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Abstract: Next generation cellular systems need efficient content-distribution schemes. Content-

sharing via Device-to-Device (D2D) clustered networks has emerged as a popular approach for 

alleviating the burden on the cellular network. In this article, we utilize Content-Centric Networking 

and Network Virtualization to propose a distributed architecture, that supports efficient content 

delivery. We propose to use clustering at the user level for content-distribution. A weighted 

multifactor clustering algorithm is proposed for grouping the D2D User Equipment (DUEs) sharing 

a common interest. The proposed algorithm is evaluated in terms of energy efficiency, area spectral 

efficiency, and throughput. The effect of the number of clusters on these performance parameters is 

also discussed. The proposed algorithm has been further modified to allow for a tradeoff between 

fairness and other performance parameters. A comprehensive simulation study demonstrates that 

the proposed clustering algorithm is more flexible and outperforms several classical and state-of-

the-art algorithms. 

Keywords: D2D communication; distributed architectures; 5G; content-sharing; clustering 

algorithm; content-centric networking; network virtualization. 

 

1. Introduction 

Unprecedented demand for multicast applications is driving a move towards content-centric 

cellular networks. However, to accommodate such services, future networks must go beyond the 

capabilities of their current generation counterparts [1,2]. Cellular users are actively engaged in 

generating and sharing the content of various types [3]. Therefore, future networks will require to 

handle significantly higher multimedia services [4,5]. Existing centralized architectures and 

mechanisms may not be able to meet the content-sharing demands [2,3]. Decentralized mechanism 

and load mitigation in cellular networks are required to meet the rising demand of content sharing. 

One of the techniques that can effectively address load mitigation is device-to-device (D2D) 

communication [5]. It is different from the conventional cellular communication where all 

communication goes via the core network irrespective of proximity of the devices [6]. Various 

architectural frameworks have been proposed in the literature to support D2D-based content sharing. 

The concept of clustering users in proximity sharing a common interest has been very popular for 

multicasting scenarios [3]. Typically, an intermediate node, termed as cluster head (CH) fetches the 

content from the Base Station (BS) and delivers it to several content requestors [7–9]. Medium Access 

Control (MAC) strategies utilizing clustering for reducing energy consumption specific to 

multicasting scenarios are being proposed [8–10]. It is reported in the literature that clustering improves 
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the D2D caching efficiency and communication [11,12]. We presented the effectiveness of utilizing 

clustering in a D2D multicasting scenario in one of our previous works [13]. Formation of appropriate 

clusters is significant as it influences the performance of the underlay cellular networks [3]. Considering 

all these, we propose a multifactor weighted clustering algorithm in this article. The algorithm utilizes 

proximity, channel gain, and channel variance (details in later sections) to form the clusters. 

To realize clustering that supports content-sharing via D2D, a suitable architecture is necessary 

that not only conforms to the standards of future cellular networks but is also distributive in nature. 

Moreover, it should be capable of handling a high user density. Therefore, we propose a decentralized 

architecture for content-sharing that is suited for 5G and future cellular network. This architecture 

utilizes Content-Centric Networking (CCN) and Network Virtualization (NV), key technologies of 5G 

architecture [14–19]. Our proposal also employs the frame structure utilized in the published article on 

5G [20–23]. The details regarding the proposed architecture can be found in Section 3. 

Recent literature suggests that the geographical distribution of mobile users play a vital role in 

successful content-caching [24]. Moreover, to ensure nearby availability of content, caching at a D2D 

device should consider social ties and requests pattern. In a real-scenario, different social events such 

as sporting events and concerts can significantly influence the clustering schemes and the 

multicasting scenario. Consider the example of a concert where users are interested in the same 

videos of the artist. In such cases where users share a strong social relationship, a user (e.g., CH) can 

easily contribute to the distribution of the video. Therefore, it is important to identify users with 

common social characteristics. In this study, the proposed decentralized architecture is supported by 

simple hash-based functions that have been previously used in multimedia broadcast networks for 

identifying users with a common interest. 

