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Abstract: Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground
light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure
extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the
feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis.
Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the
point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of
each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta
equations) were then applied to model the profiles of the entire and upper crown. The results showed
that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of
the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated
with the 95th width percentile was adequate when compared with the predicted value of the existing
field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square
error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other
equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the
entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D
convex hull volumes, the crown volumes predicted by our profile models had significantly smaller
errors. The results revealed that the crown profile can be well described by using UAV-LiDAR,
providing a novel way to obtain crown profile information without destructive sampling and showing
the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.

Keywords: unmanned aerial vehicle (UAV); light detection and ranging (LiDAR); crown profile
model; Larix olgensis

1. Introduction

The crown profile of a tree is the maximum outer edge of the crown branches and the minimum
boundary that encapsulates the whole crown and can characterize both the shape and size of the
crown [1]. The shape and size of the crown affect tree physiological processes, such as photosynthesis,
respiration and transpiration, due to the utilization of light and precipitation [2,3]. Additionally,
the crown profile reflects a tree’s characteristics and growth (such as its species, age, and size) [1,4–6]
and the tree’s response to the surrounding environment, such as competition and site conditions [5,7],
and is thus closely related to species diversity and ecosystem stability [8].

A variety of models have been used to describe crown shape and size and predict crown width
at any location within the crown. Such models were initially based on simple geometric shapes
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(e.g., ellipsoid or cone) [9,10]. However, simple geometric shapes lack flexibility, leading to inaccuracy.
Therefore, numerous researchers have developed direct and indirect models to describe crown shape
and size. In indirect methods, branch attributes (e.g., branch length and angle) and their trigonometric
relationships are usually used to model the crown profile [11,12], whereas in direct methods, some easily
measured tree attributes, such as tree height (TH), crown length (CL), and diameter at breast height
(DBH), are used to predict the crown profile [13,14]. Compared with indirect models, direct models
require fewer field measurements and have superior adaptability. Going beyond using a single model,
some authors divided the crown into the upper crown (primarily sun branches) and the lower crown
(primarily shade branches) based on the largest crown radius (LCR), and two equations were then
used to describe the crown profile; the results using two equations to estimate the upper and lower
crown shape were better than those obtained using a single equation to estimate the shape of the entire
crown [3,15,16].

Traditionally, destructive sampling is carried out to obtain data for crown profile modelling,
the attributes of branches are measured, and the crown radius is calculated with trigonometric
methods [1]. Although manual measurement methods can be used to obtain accurate crown radius
values at any position, they are extremely time consuming and labour intensive [17]. The development
of modern measurement technology can improve efficiency and reduce both labour and material
resources; for example, remote sensing (especially active remote sensing) techniques can be used
instead of manual measurements to obtain variables for modelling crown profiles [18].

Light detection and ranging (LiDAR) is an active remote sensing technology that can penetrate
the canopy and effectively capture ground points and provide data on vertical canopy structure and
terrain [19,20]. It can be used to capture three-dimensional (3D) tree crown attribute data and has
been successfully applied to estimate forest parameters at the stand level [21–23] and tree level [24–26].
A large number of effective individual tree crown delineation (ITCD) algorithms have emerged in recent
decades [27–32]. These ITCD algorithms offer a basis for extracting relatively fine-scale tree metrics
and can facilitate the extraction of the crown profile. Furthermore, the LiDAR platform is constantly
evolving, including space-borne laser scanning (such as ICESat-2), airborne laser scanning (ALS)
(such as Geiger-mode LiDAR), especially near-ground platforms (such as unmanned aerial vehicle
(UAV) laser scanning, terrestrial laser scanning (TLS), and mobile laser scanning (MLS)) that further
provide the possibility of simulating the canopy profile.

As a type of near-ground LiDAR platform, UAVs benefit from lower material and operational
costs and better data measurement flexibility and repeatability than aircraft and satellite platforms [33].
UAVs reduce the difficulties associated with extracting fine-scale tree data and can generate data
with point densities of 100–300 points per square meter, or even up to 1000 points per square meter,
representing a significant increase over the data provided by airborne laser scanning (ALS) [34],
and they compensate for the limited scanning area associated with TLS [6,35]. Several researchers
have managed to integrate LiDAR sensors with UAV platforms and further improve the accuracy of
individual tree crown extraction [36–38]. On the basis of these studies, Wallace et al. [39] assessed the
feasibility of UAV-based LiDAR using a set of descriptive statistics generated from LiDAR data and
demonstrated the feasibility of the TerraLuma UAV-borne LiDAR. Wallace et al. [40] subsequently
compared several individual tree detection and delineation algorithms with high-density UAV-LiDAR
data, and the best-performing method correctly detected 98% of the individual trees in a four-year-old
Eucalyptus globulus plantation. Jaakkola et al. [41] used a mini-UAV laser scanning method to
automate tree-level field measurements, and a detection rate of 100% was achieved for isolated and
dominant trees. However, most forestry applications based on UAV-LiDAR concentrate more on
crown delineation and the extraction of individual tree metrics, such as TH and crown diameter [42,43],
and they lack the simulation of species-specific crown profiles.

In summary, although UAV-LiDAR possesses unique advantages in terms of the collection of
fine-scale measurements for forestry analysis, its potential for extracting tree crown information needs
further investigation. Larix olgensis Henry is one of the most important coniferous and afforestation
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tree species in Heilongjiang Province, and the study of its crown profile is of great significance for
the estimation of biomass and volume. Thus, the present study aimed to evaluate the feasibility of
using a low-cost UAV-borne LiDAR system for crown profile modelling of Larix olgensis. The specific
objectives were to (1) isolate individual trees from UAV-LiDAR data using a region-based hierarchical
cross-section analysis (RHCSA) algorithm and estimate crown metrics (such as the LCR and CL) based
on crown point clouds; (2) generate the most representative crown profile points from individual tree
crowns using different crown-width percentiles (90th, 95th, and 99th) rather than through traditional
destructive sampling; and (3) derive four crown profile models (parabola, Mitscherlich, power,
and modified beta equations) for Larix olgensis at Maoershan Forest Farm from UAV-LiDAR data and
compare their performance.

