: Simulate the sensor deployment
and the “real” data sets

« Obtain C, £°, W, 7,

OUTPUT:

. §pbest
l * RMARE evolution
Step 3: Solve problem (8)-(12)
= Obtain f, v,

Step 4: Check the quality of the solution
+ Obtain RMARE'ter

RMAREP®st = RMAREte"

RMARE™e" < RMARE** Spbest — gpiter

yes —»

Figure 9. Flowchart of the algorithm defined for the ANPR sensor location model.

STEP1: Solve the optimization problem: The following optimization problem has to be solved:

_ 0
maxM = Y £y @)
4eQ
subjected to

ZPazu <B VaecA ®)

acA
Z Slza>y, VYq€Q 4

aeA
Y, mzy Yg)eQg>ql ) 55, >0 5)

acAl]+o7 =1 acA
za = 0 VYaeNSL (6)
Y siterz, < st vitere 1 7)
a€eA a€eA

The objective function (2) maximizes the distinguished route flow in terms of f; y, is a binary
variable equal to 1 if a route can be distinguished from others and 0 otherwise. Constraint (3)
satisfies the budget requirement, where z, is a binary variable that equals 1 if link a is scanned
and 0 otherwise. This constraint guarantees that we will have a number of scanned links
with a cost P, for link a that does not exceed the established limited budget B. Constraint (4)
ensures that any distinguished route contains at least one scanned link. This constraint is
indicated by the parameter §;, which is the element of the incidence matrix. Constraint (5) is
related to the previous constraint since it indicates the exclusivity of routes: a route g4 must be
distinguished from the other routes in at least one scanned link a. If §; + 621 =1, this means
that the scanned link a only belongs to route g or route q1. If }' z; > y,; and y; = 1, then at
least one scanned link has this property; on the other hand, if y,; = 0, then the constraint
always holds. Constraint (6) is an optional constraint that allows a link to not be scanned
if it belongs to a set of links not suitable for scanning NSL. This restriction will make the
binary variable z, equal to 0, and therefore a sensor cannot be located on it. The intention of
defining this constraint will be discussed with more detail in the next section. Finally, since
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STEP2:

STEP 3:

STEP 4:

this model is part of an iteration process (see [13] for more details), an additional constraint
(7) is proposed, which allows us to obtain different solutions of SL sets for each iteration
performed through the definition of Si**’, which is a matrix that grows with the number of
iterations I, in which each row reflects the set SL resulting from each iteration carried out up
to then by the model. Therefore, if an element of S¥ is 1, means that link a was proposed to
be scanned in the solution provided on iteration iter and 0 otherwise. Each iteration keeps the
previous solutions and does not permit the process to repeat a solution in future iterations.
That is, each iteration carried out by the algorithm is forced to search for a different solution
SL*" with the same objective function (2).

Simulate the sensor deployment and the “real” data sets: After obtaining the set SL*",
the numerical simulation of it on the traffic network is carried out with the flow conditions
given by an assumed “real” condition. One of the main features introduced in that algorithm
is the possibility of working with a set of routes not fixed. Until now, the sensor location
and flow estimation models have been formulated considering a set of existing fixed and
non-changing routes. In the proposed model, each set SL may allow to obtain different
observed set of combinations of scanned links (OSCSL) used by the vehicles (i.e., sets of links
where vehicles have been registered), denoted by s. Since the modelled network and routes
are not always the same as in reality, not all sets in OSCSL are compatibles with set of routes
Q and hence new routes have to be added conforming a new global set C that encompasses
the routes in Q and the new ones, with their associated flows fCO To define these new sets
from new routes discovered from this simulation, the algorithm looks for and assimilates
their compatibility with those routes from set R that were eliminated in the simplification step
of Algorithm 1 (see [13] for more detail). With this step, each set s of observed combinations
of scanned links will provide the observed flow values ws as the input data for the estimation
model. In addition, apart from allowing to quantify the flow in routes from the scanned sets
of links, these sensors behave as traffic counters in the link where they are installed, making it
easier to quantify the flow in the link as well v,.

