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Abstract: Intelligent agents that can interact with users using natural language are becoming
increasingly common. Sometimes an intelligent agent may not correctly understand a user command
or may not perform it properly. In such cases, the user might try a second time by giving the agent
another, slightly different command. Giving an agent the ability to detect such user corrections might
help it fix its own mistakes and avoid making them in the future. In this work, we consider the
problem of automatically detecting user corrections using deep learning. We develop a multimodal
architecture called SAIF, which detects such user corrections, taking as inputs the user’s voice
commands as well as their transcripts. Voice inputs allow SAIF to take advantage of sound cues,
such as tone, speed, and word emphasis. In addition to sound cues, our model uses transcripts to
determine whether a command is a correction to the previous command. Our model also obtains
internal input from the agent, indicating whether the previous command was executed successfully
or not. Finally, we release a unique dataset in which users interacted with an intelligent agent
assistant, by giving it commands. This dataset includes labels on pairs of consecutive commands,
which indicate whether the latter command is in fact a correction of the former command. We show
that SAIF outperforms current state-of-the-art methods on this dataset.

Keywords: human–agent interaction; correction detection; deep learning; implicit feedback;
multimodal architecture

1. Introduction

Intelligent agents that can interact with users using natural language are becoming increasingly
common. Popular operating systems now come with built-in virtual assistants, such as Siri for Apple’s
MacOS and iOS, and Cortana for Microsoft’s Windows. As another example, Amazon’s Echo speakers
include the Alexa virtual assistant. However, these assistants do not learn from their own mistakes,
in contrast to real human assistants.

When humans interact with one another, it often happens that one person misunderstands
the other. This person might then realize that she made a mistake by the other person’s reaction.
Consequently, she will not only correct her mistake, but she will also learn for the future what the
other person’s intentions were in such a situation. For example, when a manager tells her human
assistant “I would like to promote Mary”, the assistant might reply “Sure. I sent an email to Mary
with the subject ‘You’re promoted’.” Then the manager might reply “I would like to set a meeting
to promote her”. The human assistant will then probably recall the email and schedule a meeting
with Mary for the promotion. The next time the manager tells the assistant she would like to promote
someone, the assistant will remember to set up a promotion meeting.
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For personal agents to be truly useful, they should have abilities associated with human
intelligence, such as the ability to detect their own mistakes from user reactions. This is an instance
of implicit feedback, which is the gathering of information from users’ behavior, as they go along
normally using the agent.

A personal agent with the ability to detect user corrections might be able to fix some of the
mistakes it makes. For example, suppose a user says “create an email for Tom”, and the agent creates
a new email and sets the address to Tom’s address. Then the user says “create an email and set the
subject to ‘for Tom’.” The agent might erase the email it created and create a new email in which the
subject is set to “For Tom”.

In addition, an agent might learn for the future what a particular user means when giving a
certain kind of request. In the above example, if later on the user says “create an email for Nancy”,
the agent will create a new email and set the subject to “For Nancy”.

In this paper, we address the problem of detecting an agent’s mistakes by identifying when the
user tries to correct the agent. We refer to this problem as the Correction-Detection task. We develop
an architecture that can detect whether given interactions constitute corrections on the part of the
user or not. More precisely, the architecture works on pairs of consecutive commands. We call our
architecture Socially Aware personal assistant Implicit Feedback correction detector (SAIF). It sees only the
user’s commands, and not the agent’s responses to those commands, as we would like the architecture
to be independent of the agent to which it is applied: A pre-trained version of the architecture should
be applicable to any social agent, even though different agents have different responses.

Each pair of consecutive commands can have one of three possible labels: “new command” if
the user was satisfied with the agent’s action to the previous command and issued a new command;
“command correction” if the user was not satisfied with the agent’s action and tried to correct it;
and “ASR correction” if the first command was not carried out properly due to wrong transcription
by the Automatic Speech Recognition (ASR) system (for example, “set subject to Johnny” instead of
“set subject to join me”).

It is important to separate command corrections from ASR corrections since the actions to be taken
by the agent are very different. With an ASR correction, the agent should adjust the ASR component
and improve it, so that it does not fail next time. However, when dealing with a command correction,
the agent should undo the previous command, and execute the learning process, as it has implicitly
learned another way to say the second command.

Our architecture is multimodal, using both the voice (acoustics and non-verbal sounds) as well
as the transcript of the user’s spoken commands. This multimodal approach is important, since the
voice input can hold important cues such as tone, speed, or emphasis on certain words. Furthermore,
voice input can be especially useful in cases where the wrong command was executed due to a fault in
the ASR.