2. Materials and Methods

2.1. Study Area

The study area is at Maoershan Forest Farm, Shangzhi, Heilongjiang Province, Northeast China
(Figure 1), ranging from 127◦18′0” to 127◦41′6” E and 45◦2′20” to 45◦18′16” N. The slope ranges from
5◦ to 25◦, the terrain is high in the south and low in the north, and the average altitude is approximately
400 m. The study site is a typical natural secondary forest in Northeast China surrounded by various
broadleaved trees, such as Betula platyphylla, Quercus mongolica, and Populus davidiana, and some
coniferous plantations, such as those of Larix olgensis, Pinus sylvestris, and Pinus koraiensis. An 18-year-old
Larix olgensis plantation located at the No. 3 ecological station of Northeast Forestry University was
used for data collection.

Figure 1. Location of the study area and schematic diagram of the unmanned aerial vehicle (UAV)
route and reference data distribution.

2.2. Data Collection

2.2.1. UAV-Borne LiDAR Data

The UAV-borne LiDAR system used in this study was a low-cost 8-rotor UAV platform-based
LiDAR system known as Li-Air (GreenValley Technology Co., Ltd., Beijing, China). It is
composed of a Velodyne Puck VLP-16 laser scanner, a Novatel inertial measurement unit (IMU;
SPAN-MEMS-IMU-IGM-S1), two global positioning system (GPS) antennae, a dual Novatel frequency
GPS receiver, a micro-computer (called Li-Air One), and a Sony QX1 camera. As the dominant part
of the system, the Velodyne Puck VLP-16 is the smallest laser scanner, supporting 16 channels at
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~300,000 points/s, with a 360◦ horizontal field of view and a 30◦ vertical field of view, ±15◦ up and
down. The maximum measuring range is 100 m, and the accuracy of the range measurements is ±3 cm.
The footprint size was 18 cm in diameter, and the beam divergence was 3 mrad. The vertical and
horizontal/azimuth angular resolution is 2.0◦ and 0.1◦–0.4◦, respectively. This system carries two
22,000 mAh batteries, which could support an ~20 min flight [36].

UAV-borne LiDAR data were captured on 4 July 2017. Flights took place at an altitude of 40 m
above the ground, with a flight line spacing of 25 m and a flying speed of 3.6 m/s. The final point density
was ~370 pt./m2 on average. During the data collection process, LiAcquire software (GreenValley
Technology Co., Ltd., Beijing, China), which was developed by Guo et al. [36], was used to control
the UAV system, monitor the real-time UAV flight parameters, and display the real-time acquired
LiDAR data. To improve the georeferencing accuracy, Novatel Inertial Explorer software was used
to generate flight trajectories and compute LiDAR point cloud coordinates with the IMU and GPS
data. The simultaneous kinematic method developed by [44] was used to register the point clouds
among the overlap strips, and the horizontal and vertical misalignment was less than 10 cm and 5 cm,
respectively. Additionally, high-resolution images were simultaneously captured during the flights
and used for visual interpretation.

2.2.2. Reference Data

Field survey data were acquired simultaneously with the UAV data in 2017. Two experimental
plots were established in the LiDAR data collection area, representing two stand densities (the initial
planting densities were 1 × 1.5 m and 2 × 1.5 m). A total of 349 trees in two plots were measured to
obtain reference data to match with the LiDAR data. The DBH, TH, and crown radius (CR) in four
directions were measured for each tree. In addition, the absolute coordinates of the four corners of the
plots and the relative coordinates of the trees were recorded to accurately match with the LiDAR data.
At the same time, the high-resolution images from the UAV were used to correct the positions of the
reference trees (Figure 1). In total, 203 locations of trees in Plot 1 were collected, including those of
13 dead trees, 13 other trees (e.g., Fraxinus mandshurica, Ulmus pumila, and Betula platyphylla) and one
tree with a DBH value <5 cm, while 146 locations of trees in Plot 2 were collected. Summary statistics
for all Larix olgensis trees with DBH values ≥5 cm in the two plots are listed in Table 1.

Table 1. Summary statistics of Larix olgensis trees measured in the field.

Variable Mean Minimum Maximum Standard Deviation

Plot 1
(N = 176)

TH (m) 9.4 5.8 13.0 1.31
DBH (cm) 9.7 5.1 16.7 2.76

CR (m) 1.1 0.6 2.6 0.33

Plot 2
(N = 146)

TH (m) 10.1 6.3 12.7 1.18
DBH (cm) 10.6 5.2 16.5 2.59

CR (m) 1.3 1.0 2.8 0.37

Note: TH is tree height, DBH is diameter at breast height, CR is crown radius.

2.3. Methods

An overview of the workflow for modelling crown profiles using UAV laser scanning data is
shown in Figure 2. First, the raw UAV-LiDAR data were preprocessed, and a canopy height model
(CHM) was generated. Second, individual trees were detected, and the crowns were delineated from
the CHM using a RHCSA algorithm. Third, the crown variables were extracted from each crown for
crown profile modelling. Finally, four equations (parabola, Mitscherlich, power, and modified beta
equations) were used to model the crown profile of Larix olgensis, and the accuracy of the models
and the crown volumes derived from the models was evaluated. These steps are further elaborated
in Sections 2.3.1–2.3.5. All methods were coded in MATLAB R2019b.
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Figure 2. An overview of the workflow for modelling crown profiles using unmanned aerial vehicle
(UAV) laser scanning data. TH: tree height; CBH: crown base height; CL: crown length; LCR: largest
crown radius.