The major contributions of this research work are as follows: 

 A distributed architecture is proposed that is effectively supported by hash functions to identify 

the socially connected users. This is in contrast to the majority of the published works on D2D 

multicasting that do not consider distributed architecture along with content-identification. 

 A novel multifactor weighted clustering has been proposed. The performance of the proposed 

algorithm is shown to be superior compared to five benchmarked algorithms. In addition, the 

weights of the algorithm can be adjusted to suit the system’s requirements. This flexibility in 

trading off the performance with respect to various parameters is not available for existing 

algorithms. 

 The benchmarked algorithms are tested for throughput fairness which has not been reported in 

the literature on clustering. Moreover, different from the existing works, the impact of the 

number of clusters on the energy consumption and area spectral efficiency is also demonstrated. 

 To the best of the author’s knowledge, reported work in the literature considers either the spatial 

distribution of users or users’ social ties for their respective clustering algorithms. We propose 

to include both to make the clustering process comprehensive and evaluate its impact on the 

system’s performance. 

The rest of the manuscript is organized into five sections. Relevant literature and related work 

have been summarized in the next section. Section 3 presents the details of the proposed architecture 

and content identification technique. The proposed clustering algorithm is described in Section 3 as 

well. Section 4 presents the system model including the simulation setup. It explains all the major 

assumptions of the simulation environment, and mathematical models of the performance 

parameters. Section 5 discusses the performance of the proposed scheme benchmarked against 

existing methods. The findings of this research work are summarized in the Conclusion section while 

discussing the future directions of the proposed study. 

2. Related Work 

With exponentially increasing network devices, it is becoming difficult to fulfill the QoS 

requirements of multimedia services [25,26]. The growth of cellular devices has been addressed with 

the concept of dense networks having a large number of small cells. However, the limited capacity 
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of the backhaul becomes a bottleneck in such a scenario [27]. It has been proposed that the significant 

growth in 5G networks and beyond can be accommodated by investing more in Content-Centric 

Networks (CCN). The notion behind a CCN is to present a scalable and efficient mechanism for 

content delivery [28]. The techniques developed around CCN are expected to reduce the transmission 

delay by caching the data within the network. Data caching is performed closer to the group of mobile 

devices/content requesters by exploiting social ties (e.g., shared interest in content) or connections 

[11,29]. Device-level caching can be facilitated by D2D communication. D2D has been effectively used 

to disseminate data in various network scenarios. However, the network architectures presented in 

many of these works [11,29–31] considering the D2D multicasting scenario are centralized in nature 

and require massive message passing to make the whole scheme work. Such schemes do not meet 

the requirements of dense future cellular networks. Contrary to this, we have proposed a 

decentralized architecture that can effectively support the D2D multicasting scenario. 

Researchers have investigated the technologies that address the scalability of the network and 

the ability to cater to the growth in wireless traffic and services. Network virtualization concept has 

been widely used [27–29]. Virtual Private Networks (VPN) is one of the examples. Network 

virtualization aims to slice the resources of cellular architecture into virtual resources to be shared 

among multiple users. It should be noted that by cellular resources we mean a licensed spectrum and 

infrastructure e.g., Core Network and Radio Access Network, etc. [29]. All the signaling and message 

passing that needs to take place to set up the virtual network is well researched and presented in the 

literature [27–29]. Our study proposes a network architecture that combines the concepts of CCN and 

NV. This is different to the schemes found in literature, as we merge both the technologies. There are 

significant advantages to the proposed merger. One of the most important features is that not only 

the cellular resources but the actual contents can be shared. Duplicate transmissions exhaust the 

cellular resources. The content-sharing among the networks with the aid of virtualization can 

significantly reduce these redundant transmissions. Details of the architecture are presented in the 

next section. 

Clustering complements the proposed architecture. However, when a multicasting scenario is 

considered in the literature within the context of clustering, most works assume that users sharing a 

common interest have already been identified. Furthermore, if a system model is presented, how a 

typical cellular architecture can support such a model is not shown or glossed over. Most articles 

either discuss social tie/social interest modelling or clustering algorithm in detail but not both [32,33]. 