Obtain the remaining traffic flows: In this step, a traffic flow estimation of the remaining
flows is performed where route (f;) and links (v;) flows are obtained from reference flows ( fCO )
and the observed flows (w; and v,). We propose to use a Generalized Least Squares (GLS)
optimization problem [14,15], as follows:

mnz = Y (£ ) Y (et ”“) ®

fei v ceC a€eSL

subjected to

W, = ) Pife VseS ©
-

= Z 5f; VacA (10)
r

fe=0; YceC (11)

v, >0, VaeA (12)

where UZ! and Y;! are the inverses of the variance-covariance matrices corresponding to the
flow in route C and the observed flow in link a; w; is the observed flow in each set OSCSL; f,
is the estimated flow of routes in set C; 5 and 65 are the corresponding incidence matrices of
relationship between observed link sets s and links 2 with routes.

Check the quality of the solution. Once the flow estimation problem has been resolved,
the quality of the solution in absolute terms, can be quantified as follows:
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_ real
ruare = Ly P
n acA

Z)Zeal (13)
where RMARE is the root mean absolute value relative error; # is the number of links in the
network; and v, and v/¢¥ are the estimated flow and (assumed) real flow for link a. Such error
is calculated over the link flows since the number of them remain constant regardless of the
network simplification and the SL set used. Each value of RMARE indicates the quality of the
estimation by using the set SL for the traffic network. As said above, due to the complexity
of the problem, it has not a unique solution so we propose to evaluate a great amount of
combined solutions in an iterative process. This iterative process, which is shown in Figure 9,
is carried out since Step 1 a number of iterations equal to the maximum considered iter”**.
For the solution found in the first iteration, the value of RMARE will be considered as the best,
but in the following iteration, the algorithm could find another solution with lower value of
and it will be considered as best. All the solution found and tested in each iteration are stored
in S’ matrix, which grows in size during the performance. Finally, the best solution or set
SLbest for the established conditions, will be the one provided with the lower RMARE value.

3. The Application of the Proposed System in a Pilot Project

In this section, the proposed low-cost system for traffic network analysis is applied in a pilot
project in a real network to demonstrate its viability and also to test the influence that some inputs of
the Algorithm 1 (i.e., the network modelling) have in the results of the Algorithm 2 (i.e., the expected
traffic flow estimation quality).

3.1. Description of the Project and Particularities about the Position of Sensors in the Streets

The network chosen to develop the pilot project was the traffic network of the University Campus
of Ciudad Real (Spain), delimited in Figure 10, consisting of 75 nodes and 175 links. To consider
the influence that the other districts have on this network, links connected to the contour were
also modelled. With this, the set of links, its capacity and cost characteristics are established (these
characteristics are available by requesting them to the corresponding author). The O-D matrix T7;z fi
was first defined, where each zone Z contains a certain set of nodes (see Table 2) resulting in a total of
15 zones as shown in Figure 10, while the reference O-D matrix by zones is shown in Table 3.

Figure 10. Traffic network to be modelled for analysis: Plan view of the urban area of Ciudad Real and the
delimited Campus area to be modelled; Ciudad Real Campus network and its division in 15 traffic zones.
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Table 2. List of nodes on the traffic network and their associated zones.

Node Zone Node Zone Node Zone Node Zone Node Zone Node Zone

1 5 14 5 27 12 40 12 53 14 66 3
2 7 15 5 28 12 41 12 54 13 67 2
3 9 16 5 29 9 42 12 55 13 68 8
4 9 17 5 30 5 43 12 56 10 69 11
5 9 18 5 31 5 44 12 57 10 70 11
6 9 19 5 32 7 45 12 58 6 71 11
7 9 20 12 33 7 46 12 59 6 72 11
8 9 21 12 34 9 47 12 60 6 73 10
9 9 22 12 35 9 48 12 61 6 74 12
10 7 23 12 36 9 49 9 62 6 75 10
11 5 24 12 37 9 50 12 63 4

12 5 25 12 38 12 51 1 64 3

13 5 26 12 39 12 52 15 65 3

Table 3. O-D trip matrix per defined zones.