2.3.1. UAV-LiDAR Data Preprocessing

The raw UAV-LiDAR data have a number of noise points, which can be divided into three
categories: air points, low points, and isolated points. Air points and low points were removed manually,
and isolated points were determined by the number of points inside the search neighborhood for
a given search radius (5 m). Then, ground and nonground points were separated using the progressive
triangulated irregular network (TIN) densification method developed by Axelsson [45]. The ground
points were then interpolated into a digital terrain model (DTM) using kriging interpolation [46].
The normalized height of the point clouds was obtained by subtracting the DTM value from the
elevation of all points [29]. Subsequently, graph-based progressive morphological filtering (GPMF)
was applied to generate pit-free CHMs for subsequent individual tree segmentation [47]. The CHM
generated with the GPMF method has smoother canopy surfaces with fewer data pits than the CHM
directly interpolated with the first returns while preserving the edges, shape, and structure of the
canopy gaps and crowns.

2.3.2. Individual Tree Segmentation and Sample Tree Selection

To explore the ability to develop crown profile models using UAV-borne LiDAR, individual
tree segmentation should be first carried out to obtain individual crown point clouds. In this study,
a RHCSA algorithm was introduced to automatically detect individual trees. This algorithm considers
the CHM to be a mountain-like topographic surface and utilizes horizontal relationships among crowns
in the vertical direction to detect individual trees. Specifically, the RHCSA algorithm slices the CHM
with a series of equidistant horizontal planes from top to bottom. Each cut represents a level, and the
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CHM was resolved into horizontal crown regions at different levels in vertical space (see Figure 3).
The highest tree (tree B) produced a cross-section earlier than the shortest tree (tree A) (Level 11 in
Figure 3). The first emerged region that did not contain any cross-sectional region at the previous level
was defined as a marker (Levels 11, 52, and 78, in Figure 3), and the cross-section gradually increased
in diameter with increasing level. In general, the shape of the cross-section region is similar to a circle;
when a cross-section contains more than one marker, invalid markers (often produced by branches) were
eliminated by its circularity (Level 78 and 106, in Figure 3). In contrast, the cross-sections produced by
multiple contacted trees often appear irregular in shape, and these cross-section regions were separated
by marker-controlled watershed algorithm (Level 123 and 182, in Figure 3). After segmentation,
a pixel-based binary morphology opening operation was applied to refine the segment boundaries and
remove the irregular segment objects. In the RHCSA algorithm, each level cut represents one iteration.
Individual tree crowns and treetops are completely extracted until all iterations end (until level cutting
reaches the final layer). The details of the RHCSA algorithm can be found in Zhao et al. [30]. 3D tree
point clouds were extracted for each tree from the CHM-based crown delineation region in vertical
space to ensure the completeness of the tree crown data and reduce the loss of detail.

Figure 3. Schematic diagram of the region-based hierarchical cross-section analysis (RHCSA) algorithm
based on a canopy height model (CHM) containing tree A and tree B.

After segmentation, trees that met the following requirements for modelling the crown profile
were selected. First, the detected trees that were 1:1 matched to the field measurements were selected.
The matching rule between detected and reference trees was developed by Reitberger et al. [48].
The distance to the reference tree is less than 60% of the average tree distance within the plot, and the
height difference between the detected TH and reference TH is less than 15% of the greatest TH in the
plot. If a reference tree is assigned to more than one detected tree, the tree closest to the reference tree
is deemed to be a 1:1 matched tree. Then, dead trees, trees with a DBH value <5 cm and other tree
species (e.g., Fraxinus mandshurica, Ulmus pumila, and Betula platyphylla in this study) were removed.
Since accurate shape simulation can be carried out only with complete crowns, the most important
and necessary step is to check the integrity of the individual tree crowns. Therefore, we conducted
rigorous crown selection through visual inspection.
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2.3.3. Estimation of Model Variables

Estimation of Crown Metrics

The complete point cloud of a tree is the nonground point cluster of stem points and crown
points (Figure 4A). Characterization of the crown profile is predicated on identifying the crown base,
which is defined as the height to the first living branch in traditional measures. Herein, the crown
base height (CBH) was defined as the height where the number of tree point changed abruptly in the
vertical direction. Specifically, all tree points were divided into 0.5 m bins from bottom to top, and the
percentage of the number of points (ni) per layer in relation to the total number of points per tree
(ntree) formed the vector Np = {100 × ni/Ntree}. Then, Np was smoothed with a 3 × 1 Gaussian filter,
and the CBH was defined as the height that corresponds to p% of the total number of tree points
(Figure 4B). To enhance the adaptability of our data, p% was ultimately set to 1% according to the
highest accuracy (the smallest root mean square error (RMSE)) of verification between the detected
value and the measured value.

The CBH was used to extract the crown from individual tree points, and a series of crown
characteristic parameters were used as future estimates. The highest point within each tree crown
was regarded as the tree top, and its x,y coordinate and z value represented the tree location and the
TH, respectively. The CL, which represents the crown size in the vertical direction, was calculated by
subtracting the CBH from the TH. Additionally, the vertical projection of the crown was used to estimate
the LCR by constructing a two-dimensional (2D) convex hull algorithm (Figure 4C). The average value
of the distance from the convex hull nodes to the vertex of the tree crown was defined as LCR. The TH,
CL, and LCR were used as further parameterized variables to reflect the variation in individual tree
size in the crown profile modelling procedure.

Figure 4. (A) Individual tree point clouds, (B) determination of the crown base height, and (C) the
vertical projection of the crown for crown width estimation.

Width Percentile Generation

To eliminate asymmetrical branches due to competition between trees, the crown points of each
tree were converted from 3D space to 2D space [6]. The vertical direction of the tree top was regarded
as the central axis of the crown. The horizontal Euclidean distance between each crown point and the
central axis was then calculated to generate a 2D distribution of the crown returns. In the new XY
space, the x-axis measured horizontal distance from the central axis and the y-axis measured height
above ground.