In [32], a clustering algorithm has been proposed and social metric is also considered as an important 

factor. However, it does not provide any details around how the users having the same interest are 

identified. The architecture that supports their system model is not presented either. Research work 

presented in [33] discusses the social ties/social attributes in detail and effectively describes the 

mechanism behind modelling social metrics. It also considers clustering for a multicasting scenario 

but the clustering itself is assumed to have taken place by placing the users in a certain grid. 

Therefore, clustering and its effects on the performance parameters have not been discussed. 

Moreover, it is important to note that [32,33] uses centralized mechanisms. In contrast to these works, 

we chose to address both content-identification (through the hashing concept) supporting a 

decentralized architecture and a clustering algorithm to complete the big picture. 

The consideration of distributed architecture, different performance parameters, and the 

flexibility to trade-off the performance for fairness is not seen in the recent and relevant literature. 

Different research works mentioned in Table 1 show the stated fact. For instance, a few works focus 

on throughput, whereas others provide details on energy consumption. On the other hand, only a 

few articles have considered Area Spectral Efficiency (ASE) and Fairness. Most importantly, all these 

works rely on centralized architectures. As opposed to this, our work provides the details on all these 

parameters while proposing a distributed architecture. 
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Table 1. Summary of related research articles. 

Research Year 
Distributed 

Architecture 

Performance Parameters 

Throughput 
Energy 

Consumption 

ASE (Area 

Spectral 

Efficiency) 

Fairness 

Asadi et al. [34] 2016      

Zhang et al. [35] 2017      

Yang et al. [12] 2018      

Huang et al. [36] 2018      

Rahman et al. [37] 2018      

Pizzi et al. [38] 2019      

Aslam et al. [13] 2019      

Shi et al. [39] 2019      

Wu et al. [40] 2019      

Wang et al. [41] 2019      

Zhou et al. [42] 2020      

Our Proposal 2020      

3. Proposed Distributed Architecture and Clustering Algorithm 

The proposed concept is illustrated in Figure 1. The utilization of clustering for content-sharing 

is the key concept of the proposed architecture. The architecture is based on CCN and NV. Hash 

functions identify users with common interest who are then organized in clusters based on the 

proposed multifactor algorithm. The clustering algorithm is optimized using fuzzy optimization 

which is useful in optimizing clustering as well as other parameters of a cellular network [43–46]. 

Each cluster has a cluster head (CH) that are responsible for multicasting the required information to 

the cluster members. After clustering, all the content-requests from any given cluster traverse 

through the CH and users are served via the CH utilizing D2D communication. 

 

Figure 1. Summary of the Proposed Mechanism. The four critical aspects are: distributed architecture 

implementation using Content-Centric Networking (CCN) and Network Virtualization (NV), 

identification of users with common interest using hash functions, cluster formation with the 

proposed multifactor algorithm and optimizing the clustering algorithm using fuzzy logic. 

The concept of CCN is predicated on the requested content reaching the requester without having 

the need to reach the content publisher/provider [29]. Therefore, caching the requested content at an 

intermediate node will enable the content-delivery with reduced energy consumptions and latency. 

Once the intermediate node has cached the content, it can be provided to several requesters. 
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Architectures supporting Content-Centric Networking have been proposed in the literature 

[28,29,47,48]. However, these works consider centralized mechanisms. The architectures presented in 

[28,29] involve BS, and significant signaling is required to take place between BS and the D2D nodes, 

before the content-delivery. On the other hand, [47] does not provide any details on the architecture. 

The work presented in [48] does consider decentralized mechanisms, but it does not explicitly show 

any architecture that supports their mechanism. Our research considers a similar approach as 

presented in [28,29] with necessary modifications to accommodate the clustering of users for content-

sharing scenarios and making the scheme distributive. Figure 2 shows the network model of the 

proposed content-centric architecture. It is different from a conventional wireless network such as 

Internet Protocol (IP). The basic difference lies in the establishment of the connection. IP based 

networks first establish the connection between the requestor and the provider before the content is 

delivered. In contrast, the content is requested without the establishment of the connection with the 

host/content-provider in CNN. The proposed architecture utilizes Content-Centric Networking as 

well as network virtualization. The controller for virtualization, shown in Figure 2, is responsible for 

providing the location of the content-holder as well as setting the virtual infrastructure components 

for content-delivery. A mobile user requests certain content without the information of the host which 

holds that content. Another important entity of the proposed architecture is the caching server. It is 

an integral part of the network which caches popular contents and reduces duplicate transmissions. 