Related Work

Implicit feedback has received a great deal of attention. It encompasses many types of user
behavior: the amount of time the user spends seeing a document or a web page, her scrolling and
clicking behavior, whether she copies parts of it, creates a bookmark, and so on. Oard and Kim [1]
developed an early classification system for types of implicit feedback, based on the type of behavior,
as well as based on its scope, which could be part of a document, a whole document, or a whole class
of documents. Kelly and Teevan [2] later expanded this classification system. Their paper gives a
broad survey of previous work on implicit feedback. Recently, Jannach et al. [3] further updated and
expanded this classification system, and gave an updated survey of this area.

Search engines can use implicit feedback, such as clicking behavior, follow-up search queries and
even eye-tracking, to improve the ranking of search results. The act of down-ranking one search result
and up-ranking another can be considered a correction performed by the search engine in response to
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the user’s behavior. Implicit Feedback in search engine results often relies on the user choice among
the ordered search results. Hence, it differs from the task in this work.

Levitan and Elson [4] described a method for detecting retries of voice search queries. Their task
is quite similar to the one in this work, as their recognizer takes as input pairs of consecutive search
commands to be classified. However, their recognizer takes as input only the transcripts of the
commands. More significantly, their classification system is different, since it is binary and furthermore,
if the ASR transcribed correctly, the instance is labeled as “no error”, even if the user subsequently
tried to correct the agent.

Zweig [5] proposed some methods for improving the accuracy of ASR translation when the user
repeats her search command. In his work, recognition of repetitions is based on the fact that the user
did not choose any of the options that were shown to him after his first search command. In contrast,
we try to recognize user corrections from the commands themselves. Furthermore, sometimes a
correction may not look like a repetition of the previous command.

Heeman and Allen [6] considered the problem of recognizing speech repairs in spoken
sentences, which occur when the speaker goes back and changes or repeats something she just
said. However, in our case we try to recognize when a complete command is a correction of a previous
complete command.

Bechet and Favre [7] aimed to detect errors in ASR output using a combination of ASR confidence
scores, and lexical and syntactic features. If the system detects a problem, it requests the user for a
clarification. Ogawa and Hori [8] also aimed to detect ASR errors, using deep bidirectional RNNs.
In our work, the objective is broader, since we want to detect not only ASR errors, but also user
corrections unrelated to the ASR.

Paraphrase detection is the task of deciding whether two given sentences have the same meaning
even though they use different words. The Microsoft Research Paraphrase Corpus [9] is a database of
labeled pairs of sentences, some of which are paraphrases of one another. There are several works on
paraphrase detection based on this corpus.

In particular, Kiros et al. [10] developed an off-the-shelf sentence-to-vector encoder called
Skip-Thoughts, which they applied to paraphrase detection, as well as to several other learning
tasks. Skip-Thoughts tries to reconstruct the surrounding sentences of an encoded passage, using the
continuity of the training text. Sentences that share semantic and syntactic properties are thus mapped
to similar vector representations. Skip-Thoughts also includes a vocabulary expansion method to
encode words that were not seen as part of training.

Agarwal et al. [11] developed a paraphrase detection method that works well with short noisy
data such as Twitter texts. See also [10,12–17].

Paraphrase detection is closely related to our Correction-Detection problem. Indeed, a user might
try to correct an agent by repeating the previous command in slightly different words. For example,
the user might give the command “remove the contact Tom” and the agent might not understand or
not perform it correctly. The user might try again in different words by saying “delete the contact
named Tom”.

However, there are several differences between paraphrase detection and the Correction-Detection
task. The second command might constitute a correction of the first, even though it has a slightly
different meaning: The two commands might differ in proper names (e.g., Tom vs. John) or in
numerical quantities, and the user’s tone of voice might indicate that he got confused in the first
command. Furthermore, in our task the order of the commands might be significant. For example,
the agent might understand the word “create” but not the word “compose”. Hence, the order between
the commands “create an email for Tom” and “compose an email for Tom” is very significant.

Another similar task is the Quora Question Pairs competition, which challenges participants to
tackle the problem of identifying duplicate questions [18]. Choudhary addressed this problem using
BERT [19] (See also [20,21]).
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Multimodal deep learning has been applied to tasks such as speech recognition, speech synthesis,
emotion and affect detection, media description, and multimedia retrieval [22–27]. To the best
of our knowledge this is the first research on multimodal voice and transcript deep learning for
Correction Detection.