A 0.5 m height bin was used to divide each 2D distribution of crown returns from the tree top to the
crown base, and the cumulative width percentiles were calculated within each bin [6]. To adequately
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describe the outer limit of each crown and to remove outliers, the 90th, 95th, and 99th percentiles
were used to generate the crown profiles. Then, the width percentile points were vertically rescaled to
between 0 and 1 to facilitate comparisons among trees of different CLs. Specifically, the vertical distance
from each width percentile point to the tree top (the depth into the crown, DINC) was calculated,
and this value was converted into relative depth into the crown (RDINC) by dividing it by the CL.
Taking RDINC as the independent variable, a crown profile model was used to describe the outer
crown radius (OR) at different crown positions, and the model variables are shown in Figure 5.

Figure 5. A schematic representation of the crown variables used for crown profile modelling. CL:
crown length; OR: outer crown radius, DINC: depth into the crown; LCR: largest crown radius.

2.3.4. Crown Profile Modelling

Four basic equations (parabola, Mitscherlich, power, and modified beta equations) derived from
the existing crown profile model were used to fit the aggregated width percentile points in this study.
To make the curve reasonable in describing the outer crown profile of conifer trees, the OR should
be restricted to 0 when the RDINC is 0 [1]. Hence, the intercept term of the equations was removed.
Because the parameter estimates of the models varied across individual trees, crown metrics were
introduced into the basic model by analyzing the relationship between the parameters and evaluated
tree metrics (TH, CL, and LCR). The LCR, as the variable with the highest correlation with the other
parameters, was introduced into the equation last, and the specific forms of the four reparameterized
models are as follows.

The parabola equation is the equation most widely used to describe the outer crown profile due
to its flexibility [5,8,49], and its reparameterized form is shown below as Equation (1).

OR = (a 1 + a2 LCR)RDINC + bRDINC2 (1)

where OR is the outer crown radius; RDINC is the relative depth into the crown; LCR is the largest
crown radius; and a1, a2, and b are parameters to be estimated.

The Mitscherlich equation is suitable for describing tree growth characterized by faster growth at
the beginning, which is similar to the growth of the crown at the top; hence, it was used to simulate the
crown branches [50]. Here, we used this equation and reparameterized it as in Equation (2).

OR = a(1 − e−(b1 + b2LCR)RDINC) (2)
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where a, b1, and b2 are parameters to be estimated.
The power function and its transformation form are often used to model the crown profile [5,49].

The reparameterized model is given in Equation (3).

OR = (a1 + a2LCR)RDINC(b1 + b2LCR) (3)

where a1, a2, b1, and b2 are parameters to be estimated.
A 3-parameter beta function developed by Ferrarese et al. [6] was also used in this study and is

given in Equation (4).

OR = (c1 + c2LCR)
(1 − RDINC)a−1RDINC(b1 + b2LCR)−1

β(a, (b1 + b2LCR))
(4)

where a, b1, b2, c1 , and c2 are parameters to be estimated.
All the above extracted crown profile points were employed to fit these four models with nonlinear

least square fitting. These four models were also used to simulate the upper crown (also called the
light crown), which is the portion of the crown above the point where the LCR occurs.

2.3.5. Accuracy Assessment

In this study, the accuracy assessment included three parts: individual tree matching between the
detected and reference trees, comparison between UAV-LiDAR crown profile points and reference
values, the validation of the four crown profile models presented above, and the evaluation of crown
volume prediction.

The widely used summary metric of detection accuracy (DA) was used in this study to quantify
the accuracy of tree detection [43]. DA is calculated as the ratio of the number of 1:1 detected trees to
the number of all reference trees.

The assessment of crown profile point accuracy is performed to evaluate the correspondence
between the crown radius and the profile points. Since it is difficult to measure the crown radius at
all positions within the corresponding sample tree crown, we used the Larix olgensis crown profile
model developed by Gao [51] (Equation (5)) to calculate the reference data and verify the three width
percentile points (90th, 95th, and 99th) from the UAV-LiDAR data.

OR = (a 1DBHa2)

1 − (1 − RDINC)0.05

1 − (a3CHa4)0.5

a5(1 −RDINC) + a6(exp(1/HD)(1 −RDINC))

(5)

where DBH, CH (ratio of CL to TH), and HD (ratio of TH to DBH) are field-measured values, and the
procedure for the estimation of parameters a1–a6 can be found in Gao [51]. The Pearson correlation
coefficient (ρ), RMSE, relative RMSE (RMSE%), Bias, and relative Bias (Bias%) [43] were used to
evaluate the accuracy and error of our estimated and reference values (Equations (6)–(9)).

RMSE =

√∑n
i=1 (y L − yG

)2

n
(6)

RMSE% = 100 ×
RMSE

yG
(7)

Bias =

∑n
i=1(y L − yG

)
n

(8)

Bias% = 100 ×
Bias
yG

(9)
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where n is the number of crown profile points, yL is the estimated OR from UAV-LiDAR data, and yG
is the predicted OR from Gao [51]’s model.

R2 and the RMSE were used to compare the goodness of fit of the four models. Leave-one-out
cross validation was used to verify the predictive effect of each model [52]. Three statistical criteria
were calculated: mean prediction error (MPE), mean absolute error (MAE), and mean relative absolute
error (MAE%) (Equations (10)–(12)).

MPE =

∑n
i=1

(
yi −ŷi

)
n

(10)

MAE =

∑n
i=1

∣∣∣yi −ŷi

∣∣∣
n

(11)

MAE% =

∑n
i=1

(
|yi −ŷi|

yi

)
× 100

n
(12)

where n is the number of samples, yi is the observed value of the ith sample, and ŷi is the predicted
value of the model.