 

Figure 2. The proposed distributed network architecture. Each red device represents a cluster head 

that forwards the requested content to the virtualization controller that connects with the multimedia 

servers to fetch the contents. 

Figure 3 shows the layered network. The first layer, termed as a social layer, represents the social ties 

that exist among different groups of users. The physical layer represents the mobile devices that model 

the communication taking place in various clusters represented by a CH. It also shows the supporting 

infrastructure required to set up the communication and making the content-delivery possible. 
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Figure 3. The visualization of a layered network showing the interaction between the social users and 

the corresponding physical layer. 

3.1. Content Identification Using Hash Functions 

One of the important aspects of the proposed architecture is the mechanism that addresses the 

content-identification. We propose to utilize hash functions [49] for content-identification. Hash 

functions perform the mapping between the given data and hash of a specific length. The size/length 

of the output of a hash function does not depend on the length of the input. Hash can be regarded as 

a ”signature” for a given text [49–51]. One of the major applications of hash functions lies in the field 

of multimedia broadcast networks, as a content identifier [49–51]. The hash function aids the network 

by providing content identification to easily determine which content has been broadcasted, timing 

information, and to what station. Several hashing algorithms exist in the literature; we suggest using 

SHA-256 due to its reduced complexity and speed [52,53]. 

The binary sequence generated by the hash functions for a particular ”text” or ”name” will 

always be the same as shown in Figure 4. Therefore, if we produce the hash of the different contents 

at the content-servers, the hash value can be matched with the one generated by the content 

requestors. A match means that the same content is being demanded. Groups requesting the same 

content can, therefore, be identified based on the hash values. It is clear that hashing will not only 

help in identifying the content but also the group of users sharing the same interest. Therefore, we 

believe that hashing is a natural choice. 

 

Figure 4. The hash function: plain text to hash value. 



Sensors 2020, 20, 5509 7 of 25 

 

3.2. The Proposed Clustering Algorithm 

Clustering commences once users demanding the same content have been identified. The user 

clustering process consists of three main steps: selection of appropriate clustering metrics, 

identification of the devices suitable for being a CH, and finally, associating the cluster members with 

their respective CHs. The overall clustering process is shown in the flow chart of Figure 5. 

 

Figure 5. Flow chart of the proposed clustering algorithm. 

3.2.1. Weighted Clustering Approach 

CHs are selected on a per-frame basis. The duration of one frame is 10 ms following the relevant 

literature. All the users are considered CHs for the first frame; therefore, the clustering algorithm is 

implemented for the next frames. It is assumed that every node is capable of being a CH and has 

enough energy [12]. The position of the nodes remains the same during one frame. However, for the 

next frame user distribution/placement of users change and, therefore, every simulation represents a 

different user distribution. This is in accordance with the standard literature relevant to multimedia 

multicasting scenarios [11,12]. 
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After the initialization, the algorithm gathers the information about the clustering metrics and 

clusters are formed, details of which can be found in the subsequent sections. Before the clustering 

takes place, the distance among the devices and the channel conditions are obtained and conveyed 

to all the neighbors during the discovery phase as explained in the next subsection. Based on the 

information received, CHs announce its cluster members. It is assumed that multiple users can be 

detected simultaneously by the CH. All the members listen to the broadcast of the CHs and get 

attached to the one that serves them the best considering distance and channel conditions. 

3.2.2. Device Discovery 

Though the device discovery is out of the scope of this research, we utilized the information 

obtained through the device discovery. Therefore, the authors are describing the discovery process 

within the context of the proposed algorithm. 