2. Materials and Methods

2.1. Formal Problem Definition

Assume a dataset of size n coming from multiple users interacting with a personal assistant agent.
Let C = {c1, c2, . . . , cn} be a set of commands given to a personal agent. Each of the commands, c,
is composed of a transcript of the command, ct, the command voice, cv, and an indicator of the agent’s
success in executing the command, cs. Let t(ci, cj) be a function that associates commands ci and cj
with a type in {new, asr, cc}, where new denotes no relation between two commands (that is, the cj is a
new command), asr denotes that cj was given in order to correct a malperformance of the transcription
performed by the agent, and cc denotes that cj is an attempt of the user to refine and correct ci.

In this paper, we focus on the consecutive multimodal correction-detection problem, in which
for each command ci, the value of t(ci, ci+1) must be determined.

2.2. Dataset Description

To develop our architecture, we use a set of real interactions that users had while experimenting
with the social agent LIA (Learning by Instruction Agent) [28,29]. This dataset contains a series of
2540 pairs of spoken commands given to LIA by 20 different users, of which 11 were male and 9 were
female. The users’ ages ranged from 18 to 62, with a mean of 36.9. For each command we have the
original voice file and the written transcript produced by the ASR. The average command consists of
3.6 words and it lasts 4.2 seconds. Each command is followed by a response from the agent.

We manually labeled each pair of consecutive commands according to whether the second one is a
correction of the first. As we mentioned, there are three possible labels: no correction (“new command”),
a correction in which the user provides a different command (“command correction”), and correction
due to incorrect ASR transcription (“ASR correction”). At first we tried to have the labeling done
through the Mechanical Turk. However, we got very poor results, so we had to perform the labeling
ourselves. Out of the 2540 commands, 568 commands are labeled as a “command correction”, 236 of
them are labeled as an “ASR correction”, and the rest are as “new command”. See Table 1 for
some examples.

Table 1. Dataset examples.

Command 1 Agent Response Command 2 Label

Create a new email
Composing new email. “outgoing email” fields are: set the recipient to Tom’s “new command”subject, body and recipient list. What shall I do email address
next (when executing: “tell Tom to buy milk”)?

Create a contact Concept “contact” was defined successfully. a contact has an “new command”Please add fields to it. email address

I’m running late Sorry, but I don’t understand. Would you tell Tom I’m running late “command correction”like to teach me (say yes or just ignore)?

How long can a whale Sorry, but no answer was found. how long can whale “command correction”stay underwater wait underwater

Play the email execute command {playYouTube} read email “command correction”

Who was the present Tuesday, 20 June 2017 who was the president “ASR correction”of the United States of the United States

In for Mariam late Sorry, but I don’t understand. Would you inform Mary I’m late “ASR correction”like to teach me (say yes or just ignore)?
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When labeling each command, we relied on the previous command as well as on the agent’s
response to it to decide whether the command is a correction (even though as we mentioned,
the architecture sees only the commands themselves but not the agent’s responses). We also have an
indicator from LIA that specifies whether the command was executed successfully or not. The dataset
is available at [30].

2.3. SAIF Architecture

To address the correction-detection problem, we developed a multimodal architecture, SAIF.
SAIF uses both voice and transcript inputs. Each input instance (c) consists of the voice (cv) and
transcripts (ct) of two consecutive commands (ci, ci+1).

SAIF first converts the inputs to vector representations and encodes each command transcript
(ct

i ) as a vector si of length 4800 using the Skip-Thoughts encoder [10] (see Section 2.4 below).
SAIF then computes the component-wise product and the absolute difference of these two vectors
and concatenates the results, obtaining a single vector vtranscript of length 9600, i.e., SAIF computes
vtranscript = (si ◦ si+1, |si − si+1|). To this vector, SAIF appends the feature cs

i (marked as exe in Figure 1),
which indicates whether the agent executed the first command or not, resulting in a vector v′transcript of
length 9601.
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Figure 1. SAIF Architecture.

Additionally, SAIF converts the voice commands (cv
i ) into vectors. For this, it uses a model

from DataFlair [23] for emotion recognition (see Section 2.4 below). Using this pre-trained model,
SAIF encodes each voice file into a vector of length 300. SAIF then concatenates the encodings of the
two voice commands, obtaining a vector vvoice of length 600. To this vector, SAIF appends a feature
VAD related to voice activity detection: Using the WebRTC library [31], SAIF measures the length `i of
the portion within each sound command cv

i which constitutes actual speech. The feature VAD equals
the difference `i+1 − `i. Denote the resulting vector of length 601 by v′voice.