In order to further evaluate the prediction accuracy of these four models, individual tree crown
volumes were derived from the rotation of each profile. Since crown volume is hard to measure through
field survey, the crown volumes predicted by Gao [51] were calculated as the reference volumes.
As a comparison, a simple geometry cone was used to represent tree crown shape [6], and the radius of
the cone was the measured LCR and the height was the measured CL. Another commonly used LiDAR
volume estimation method, 3D convex hull [53], was also used for comparison. Crown volumes were
assessed in terms of the absolute error produced by each model. Paired T-test was used to further
evaluate the differences between every two volumes.

3. Results

3.1. Individual Tree Segmentation and Sample Tree Selection

The results of individual tree segmentation with the RHCSA algorithm are shown in Table 2.
A total of 270 detected trees were successfully matched with the measured trees, and the DA was 77.4%.
The DA of Plot 2 was higher than that of Plot 1, which is due to the easier separation of trees in Plot 2
with lower stand density. On the other hand, a few deciduous trees with irregular branches tended to
be over-segmented, which may have decreased the DA of Plot 1. Then, nine other trees (including five
Fraxinus mandshurica trees and four Betula platyphylla trees) were removed from all 1:1 matched trees.
A few incomplete crowns were also removed. As a result, 243 out of 270 (90%) matched trees were
selected for the next experiment after the inspection of tree crown integrity.

Table 2. Results of individual tree segmentation and sample tree selection.

Reference Trees Detected Trees 1:1 Matched Trees Detection Accuracy Final Selected Trees

Plot 1 203 220 151 74.4% 129 (63.5%)
Plot 2 146 142 119 81.5% 114 (78.1%)
Total 349 362 270 77.4% 243 (69.6%)

3.2. Comparison of Width Percentile Points

After the selection of sample trees, the points comprising the 90th, 95th, and 99th width percentiles
for each tree were generated. As a result, 2392 points were generated for each width percentile.
The width percentile points of each tree have two attributes: one is the position of the crown
(RDINC) after rescaling, and the other is the corresponding OR. Reference data calculated according
to Equation (5) were used to verify the OR estimated based on the UAV-LiDAR data, and the results
show a stronger correlation between the measured value and the estimated value (ρ of 0.864) and that
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there were smaller RMSE (0.3354 m) and RMSE% (24.49%) values for the 95th width percentile than
for the 90th and 99th percentiles (Table 3). In terms of Bias and Bias%, we found that the 99th width
percentile overestimated the crown radius, while the 95th and 90th width percentiles underestimated
the crown radius. When the selected percentile is large, a more extended crown is clearly observed,
which may lead to the overestimation of the crown radius. Therefore, we suggest that the 95th width
percentile is the most suitable for describing the outer profile of tree crowns. Even when the differences
among the three width percentiles were small, the 95th percentile points were used in the crown profile
fitting procedure.

Table 3. Results of the comparison of the LiDAR-estimated crown profile against field-measured
model values.

ρ RMSE (m) RMSE% Bias (m) Bias%

90th width percentile 0.860 0.3619 26.41 −0.1541 −11.25
95th width percentile 0.864 0.3354 24.49 −0.0830 −6.06
99th width percentile 0.854 0.3388 24.53 0.0112 0.81

Note: ρ is Pearson correlation coefficient, RMSE is root mean square error.

3.3. Model Fitting and Validation Results

The model parameters and the goodness of fit of the curves generated from the 95th width
percentile points are given in Table 4. It is noteworthy that all parameters were significant (p < 0.05),
and the results of the goodness-of-fit statistics for the four models illustrate that all crown profile
models had a high goodness of fit (R2 > 0.82). The modified beta equation (Equation (4)) showed the
best performance, with an R2 of 0.859 and a RMSE value of 0.2433 m. The parabola equation showed
suboptimal performance, with an R2 of 0.857 and a RMSE value of 0.2448 m. For the upper crown,
the results showed that it had better fitting results than the entire crown regardless of equation type.
The modified beta equation still showed the best performance and explained nearly 90% of the observed
variability, with an RMSE value of 0.2240 m. The power and parabola equations showed slightly lower
accuracy than the modified beta equation. The Mitscherlich equation showed the worst performance
in fitting the crown profiles from the UAV-LiDAR data. In terms of the number of parameters in the
model, the parabola equation has the advantages of few parameters and high accuracy.

Table 4. Estimates of the parameters and goodness-of-fit statistics for the four crown profile models
obtained from the 95th width percentile points.

Entire Crown Upper Crown

Parameter Estimate Standard Error R2 RMSE (m) Estimate Standard Error R2 RMSE (m)

Parabola equation
a1 1.3512 0.0216 0.857 0.2448 1.4034 0.0244 0.873 0.2287
a2 1.8672 0.0460 −1.9490 0.0544
b −2.2775 0.0487 1.6310 0.0498

Mitscherlich equation
a 2.7232 0.0510 0.826 0.2699 3.1955 0.0845 0.853 0.2458
b1 −0.2816 0.0389 −0.0855 0.0297
b2 1.0965 0.0494 0.8025 0.0435

Power equation

a1 0.1373 0.0425 0.847 0.2528 0.1522 0.0505 0.874 0.2273
a2 1.1891 0.0265 1.2768 0.0315
b1 0.3847 0.0335 0.4408 0.0341
b2 0.1202 0.0191 0.1278 0.0195

Modified beta equation

a 1.0928 0.0070 0.859 0.2433 1.0435 0.0078 0.878 0.2240
b1 1.4175 0.0344 1.3783 0.0350
b2 0.1787 0.0199 0.6785 0.0116
c1 0.2125 0.0177 0.2246 0.0187
c2 0.6590 0.0111 0.1966 0.0205

Table 5 presents the leave-one-out cross validation results for the four crown profile models.
In terms of the MPE, the entire crown radius was slightly underestimated by the power equation and
slightly overestimated by the other equations. The modified beta equation had the smallest MAE
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and MAE%, and the Mitscherlich equation had the largest MPE, MAE and MAE% for the entire and
upper crown.