Before the clustering takes place, it is necessary to discover the devices and create a neighbor 

list. We assume, as is common practice in the literature [54–58], that the neighbor list is available with 

the nodes. For these tasks, we propose to use the Peer Discovery Resource (PDR). PDR represents a 

resource unit, used to transmit the discovery signal or beacon signal. Two of the standard PDR 

structures that are used in published literature are LTE-A and FlashlinQ. Literature suggests that a 

considerable amount of information can be conveyed using either of these structures [34,56,57]. Moreover, 

different research works have utilized the PDR to send the clustering-related information [55,56]. We 

propose to utilize the same concept and use the PDR to send the information regarding the predefined 

clustering metric detailed in the subsequent section. Therefore, the signaling load for the proposed 

clustering scheme will be accommodated by standard signaling taking place in a D2D network. 

The users in proximity to one another receive the discovery signals. Devices decode this signal 

containing information such as device or user ID and its link characteristics (such as SINR, channel 

conditions) with the user. Based on these characteristics, a device decides which of the users whose 

signal it has received can be classified as neighbors. There are various advanced channel estimation 

algorithms and processes for 5G networks [58] that can be utilized for this purpose. Once the neighbor 

detection has taken place, every user possesses the list of its neighbors. 

3.2.3. Clustering Metrics 

The selection of clustering metrics significantly impacts the system’s performance. The two factors 

of the proposed clustering algorithm include distance and channel conditions among the users. Each 

factor is assigned to its respective weight. These metrics are selected due to their effect on target 

performance parameters such as throughput, area spectral efficiency, and energy consumptions. The 

significance of this selection will be further highlighted in the results section. 

1. The Distance Among the Nodes 

Recent literature has identified the significance of the spatial distribution of users as it directly 

influences the caching efficiency [24]. Furthermore, there is a high probability of successful D2D 

transmission if the devices are in proximity [11]. Hence, we chose distance among the nodes as an 

important metric for forming appropriate clusters. It is also important since users that do not exist in 

proximity are not ideal candidates for being a part of the same cluster even with a strong social 

relationship. 

2. Channel Conditions 

Since we are considering a multicasting scenario where a CH will be communicating with the 

rest of the cluster members, it is important for the cluster members to have good links with the CH. 

If we ignore these conditions, both inter-cluster and intra-cluster communication might be impaired. 

Therefore, we believe that channel conditions between the prospective CH and its cluster members 

is an important metric. 
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3.2.4. Cluster Head Selection 

During the CH selection process, devices use PDR to broadcast beacons continuously. These 

beacons include a predefined metrics (e.g., distance, channel conditions). Every device decoding the 

beacon stores the corresponding metric and its identifiers (see Section 3.2.2). This information is vital 

for the devices to select a CH and delegating the control to it for further communication. If a certain 

device is not able to receive a beacon signal, it might be out of reach of another device, and it can self-

select itself as CH. Once the metric information is received from the beacons, all the devices compare 

their metrics. The devices with the lowest metric values are identified as CHs. The remaining becomes 

the cluster members. It should be noted here that all the users need to fulfill the predefined criterion 

to be considered for clustering. It is based on the social relationship among the devices. The following 

steps summarize the proposed algorithm. 

Step 1: Determine the neighbors of each node using D2D discovery. Parameters of interest are 

stored. 

Step 2: Determine the nodes sharing the same interest/content using the hash function. 

Step 3: Compute the sum of distances (Euclidean Distance) for all the nodes against all their 

neighbors. 

�(�,�) =  �(��
� −  ��

�
) +  (��

� − ��
�) (1) 

where a and b represent any two neighboring devices. 

Step 4: Weights of the nodes are accumulated as follows: 

�� = �. ��� ∗ �(�,�) + �� ∗ (
1 

ℎ�� 

)� (2) 

��, ��  represents the weights given to distance, channel gains, respectively. ℎ��  represents the 

channel gain between the nodes a and b. The weights represented in Equation (2) are such that 

∑ ��
�
��� = 1. The node with the minimum �� is chosen as the CH. 