Zone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  Total
1 - 269 0 31 21 115 17 0 68 0 10 23 60 217 137 968
2 125 - 0 83 13 97 0 0 0 25 0 45 23 36 8 455
3 0 0 - 170 0 64 0 17 0 35 0 0 0 28 0 314
4 124 160 0 - 156 83 118 0 0 0 46 0 166 224 0 1077
5 70 89 0 0 - 0 0 0 0 0 0 118 0 40 5 322
6 43 118 0 70 20 - 46 32 0 0 2 0 0 48 28 407
7 50 12 0 0 0 0 - 0 0 0 0 9 0 17 2 90
8 3 4 0 0 0 31 0 - 0 47 12 34 25 16 0 172
9 15 26 48 62 0 55 0 0 - 105 39 73 64 13 22 522
10 30 12 0 55 0 37 0 95 375 - 0 0 57 21 0 682
11 8 8 0 0 0 0 0 0 0 0 - 26 0 37 3 82
12 245 29 0 0 0 154 0 44 0 0 0 - 0 0 28 500
13 105 39 0 181 0 106 0 0 0 0 0 0 - 63 0 494
14 0 83 0 271 98 461 75 37 26 83 50 0 0 - 0 1184
15 80 25 0 0 123 144 31 0 52 10 21 0 0 0 - 486

Total 898 874 48 923 431 1347 287 225 521 305 180 328 395 760 233 7755

From a technical point of view, installing each traffic sensor in the streets of a city can be a
complex task depending on the configuration and characteristics of the network and the elements that
configure it. In the case of links or linear elements, the configuration of their infrastructure and the
flow conditions, such as its distribution and intensity along a day, may condition the choice of one
or another location, or even consider whether or not a link is a candidate for a sensor to be located.
This section deals with the specific problems of installing the sensor in some links.

After a first test of the sensor in the streets of the project, we found a set of links that, due to
their physical characteristics, may difficult the sensor to be installed. As shown in Figure 11a in violet,
this set is formed by the links that make up the external corridor that connects the ends of the network,
which is one of the main arterials of the city. In this type of links (see images 1 and 2 in Figure 11b),
the vehicles can reach higher speeds and flow densities, which can make it difficult to capture the
data because the license plate is not read correctly due to the occlusion of other vehicles as these links
have two lanes per direction. Installing sensors in links where their characteristics make such a task
difficult, may involve higher installation and/or operating costs, increasing the possibility that the
data that they collect may have errors that may disturb the results of the analysis and the estimation
of the remaining flows. The problems that wrong readings of plate license may involve on the flow
estimation results have been studied in detail by [20]. Despite these links being very important since
the greatest flow of vehicles takes place in them as they are one of the most important arterial corridors
of the city. Therefore, the effects of not locating a sensor on them must be investigated.
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(a) (b)

Figure 11. (a) Representation of the corridor, in violet, where the greatest flows and difficulties in
installing a sensor take place; (b) Images of several links on the network.

With respect to the rest of links (see images 3 and 4 in Figure 11b), the results obtained from the
sensor were very satisfactory resulting all of them suitable and hence being eligible. The flow conditions
make feasible the correct identification of the vehicles regardless of its speed and flow density.

To sum up, the sensor location model described in Algorithm 2, has to consider the possibility
of avoiding some links which, despite the fact that the greatest flow is concentrated by them, their
characteristics make their installation difficult. This may have an impact on the results, since it
seeks to obtain the best estimate of flows in the network with the best combination of scanned links.
This observation is considered in the sensor location model with the inclusion of constraint (6), which
has been described as a restriction that considers that for the arcs belonging to the NSL set, their binary
variable is null, and therefore they are not suitable for having a sensor installed. Considering this topic
can put a risk in obtaining better or worse estimation results, so an analysis is necessary to show that,
by avoiding these links, the expected results of the traffic estimation can be similar. Next section below
deals with a deeper analysis.