Table 5. Validation results for the four crown profile models.

Model
Entire Crown Upper Crown

MPE (m) MAE (m) MAE% MPE (m) MAE (m) MAE%

Parabola equation 0.0149 0.1833 20.0521 0.0206 0.1755 20.2363
Mitscherlich equation 0.0295 0.2040 21.9694 0.0316 0.1883 21.4927

Power equation −0.0012 0.1870 20.9585 0.0026 0.1715 19.8865
Modified beta equation 0.0034 0.1807 19.7303 0.0040 0.1699 19.7126

Note: MPE is mean prediction error, MAE is mean absolute error, MAE% is mean relative absolute error.

3.4. Evaluation of Crown Volume from Profile Models

The absolute errors of the predicted volumes derived from six models (cone, 3D convex hull,
parabola, Mitscherlich, power, and modified beta model) were shown in Figure 6. The results showed
that the cone volume has the biggest error, whereas the modified beta volumes have the smallest error
among all volumes. The four volumes obtained from the profile model we developed have relatively
small errors compared with the cone and 3D convex hull volumes. In terms of mean absolute errors,
except for cone, the five volumes were relatively small. For volume prediction results, there was no
significant difference among the four volumes predicted by profile models (p > 0.05), but significant
difference between predicted volumes of each profile model and volumes of the cone or 3D convex
hull (p < 0.05).

Figure 6. Comparison of crown volume prediction for the six models by absolute error.

4. Discussion

In the present study, we applied low-cost eight-rotor UAV platform-based LiDAR, which can
quickly provide dense returns for ground objects to obtain the external crown shape of Larix olgensis.
The results demonstrate that UAV-LiDAR can be used to model crown profiles, especially for the upper
crown. Here, we will further discuss the feasibility of using UAV-LiDAR for modelling crown profiles
and factors that affect such modelling as well as provide suggestions for future work.

4.1. Feasibility of Modelling Crown Profiles Using UAV-LiDAR

Crown profile extraction benefits greatly from the flexibility of UAV-LiDAR. First, UAV-LiDAR
produces higher-density points than ALS by flying at a relatively low altitude and slow speed [33].
Hence, it can provide more detailed characteristics of forest canopy structures in a small region than
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ALS. Second, UAV-borne systems have higher measurement precision than satellite and airborne
systems. A Velodyne Puck VLP-16 sensor was used in this study as the scanner, and the accuracy of the
measured distance was ±3 cm [36]. In contrast, typical satellite and airborne laser sensors have a larger
footprint, which causes greater errors in the positioning of the laser returns [41]. Third, UAVs are
flexible and efficient in terms of data acquisition. For plot level scanning, a systematic multi-scan
location approach and subsequent co-registration are necessary and siting retro-reflective targets can
also be time-consuming when using TLS [54], whereas UAVs can plan routes intelligently and complete
automatic acquisition within a few minutes. For similar resolution levels and in particular same goals,
e.g., obtaining the crown profiles, UAV can achieve the same effect as TLS under the premise of high
efficiency. Of course TLS will take more time but this is a trade-off between time and accuracy and
detail. Furthermore, while UAV may be well suited for approximating crown profiles and TLS might
be “too much” for that purpose, in other tree metrics (e.g., DBH) TLS can be much better than UAV
based scanning.

In the initial step of modelling the crown profile in this study, individual crowns were delineated
with 77.4% overall accuracy (81.5% and 74.4% in Plots 1 and 2, respectively). It is noteworthy that
our target trees were planted at high density (the stand densities of Plots 1 and 2 were 3167 n/ha and
2433 n/ha, respectively). Previous studies have shown that the detection rate of trees decreases with
increasing tree density [55], and they pointed out that when the number of trees per hectare is greater
than 1500, the detection rate decreases below 0.5 when ALS data are used. Wu et al. [56] used the
same UAV-LiDAR system employed in this study to segment individual trees with four algorithms
in three stem density plots, and the results showed that the accuracy of the segmentation was between
74% and 80% at the high stem density (713 n/ha). In view of the high stand density in this study area,
the segmentation algorithm used in this study had a great effect on the UAV-LiDAR crown delineation.
The accuracy of individual tree detection could even be improved in sparse forests.

For the selection of modelling variables, profile points were generated from 2D crown points
using width percentiles. The width percentile adequately describes the outer limit of each crown [35].
Compared with the 100th percentile, a position interior to the 100th percentile can compensate
somewhat for horizontally asymmetrical crowns [6]. Herein, we compare the 90th, 95th, and 99th
width percentiles in terms of crown profiles predicting (shown in Figure 7). For comparison, the crown
profile generated by Gao [51]’s model (Equation (5)) was also overlaid onto the figure. To quantify the
differences among the various curves, the RDINC of the tree was divided into 100 intervals, and the
average RMSE of these intervals between the 90th and 95th percentiles and between the 99th and 95th
percentiles were 0.0786 m and 0.1073 m, respectively. The differences among the three width percentiles
were found to be small, and these three curves are similar to the reference curve (the smallest RMSE was
0.0885 m). This indicates that the width percentiles from UAV-LiDAR data are reliable for predicting
crown profiles.