Since only nodes sharing a common interest should be considered for clustering, the total weight 

is being multiplied with a binary interest-factor denoted by “�”, so that if � =  �� ∗ �(�,�) +  �� ∗

(
� 

��� 
), then, 

�� =  �
�,     � ≠ 0
0,     � = 0

� (3) 

Step 5: Compare the weights for each node and select the cluster head corresponding to the 

smallest ��. 

Step 6: For the remaining devices, repeat steps 3 and 4, until each node is either selected as a CH 

or a CM. 

Step 7: Clustering optimization using Fuzzy (details in Section 3.2.6) 

3.2.5. Feature Scaling for the Clustering Metric 

The two different factors for clustering (Equation (2)) do not have the same range of values. 

Therefore, data normalization was performed [59]. There are different normalization techniques 

available in the literature such as Min-Max normalization, decimal scaling, and Z-score scaling 

[59,60]. Min-Max and decimal scaling do not handle outliers very well. Therefore, we chose to utilize 

the z-score normalization given by Equation (4). 

������ =  
� −  �̅

�
  (4) 

where � is the original value (e.g., channel condition) for which we calculated the z-score, and �̅ 

and σ represent the mean and the standard deviation of �, respectively. 
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3.2.6. Fuzzy Optimization of Clustering 

The initial clusters formed based on the proposed algorithm need to be optimized. Therefore, a 

fuzzy optimization technique was applied. Fuzzy optimization partitions the users into �  clusters 

based on the proposed criterion of clustering. Each input to this function is attached to an attribute such 

as the weights in our study. Fuzzy optimization is based on a partition matrix [61] � ∈ ��� where; 

��� =  �� ∈  [0,1]�∗�  �� ��� = 1, � 1, . . . �, �  ��� > 0, � = 1, . . . � 

�

���

 

�

���

� (5) 

The objective function of Fuzzy Optimization is given by Equation (6) [61]: 

�� (�, �) = � � ��� 

�

���

�

���

‖�� − ��‖
� (6) 

Equation (6) represents the objective function where � is the number of clusters and � is the 

set of cluster centers. N represents the number of samples (users in our case) and ��  is the kth 

calculated sample where ‖. ‖2represents the Euclidean norm, and ���  denotes the membership of 

�� to cluster �. Each element of the partition matrix is a measure of the extent to which a particular 

user belongs to a certain cluster. The complete optimization process is explained in the flow chart 

given in Figure 6. 

 

Figure 6. Optimization flow chart. 

Start

Initialization of the Algorithm 
---------------------------------------

Utilizing Initial Cluster 
Membership And Cluster Heads

Calculate the 
Membership Matrix P

Calculate the Matrix V 
and Update Cluster 

Heads

Calculate the Objective 
Function Given in (6)

Fuzzy Optimization 
Criteria satisfied?  

YES

NO

Optimal Clusters
-----------------------------------------

Clusters Updated (CHs and CMs)
-----------------------------------------

END

YES



Sensors 2020, 20, 5509 11 of 25 

 

3.2.7. Communication 

After the selection of CHs, they broadcast a message containing their IDs. They can use the same 

PDR used for neighbor detection to broadcast the results once the broadcast is received, and all the 

non-CH devices select those CHs to which they are closest and receive better channel conditions. The 

cluster members then associate themselves with a certain cluster, and the formation of the clusters is 

complete. The above-mentioned procedure is completely decentralized which is very important for 

dense networks. Once the clusters are formed, communication of all the cluster members goes via the 

CH. The operating phases of the proposed algorithm are shown in Figure 7. The next frame follows 

the same activities. 

 

Figure 7. Frame structure for clustering. 

4. System Model and Simulation Setup 

We consider a single cell where users are randomly distributed. In-band D2D communication 

using the underlaying concept is considered. In this case, D2D reuses cellular resources. These 

techniques are well researched [12,62,63]. The reason for considering the underlaying concept is that 

reutilizing the resources improve spectral efficiency. However, it creates interference and, therefore, 

was considered in our simulation scenario. Conventionally, BS provides the requested content; 

however, it comes at the expense of increased energy consumption and usage [62,63]. In contrast, the 

CH is responsible for delivering the contents to the requestors as depicted in Figure 2. Once the data 

have been fetched by the CH, the requested content is distributed utilizing the D2D multicast 

communication. 