Finally, within the links that are suitable to be scanned, it is important to assess the different
locations in them to obtain the correct reading of the license plates (see Figure 12). Here it is necessary
to consider the orientation of the sensor with respect to the flow (i.e., recorded from the front or rear of
the vehicle); the presence of fixed elements or obstacles present that make it difficult to identify the
vehicle; the lighting among others.

() (b) ()

Figure 12. Examples of installed sensor at strategic points: (a) Exit from an intersection and enter a link
with two lanes; (b) Link with a single lane with unidirectional flow; (c) Entrance to a link with a single lane.
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3.2. Analysis of the Results

To obtain the traffic network model, we have applied the proposed Algorithm 1, where, in addition
to the above described input data, the important values of k and Fy,,; need to be defined. Therefore,
with object to check the network simplification effects (Steps 4 to 6) on the estimation results (obtained
with the Algorithm 2), it was decided to vary the value of the threshold flow Fy,,;, establishing values
equal to 10, 15, 20, 25, and 30 trips per hour. Regarding the k parameter used in the enumeration model
of Step 2, there are usually certain discrepancies between transportation analysts and engineers about
its best value. High values are usually rare to find in the literature due to the high computational
cost that it would entail, and also because the existence of more than 3—4 routes per O-D is very
unlikely [39]. For this pilot project, it was considered to select reasonable values of k equal to 2 and 3,
whose effects on results will be analyzed in the next sections. In Step 1, a 15 x 15 matrix by zones T
shown in Table 2 was transformed into a matrix discretized by nodes T with size 75 X 75, resulting in a
total of 608 O-D pairs. To obtain the set of existing routes assumed to be “real”, the node-based O-D
matrix T is affected by a random uniform number (0.9-1.1), and the assignment was done using k = 4
with to obtain the respective “real” link flows.

Regarding Algorithm 2, some of its inputs come from the outputs of Algorithm 1 (the traffic
network and the routes). Due to the budget restrictions of the project (related to B parameter),
an amount of 30 sensors was set to be used in the network. Therefore, for the different models studied,
a fixed value B equal to 30 has been considered. Note that in relation to the number of links in the
network, this quantity may be insufficient to obtain total observability, but it will be interesting to see
to what degree of good estimation it is possible to obtain.

To sum up, in this section, three analysis of results are carried out:

e An analysis of the effect on the estimation of flows is performed when considering different k
values for the definition of set R (Step 2 of Algorithm 1). We have considered two values: 2 and 3.

e An analysis over the variation of the value of the threshold flow Fy,, that is used in the
simplification algorithm is done (Steps 4 to 6 of Algorithm 1). Depending on the value of this
threshold value, the degree of simplification of the network will be greater or lesser, affecting the
number of considered routes in Q.

e An analysis to verify the effect of considering a certain set of links as not suitable to locate the
scanning sensor (Equation (6) in Step 1 of Algorithm 2).

3.2.1. Effect of Varying the k Parameter

Vary the k parameter means more or less number of routes in the modelled traffic network are
considered, conforming part of the information with which the model must work. The consideration of
such a parameter in this project has been through the use of a route enumeration algorithm, selecting
values of 2 and 3 for the example presented. For this first analysis, it has been considered to analyze a
not very simplified network scenario, considering a Fy,,,s equal to 10, i.e., all the nodes that attract or
generate less than 10 trips lose its condition of origin and/or destination.

An important aspect that has been studied in this first analysis is related to the consideration of a
set of links NSL € A, where the cost and difficulties of installing a scanning sensor are greater than
other links in the network. For the shake of brevity, we have decided to undertake a joint study of the
k parameter influence and the effects of including some conflicting links in set NSL. A first scenario
(Model A) where all the links have the same opportunity of install a sensor, which means that all the
links have the same cost P, equal to 1. In the second scenario (Model B) a certain set of links (those
corresponding to corridor shown in Figure 11a), are included in set NSL so a sensor cannot be installed
in them.

Figure 13 shows the effects of these considerations on the results of the model. There are four
well-differentiated lines in pairs, one assigning a k equal to 2 and another equal to 3. Each jump in
the graph means that the location model has found a better set of scanned links SL that improves the
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solution in terms of error, and the horizontal sections mean that the model has not been able to find a
better solution.