When the 95th percentile points were used for modelling and the LCR was introduced, the modified
beta equation explained nearly 86% of the variability in the entire crown radius and nearly 88% of
the upper crown radius variability, whereas the fitting accuracy of the basic model (without the LCR)
was only 64% and 69% for the entire and upper crown, respectively. Many previous studies have
used the LCR when developing crown profile models [10,57,58]. Crecente-Campo et al. [3] modified
a simple polynomial equation and the model of Baldwin [2] by including the LCR in the model
formulations, and the R2 was increased by 22.8% compared with that of the model without LCR values.
Subsequently, Dong et al. [5] used this model and its modified form to generate the profile of Chinese fir,
with fitting results of R2 values of 0.765–0.885 for the entire crown and 0.658–0.939 for the upper crown.
Soto-Cervantes et al. [59] used six models containing the LCR to model the profile of Pinus cooperi
Blanco, and the fitting results included R2 values of 0.467–0.918 for the entire crown and 0.854–0.984 for
the upper crown. These results indicate that the four reparameterized models we used well represent
the available information on the crown shape of Larix olgensis obtained from the UAV-LiDAR data.
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Figure 7. Four types of curves modelled on 90th, 95th, and 99th width percentile points; red curves
represent the reference crown profile.

Based on the results of the crown profile prediction, the modified beta equation achieved the
best prediction accuracy, followed by the parabola model (Table 5). For the crown volume prediction,
the modified beta and parabola equation still showed optimal performance (Figure 6). However,
there was no significant difference in predicted volumes between the two models. The number of
parameters in the parabola equation is two less than that of the modified beta equation, so it is flexible
and convenient. The abovementioned results indicate that the model with three-parameters can
accurately simulate the crown profile of Larix olgensis when using UAV-LiDAR data. In other studies
on Larix olgensis crown profile, Gao et al. [7] compared four equations (segmented power equation,
segmented polynomial equation, modified Weibull equation, and Kozak equation), and the number of
parameters was 10, 8, 7, and 6, respectively. The Kozak equation with fewer parameters was selected
as the best model when the fitting results are second only to 10-parameter segmented power equation.
In this study, since the even age of trees leads to the small crown shape variation, the model with fewer
parameters is suitable. If the data type is increased, the appropriate increase of model variables is
meaningful for explaining the crown shape variation.

In traditional crown profile modelling, the sample tree was felled and tree metrics (such as
DBH, TH, and CL) and branch attributes (such as branch length, branch chord length, branch angle,
branch diameter, and depth into the crown) were measured. In this study, it is hard to measure the
branch attribute of each tree. Nevertheless, we conducted a rigorous accuracy assessment through an
established crown profile model of Larix olgensis, which was developed by Gao [51] (Equation (5)).
In the proposed model, a total of 509 branches were measured from 49 felled sample trees. The samples
with different ages, status, stand densities and slopes fully represent the distribution of Larix olgensis
in Northeast China. After comparing five models (segmented parabola, segmented Mitscherlich,
segmented power, modified Weibull, and Kozak equation), the Kozak equation was used as the best
equation to model the crown profile. The tree variables (DBH, CH, and HD) were introduced into
the model to describe the variation of crown shape. The profile model achieved high accuracy of
fitting R2 of 0.83, and the crown volume estimated from the model achieved a high accuracy of 85%.
These results indicate the reliability of the reference data.

This study provides a pipe-line from raw point cloud data to final crown profile predictions.
Although we have only made profile prediction for Larix olgensis, the framework of this method can be
transferred to other tree species, especially conifer species with similar shape (such as Korean pine,
Pinus sylvestris var. Mongolica, etc.). Ferrarese et al. [6] have used the beta and Weibull equation to
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model the profile of different tree species (Pseudotsuga menziesii, Pinus ponderosa, and Abies lasiocarpa),
the results indicate that there was no difference in accuracy between beta and Weibull curves for
A. lasiocarpa, and both equations produced significantly small errors in all species. The four models we
used have also been used by other researchers to model the crown profile of many other tree species
(such as European beech, Chinese fir, Korean pine, Pinus sylvestris var. Mongolia). For broad-leaved
species with complex crown shape, the current models may have limitations, the inverse third order
polynomial equation can be a good choice [60].

4.2. Uncertainty in Modelling Crown Profiles Using UAV-LiDAR

Although UAV-LiDAR has great potential for modelling crown profiles, we also need to address
the uncertainties in this process. By comparing the predicted value with the reference value (Figure 6),
we found that the main source of the difference is the lower part of the crown (especially for the modified
beta and parabola equations, which better fit the LiDAR percentile points, the underestimation becomes
increasingly obvious with increasing RDINC), which directly reflects the lack of a description of the
lower part of the crown by the UAV-LiDAR data. From the perspective of the data source, it is evident
that UAV scanning above the canopy results in a decreasing return intensity from the top to the bottom
of the canopy as well as the obstruction of the branches, thus reducing the number of points in the lower
part of the canopy. Similarly, TLS struggles to identify points for the upper crown while scanning under
the canopy. Other studies have also noted that occlusion was a major source of uncertainty and the
difficulty of laser scanning and forest reconstruction in dense forests [54,61]. Therefore, we recommend
using multi-return LiDAR sensors or full waveform recognition (with sizeable LiDAR footprints that
potentially penetrate through the ground) to provide sufficient energy to better penetrate the canopy
or combined UAV-LiDAR with ground-based LiDAR to generate a more complete canopy structure.

In the process of data processing, individual tree segmentation and profile points generation
are two key steps, which still exist some uncertainties. Although it has been proved that the
RHCSA method obtained stable and high accuracy for different forest types, including coniferous
forest, coniferous-broadleaves forest and deciduous forest, several limitations still exist. RHCSA
considers CHM as mountain-like topographic surfaces, some flat crowns and suppressed trees without
a dominant protrusion on CHM are difficult to detect and delineate [30]. In this study, the forest
stand was an even-aged plantation, which has less suppressed trees and understory trees than the
uneven-aged heterogeneous forests. The omission of a large number of suppressed trees and over
segmentation of large trees may present great challenges and uncertainties for crown profile modelling.
Hence, it is necessary to select the individual tree segmentation method according to the forest type.
Additionally, it is difficult to distinguish the staggered parts of the canopy between adjacent trees
with LiDAR, and thus the segmentation of individual trees will cause crown diameter loss, which is
still a major challenge in individual tree segmentation [30]. Therefore, incomplete crown caused by
staggering or occlusion needs to be removed by visual inspection. Although this work requires manual
intervention, it is still acceptable compared with the workload of field measurement. For profile points
generation, the uncertainty mainly comes from the selection of height bins. Since the detail of the
profile description is determined by the size of the bin, the performance of the developed model will
be sensitive to the bins. The smaller the bin, the more detailed the profile is, and the larger the bin,
the more details are missing. In other studies, Ferrarese et al. [6] used the 0.25 m height increment bins
to calculate width percentiles. However, due to the whorls of Larix olgensis from the sprouting branches
between whorls [7], small bins will cause the crown profile to be affected by sprouting branches.
Following Gao’s research [7], the branches were measured at 0.5 m intervals of the entire crown in
detailed field measurement. Therefore, it is reasonable to select a height bin of at least 0.5 m. For other
tree species, the height bins should be set according to the branch distribution characteristics and the
requirement of level of details.