4.1. Mathematical Models for Performance Parameters 

4.1.1. Achievable Rates for Cluster Head and Cluster Members 

There are total � users in the network which constitute the set � =  ���, ��, ��� � �,���. The 

CHs and cluster members are indexed as � and �, respectively. For clarity, all the other symbols are 

summarized in Table 2. 

Table 2. List of Symbols. 

Symbol Representation 

� Set comprises of all the users 

� Index of cluster member 

�� Cluster Head 

����
 Achievable Rate of ���when receiving the contents from the Base Station (BS) 

������
 Signal-to-Noise Ratio of a ��� 

��  Noise Spectral Density 

� Bandwidth of the Transmission Channel 

���,���
 Channel Gain between the BS and the ��� 

�� Transmit Power of the BS 



Sensors 2020, 20, 5509 12 of 25 

 

���
 Achievable Rate of cluster member �� 

���,���
 Channel Gain between the cluster member �� and ��� 

����
 Transmit Power of the ��� 

�� File Size (size of the demanded content) 

����� Power consumed by the CH to receive the contents from BS 

���� Power consumed by the cluster member to receive the content from cluster head (CH) 

The achievable rate at the CH can be written as: 

����
= � ���� �1 + ������

� (7) 

where the SNR of the ��� is given by: 

������
=  

�� ℎ��,���

�� �
 (8) 

Therefore, we may write Equation (7) as: 

����
= � log� �1 +

�� ℎ��,���

��� 
�  (9) 

Since we are considering a multicasting scenario, the achievable rate depends on the worst 

physical link. Otherwise, the successful reception of the content for all cluster members cannot be 

made certain. Therefore, the achievable rate at the cluster member �� can be written as follow: 

���
= � log� �1 +

����
ℎ��,���

��  �
� (10) 

It should be noted that ���
 is the minimum achievable rate to make sure that all the cluster 

members receive the content. 

4.1.2. Energy Model 

Downlink energy consumption is considered in this study. We utilized the energy consumption 

model presented in [64]. We assumed that the content demanded by the users is a file of size “��” ����. 

Suppose this file needs to be transmitted from ��� to cluster member �� with an achievable data 

rate of ���
. The time required to transmit this file is �

��

��
�

�

�������. Therefore, energy consumption 

��  in one of the clusters "�" can be written as: 

�� =  
�������

����

+ 
������

���

+ �
������

���

 
���
∀�

 (11) 

Equation (11) represents the sum of three independent terms. Energy consumption of CH to 

receive data is represented by the first term, whereas the second term represents the energy 

consumed by the CH to transmit the data to their cluster members. The sum of the energy consumed 

by the cluster members to receive the demanded content is shown by the last term in Equation (11). 

4.2. Simulation Setup 

The simulation environment was built on MATLAB. We considered a network model similar to 

Figure 2. A single cell of 1 sq.km area was considered. For the conventional cellular communication 

scenario, the BS was placed at the center of the cell. Moreover, it is important to mention that we 

explored the performance of a multimedia application (content). The packet size is 100 kB as 

suggested by relevant literature [65]. This simulation can easily be extended for any other multimedia 

application (e.g., video broadcast, eHealth, etc.) by varying the file size and packet interarrival rates 

[65]. We selected the weights empirically, which can be adjusted according to the system 

requirements. The number of clusters formed to produce all the results were chosen using the 
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Calinski–Harabasz criteria [66]. Various user densities have been considered to produce the results. 

The optimum number of clusters for various user densities is different, and hence, a specific number 

is not explicitly mentioned. All the simulation parameters of interest are detailed in Table 3. 

Parameters related to channel and energy consumption are adapted from the relevant literature 

[64,67,68]. 

Table 3. Simulation parameters. 