The vector v′transcript is then fully connected to a Hidden Layer H1 of 30 neurons and ReLu
activation. Similarly, the vector v′voice is fully connected to another Hidden Layer H2 of 30 neurons
and ReLu activation. This vector of length 60 is then fully connected to a third Hidden Layer H3 of
30 neurons with dropout of 0.5 and ReLu activation.
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The output of H3 is linearly fully connected to a layer of size 3 which corresponds to the three
possible label values. Finally, we apply SoftMax on this layer, resulting in a vector with three
probabilities. The architecture is illustrated in Figure 1.

2.4. Pre-Training Methodologies

SAIF uses pre-trained models for encoding both the transcript and voice inputs. Pre-trained
models enable transfer of learning and can boost accuracy without taking much time to converge,
as compared to training a model from scratch.

The model used for encoding the transcripts is Skip-Thoughts by Kiros et al. [10]. This model is
trained on the BookCorpus dataset which is a large collection of novels written by yet unpublished
authors. The dataset has books in 16 different genres, e.g., Romance (2865 books), Fantasy (1479),
Science fiction (786), Teen (430), etc. Altogether, it contains more than 74 million sentences. Along with
narratives, books contain dialogue, emotion and a wide range of interaction between characters. With a
large enough collection, the training set is not biased towards any particular domain or application.

Kiros et al. then expand their model’s vocabulary by learning a linear mapping from a word in
word2vec space to a word in the encoder’s vocabulary space. The mapping is learned by using all
words that are shared between vocabularies. After training, any word that appears in word2vec can
then get a vector in the encoder word embedding space. Thus, even though their model was trained
with only 20,000 words, after vocabulary expansion it can successfully encode almost one million
possible words.

The model used for encoding the voice inputs is based on the emotion recognition model
by DataFlair [23] which is pre-trained on the RAVDESS database [25] and uses a multi-layer
perceptron (MLP) classifier. The RAVDESS database contains 7356 voice files from 24 actors, rated by
247 individuals 10 times on emotional validity, intensity, and genuineness. The files are labeled
into eight different types of emotions (neutral, calm, happy, sad, angry, fearful, disgust, surprised).
SAIF takes the last activation layer of this model to obtain a vector of size 300. The entire dataset is
24.8 GB.

3. Results

SAIF was trained and tested on the dataset mentioned in Section 2.2, as follows: An array
containing all the input instances (each of which contains the voice and transcripts of two consecutive
commands) was created and randomly shuffled. A 5-fold cross validation was performed: Five rounds
were run, where in each round, 2032 input instances were used as training data and 508 input instances
were used as test data. The training used minibatches of size 128, employing TensorFlow’s Adam
algorithm for optimization with a learning rate of 0.001. The training loop ran for 10000 iterations
or until the train accuracy exceeded 0.995. Hence, each input instance belonged once to the test data.
After averaging the results of the five tests, the obtained average test accuracy was 0.818. Since the
“new command” instances constitute 68% of the data, guessing all the time “new command” would
yield an accuracy of only 0.68. The SAIF code is available at [30]. Table 2 shows the confusion matrix
of the results. As shown in the table, SAIF is correct most of the time.

Table 2. Confusion matrix of SAIF test results.

Actual Values Predicted Values
New Command Command Correction ASR Correction

New command 1637 71 28
Command correction 151 378 39

ASR correction 95 78 63

In addition, Table 3 shows two groups of baselines. The first group shows some transcript-only
approaches while the second group shows some voice-only approaches.
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We modified SAIF to use only voice inputs or only transcripts. In these cases, the accuracy and
F1 measures decreased, showing the importance of the multimodal approach. The “transcript+exe”
architecture gave an accuracy slightly lower than SAIF. However, the F1 measures were noticeably
lower, in particular the F1 measure of “ASR correction”.

In the first group of baselines, we show the result given by the Skip-Thoughts paraphrase
detection code of [10], which was slightly modified to match our methodology. We also tried replacing
Skip-Thoughts by BERT [32] in two different ways. We first tried using BERT as a text encoder,
encoding each sentence separately. We also tried entering the transcript pairs in parallel following the
BERT-based architecture of Choudhary [19]. In both cases, we got worse results. See Table 3.

Table 3. Comparison between different experiments.