From a modelling perspective, the selection of sample trees should span a range of conditions
and sizes. As noted previously, crown shape is affected by genetic characteristics and environmental
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variables, such as tree density, site productivity, and terrain [5,6]. In addition, crown shape also
varies with the light conditions in different directions and competition with neighboring trees [7].
Although our study did not explicitly characterize the effects of multiple site conditions and competition
with neighbors on crown shape, we further divided all sampled trees into two groups (Plot 1 and
Plot 2) based on the stand density and three classes based on the DBH (Class I with DBH less than
10 cm; Class II with DBH between 10 cm and 13 cm; Class III with DBH greater than 13 cm) to analyze
the effects of stand density and tree growth on the crown shape, respectively. The parabola equation
was used for fitting, which has a similar accuracy to the beta equation and fewer parameters, leading
to higher efficiency. The results of the fitting of the curves representing the data associated with the
different stand densities (Figure 8A) show that the crown radii of individual trees at the lower stand
density were larger than those at the higher stand density. This likely occurred because when the
growth space is limited, the competition pressure experienced by the crown increases, which in turn
limits the extension of the crown. In the future, more plots with different densities can be used to explore
the relationship between the crown radius and tree density. The RDINC of the trees was divided into
100 intervals, and the RMSE of these intervals between Plot 1 and Plot 2 was 0.0017 m; this difference
increased with an increase in the RDINC. In terms of the three diameter classes (Figure 8B), the RMSE
between Class I and Class II was 0.0852 m, and that between Class III and Class II was 0.0709 m.
The results indicate that the crown radius increased with DBH. Among trees of the same age, trees
with a large DBH are more dominant, more competitive, and intercept more light, and they therefore
grow better. It is clear from these results that the effect of tree growth on crown shape is consistent
with the results of the study by Sun et al. [8].

Figure 8. Curve fitting for (A) different stand densities and (B) different diameter classes using the
parabola equation.

Overall, modelling crown profiles using UAV-LiDAR showed great advantages, but there are
also some noteworthy deficiencies. The main purpose of this study was to explore the feasibility of
using UAV-LiDAR to model the crown profile. We found that the time commitment required for
data acquisition, the efficiency of data processing and the accuracy of crown profile modelling are
considerable compared with those associated with field-measured data or other LiDAR platforms.
UAV-LiDAR may best be used to collect data from a large number of trees that are difficult to



Sensors 2020, 20, 5555 17 of 20

destructively sample. In addition, the data distribution is too centralized to represent the crown shape
of various site conditions and age stages, and thus the crown profile models we developed can describe
only the outer crown shape of trees in an 18-year-old Larix olgensis plantation. Additionally, UAV-LiDAR
is somewhat labour intensive with regard to depicting the lower canopy structure, especially in the
case of high tree densities, and individual tree segmentation is also one of the difficulties. With the
emergence of a multi-return LiDAR sensor and the improvement of the branch and leaf separation
algorithm, the lower crown could be better modelled.

5. Conclusions

In recent years, the accuracy of individual crown structures extracted with LiDAR has increased,
and the emergence of UAV platforms has facilitated fine-scale crown shape descriptions. In this
study, we explored the possibility of modelling the crown profile of Larix olgensis using UAV-based
high-density LiDAR data, which are able to quickly characterize the crown extent in three dimensions
without destructive sampling. By delineating individual tree crowns on the basis of UAV-LiDAR data
and folding the 3D points representing each crown into 2D space, information about the extent of
the entire crown was retained. Four equations (the parabola, Mitscherlich, power, and modified beta
equations) were compared in terms of their performance in modelling the crown profile of Larix olgensis
and showed good results.

Using high-point-density (~370 pt./m2) UAV-LiDAR data, we achieved a high accuracy of
individual crown delineation (77.4%) in high-density (>2400 trees/ha) forest stands. The 95th width
percentile is an adequate descriptor of the outer crown profile extracted from UAV-LiDAR point
clouds when compared with the reference data (the Pearson correlation coefficient (ρ) was 0.864,
RMSE = 0.3354 m), and little variation in the crown radius was detected when alternate width
percentiles were used. When modelling the crown profile, the modified beta equation showed the
best performance, explaining 85.9% of the observed variability for the entire crown and 87.8% of the
variability for the upper crown. The parabola equation showed suboptimal performance, which is
not significantly different from the modified beta equation in crown volume prediction and has fewer
parameters. The volumes predicted by the four models produced significantly smaller errors than did
cones or 3D convex hulls.

In summary, UAV-LiDAR displays excellent feasibility for extracting fine-scale tree crown shapes,
especially for the upper crown. Occlusion among crowns and the lack of information below the
crown remain two of the most confounding aspects of UAV-LiDAR for crown profile modelling.
Future research should focus on supplementing information under the canopy by using multiple-return
UAV-LiDAR or combined ground-based laser scanning and developing an accurate individual tree
crown delineation algorithm to distinguish the branches from different crowns.
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