It is observed that considering a higher value of k, the results of the model are better in terms of
the error in the estimation of traffic flows. We clearly see how a k = 3 obtains quite better results than
considering a k = 2 due to the existence of a higher number of routes per each O-D pair. In particular,
when considering k = 2, we are operating with a set R of 2074, as opposed to the 2943 routes considering
k = 3. To define the set of “real” routes and their associated flows, a value of k = 4 has been considered,
resulting in a set of 4274 routes in total.
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Figure 13. Evolution of RMARE value for the different cases varying the k parameter and the
threshold flow.

The most interesting demonstration arises when Model A and Model B are compared. Despite
considering a certain amount of links in set NSL, the results of both models reach almost the same
RMARE value. We therefore see, in this particular case, how considering or not certain links to install
the sensors does not produce a relevant difference in the estimation error to be obtained. In view of
this, the following analysis will only consider Model B to avoid installation problems.

Table 4 shows the best SL sets obtained for each case after completing the iterative process. In it,
the links that are common in both sets are marked in bold, seeing how a certain amount of them
remains fixed, and the others are changing due to the modification of the location model through
the constraint (6). This is clearly seen in Figure 14, where the optimal locations of the sensors are
outlined in 30 of the links that make up the network. In this it is seen how a set of sensors, marked
in blue, are located in NSL, i.e., when Model A was used. For Model B, it is seen how those sensors
are moved to other links, now marked in orange. This change in location leads to an improvement in
the estimation results, indicating that there would be no problem locating sensors in links in which,
despite having a lower flow, there is a greater probability of obtaining data with lower mistakes.

Table 4. Best set of links (SL) sets obtained from the variability analysis of k parameter.

Model Scanned Link Set SL RMARE
Al 12351027 3142434748 5051 56 58 60 85 89 100 110 137 150 151 152 153 154 155 156 158 163 0.2010
B1 1341020313843 5054 636477 84 859094 137 150 151 152 153 154 155 156 157 159 161 162 163 0.1976
A2 124510384243 47 485051 56 58 77 85 89 97 100 110 137 151 152 153 154 155 156 158 162 173 0.1149

B2 13481031 38435063 81 84 85909192100 110 137 150 151 152 153 155 156 157 159 160 162 163 0.1106
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. Common scanned links in both models
. Scanned links considered by Madel A2

@  Scannedlinks considered by Model B2

Figure 14. Upper figure: Optimal sensor locations considering k = 3, Fy;,,s = 10, and all links as
candidates to be scanned; Lower figure: Optimal sensor locations considering k = 3, Fyj,;,s = 10, and a
certain set non-candidate scanned links (NSL) of links as no candidates to be scanned.

3.2.2. Effect of Network Simplification

When the value of Fy;,s is small, the proposed methodology will do a smaller simplification of the
network, and therefore it is expected to lead to a lower error in the estimation of traffic flows. As Fyys
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increases, there will be a greater degree of simplification, and therefore greater error in the estimation.
Figure 15 shows this effect all the cases modelled with k = 3. It is observed that lower Fy,,; values,
and therefore less simplification, tend to smaller error values. In any case, depending on the Fy,s
value, the graphs reached to a certain convergence after having performed multiple iterations with the
proposed location model. For example, we see how the best solution is achieved with a minimum
error difference when considering a Fy,,s equal to 10 or 15 and for Fy,.s equal to 20, 25, and 30.
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Figure 15. Evolution of RMARE value for the different cases varying the threshold flow.

The effects of variation in threshold flow are shown in Table 5. In it, a first column is defined for
each evaluated case, and a second that collects the number of routes in the set R, which is the same
for all of them since the same value of k = 3 was used; third column collects the number of routes set
Q once set R has been simplified with the value of Fy,,; a fourth column that includes the number
of additional routes included when locating the sensors in the best set obtained for each case; and a
last column that considers all the routes in C used in the estimation model. In this table, it can be
seen that, with less simplification, the set of routes in C with which we work is greater, and therefore
the estimations are better. As the simplification increases, more routes are simplified and this means
that, by locating the sensors, a greater number of routes are recovered, but a set C on similar order
of magnitude.