Accuracy Command Correction F1 ASR Correction F1

SAIF (multimodal) 0.818 0.69 0.344

transcript+exe 0.805 0.678 0.255
transcript only 0.755 0.575 0.212
Skip-Thoughts 0.742 0.563 0.076
BERT (encoder) 0.73 0.564 0.186

BERT (2-parallel) 0.709 0.497 0.335

voice+VAD 0.68 0.03 0.047
voice only 0.677 0.006 0.015

DTW 0.681 0.012 0

In the second group of baselines, we show the result given by the Dynamic Time Warping (DTW)
method [33], which measures the similarity between the two voice commands; these values then
served as an input to a neural network.

We note that the Skip-Thoughts baseline method results in an accuracy of 0.742 only. Moreover,
it correctly predicted only a very small number of ASR corrections. This deficiency is reflected in the
very low F1 score for the “ASR correction” label. The voice-based architectures (“voice+VAD” and
“voice only”) gave very poor results, and so did the DTW baseline. These three architectures guessed
“new command” almost exclusively.

Clearly, SAIF achieved the best results. Among the three voice-based architectures that were
tested, the “voice+VAD” slightly outperformed the other two voice-based methods, especially in
detecting ASR corrections. We note that adding the voice features to the transcript features seems to
help mostly in detecting ASR corrections, but also the command correction F1 slightly improves.

Discussion

As stated, the correction-detection problem is different from paraphrase detection. One difference
is reflected in the fact that the order of the sentences is significant. To highlight this difference, we ran
another evaluation in which we switched the order of the inputs during the test phase. This act
decreased the accuracy to 0.713.

The voice component of the architecture relies on a model that is pre-trained on the RAVDESS
database, which contains 7356 voice files. For comparison, the Skip-Thoughts model, which we used
for the transcripts, is pre-trained on more than 74 million sentences. We believe that using a larger voice
database for the pre-training will produce better voice features, which will improve the performance
of the voice part of SAIF.

It might be possible to improve SAIF’s performance by making it look at three or more consecutive
commands, instead of only two. For example, if the user says “set the subject to hello” and the agent
responds that it does not know to which email to set the subject, then the user might try to correct
the agent using two further commands: “create new mail”, and “set the subject to hello”. In cases
like these, SAIF would be in a much better position if it had access to all three commands. If we refer
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back to the formal definition of the correction-detection problem (See section 2.1), in the more general
correction-detection problem, t(ci, cj) must be determined for every i < j and is no longer limited to
j = i + 1 (as it is in the consecutive correction-detection problem). Furthermore, we may define t(ci, S)
as a function that determines for every set (or sequence) of commands S ⊂ C whether it is a correction
of the command ci, and, if so, what type of correction it is. It may also be possible to improve the ASR
performance using the techniques of Bechet and Favre [7] and Ogawa and Hori [8], and in case of
repeated utterances by using also the techniques of Zweig [5].

4. Conclusions and Future Work

In this paper, we considered the problem of automatically detecting user corrections using deep
learning based on multimodal cues, i.e., text and speech. We developed a multimodal architecture
(SAIF) that detects such user corrections, which takes as inputs the user’s voice commands as well
as their transcripts. Voice inputs allow SAIF to take advantage of sound cues, such as tone, speed,
and word emphasis. We released a labeled dataset of 2540 pairs of spoken commands that users
had with a social agent. The dataset includes three types of labels: “new command”, “command
correction”, and “ASR correction”. We ran SAIF on the dataset; SAIF achieved an accuracy of 0.818
and F1 measures of 0.69, 0.344 for the “command correction” and “ASR correction” labels, respectively.
We showed that SAIF outperforms several other architectures, including architectures based on BERT.
We believe that releasing the dataset will lead to further work on this problem.

The multimodal correction-detection problem presented in this work has many implications to
social interactive agents and personal assistants. Therefore, in future work we intend to assemble SAIF
in a personal agent, and use the implicit feedback obtained by correction detection to learn aliases to
commands and to undo commands that were unintentionally given by the user. However, SAIF must
be adjusted so that it has very high precision for the agent to be effective. High precision is required
since undoing commands that the user did not intend to undo, or learning incorrect aliases, may impair
the use of the agent. Assuming a high precision, the agent can learn from the examples marked as
command corrections, even if the recall is relatively low. Alternatively, when suspected, the agent
may explicitly ask the user whether a given command is indeed a correction, or, treat a command as a
correction only if it appears as a correction more than once, or by more than a single user.
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