Table 5. Number of routes that appear according to the considered Fy,,; value.

F Number of Routes Number of Routes Added Routes Number of Routes
thres inR in Q Compatibles with SL inC
10 2943 2896 23 2919
15 2943 2816 30 2846
20 2943 2398 31 2429
25 2943 2175 41 2216
30 2943 2090 47 2137

Finally, Table 6 indicates the SL sets obtained for the cases where Fy,,; is equal to 10 and 15,
since they offer the best results and where there is little difference in the best RMARE estimation error.
We see how for both sets, there is only a difference of 8 links from the 30 considered, the rest being
common in both. For both sets, constraint (6) is considered in the location model, and therefore no
links belonging to NSL appears. Furthermore, this tells us how, depending on how the network is
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modeled, one set or another may be obtained, with small differences but which may influence the
observability and estimation results of the network.

Table 6. Best SL sets obtained from the variability analysis of k parameter.

Finres Scanned Link Set SL RMARE
10 1348103138435063 818485909192 100 110137 150 151 152 153 155 156 157 159 160 162 163 0.1106
15 346719253138435060 7284 85909192137 150 151 152 153 154 155 156 157 160 161 162 163 0.1117

4. Conclusions

This paper presents a proposal for deployment of a low-cost sensor network for automated vehicles
plate recognition in a pilot project in Ciudad Real (Spain). For this, three main tools were needed: (1)
the architecture to deploy the sensors, (2) a low-cost sensor prototype, and (3) a methodology to decide
the best location for the sensor.

Regarding the deployment of sensors and the sensors themself, one of main features to highlight
is that the total cost is very low in terms of the following elements:

e  Production/Manufacturing: The unit cost of the hardware components for the realization of the
prototype is less than €60 (considering the tripod as an extra accessory). In the case of integration
for large scale manufacturing, these could be significantly reduced.

e Installation: The sensors have a very low energy consumption, which allows their deployment in
any location and without specific energy supply infrastructure. The platform allows adapting
the sensor parameters (resolution, lighting levels, shutter speed, and compression level) to the
specific needs of each location.

e Maintainability and scalability: The proposed architecture allows working with any existing
ANPR library in the market by delegating tasks between processing layers, as well as their
combination to improve the overall success rate. The detection stage is delegated to the smart
management layer, reducing overall costs, and providing more scalable and efficient solutions.

In addition, the deployed sensor is completely decoupled from the specific license plate
identification platform used. This allows to change the platform if the user found any other better.
In particular, the used platform identifies besides the license plate number, the vehicle’s manufacturer,
model, and color data. This information can be used in the overall analysis of traffic flows with a view
to reducing possible errors in the identification of the number plate and will be developed in the future
by the authors.

The third tool used in this paper is a methodology to determine the location in the traffic network
of the designed sensors. To this, we have proposed the use of two algorithms which aim to achieve a
good enough quality of the traffic flow estimation to be done (in terms of low RMARE value) with the
ANPR data collected by the sensors.

The model was applied to the traffic network of a pilot project considering a deployment of
30 sensors analyzing whether or not to install the proposed sensors on some links due to the difficulty
of its installation. The results were very positive since the expected quality of the estimation results is
very similar to those obtained when allowing the sensor to be located in any link. The main advantage
is that avoiding those conflictive links we expect a reduction obtaining errors of reading vehicle plates.

The influence of other parameters of the model were also analyzed such as the number of routes
used as reference and the degree of network simplification. The analysis of the results shows that
considering a greater number of reference routes, represented by means of the parameter k, leads
to a better estimation of the flows in terms of achieving a smaller RMARE. However, a high value
for k would imply working with a network with a large number of routes, which would have a
high computational cost. In reference to network simplification, a medium-low degree of network
simplification leads to a good performance of the methodology in terms of the error obtained in the
estimation step.
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