Parameters Value 

Simulation Platform MATLAB 

Channel Model Rayleigh Distributed 

User Placement Uniformly Distributed 

Node Density 100 to 1000 

Cluster Size Variable 

Number of Clusters Variable 

Transmit Power of CH 1.425 Joules/s 

Power required to receive data 

from BS 
1.8 Joules/s 

Power required to receive data 

from CH 
0.925 Joules/s 

Content Considered A file of size 100 kBits 

Classical benchmarked Schemes 
K-Medoids (KM), Genetic Algorithm (GA) and Fuzzy C-

Means (FCM) 

State-of-the-art benchmarked 

Schemes 

Proposed in [69]. 

(referred in this document as benchmarked I) 

Proposed in [70]. 

(referred in this document as benchmarked II) 

Number of Simulation Runs 10,000 

5. Results and Discussion 

5.1. Impact of Clustering and Social-Interest 

The proposed algorithm takes clustering and social interest into account, as both have a 

significant impact on the system. To demonstrate this impact, we consider three different scenarios. 

In the first scenario, conventional cellular communication takes place that does not involve D2D 

mode and clustering. The other two cases consider the proposed clustering algorithm, explained by 

the following text. 

 Clustered D2D users with no interest factor 

In this case, we assume that users do not share a common interest i.e., all of them are not 

interested in a single file (content). Users demand files of different sizes varying from 10 to 100 kB in 

a random manner. Though this scenario does not consider the social-factor, we still clustered them, 

as the literature suggests that even without the social-factor, clustering yields significant throughput 

gains [3,8,11,23]. The clustering criteria for these nodes are the same as mentioned in Equation (2) 

except that the interest-factor “I” is not considered. The weights selected are as follows: �� =  0.4, �� =

 0.6. These were empirically selected to maximize throughput performance. 

 Clustered D2D users with interest factor 

The third scenario considers the social interest i.e., all the users in a given cluster are interested in a 

single file of size 100 kbits. This emulates social gatherings such as a concert or a stadium, where there is 

a large gathering, interested in a similar video/content. This scenario was implemented using the 

proposed algorithm. The value of the two weights remains the same as discussed in the previous scenario. 
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Figure 8 shows the result of aggregate throughput versus the number of users. It clearly shows 

the impact of social awareness as the aggregate throughput was maximum when it was considered. 

On the other hand, aggregate throughput was considerably low when social awareness was ignored. 

At the user density of one hundred, the difference between the two curves was approximately 19%. 

The throughput for a conventional cellular network with no clustering remained considerably low 

compared to the other two scenarios. This result, therefore, shows that clustering does play a vital 

role in enhancing the system’s performance. Furthermore, it can be seen that both social-interest and 

physical parameters (e.g., spatial distribution and channel gains) should be considered while 

modelling a system as it may bring significant benefits for the users as well as the whole network. 

 

Figure 8. The impact of clustering and social-interest on throughput. 

5.2. Benchmarking against Existing Algorithms 

We selected five algorithms to benchmark against. Three of these are classical algorithms that 

are widely found in the literature, namely K-Medoids, Fuzzy C-Means (FCM), and Genetic Algorithm 

(GA) based clustering. These three algorithms have not been investigated and benchmarked within 

the context of D2D clustering and content-sharing applications, though an initial investigation was 

performed in our previous work [13]. The remaining two are the state-of-the-art and recently 

proposed algorithms. “Benchmarked I” has been proposed by Tulu.M.M et al. [69]. This algorithm 

applies the concept of entropy of betweenness centrality (EBC) to select CHs for content-sharing. The 

entropy of betweenness is based on the social relationship between the nodes and the shortest paths 

that exist between the nodes. “Benchmarked II” is proposed by Kazez C.A et al. [70]. This algorithm 

takes the neighbors and distance among the users as inputs for the selection of CHs. 

5.2.1. Throughput Comparison 

The following result shows the comparison of the throughput performance. The proposed 

algorithm utilizes the social interest and physical parameters of the users to enhance the system’s 

performance. This was discussed in the previous result, and it is further elaborated in Figure 9, as it 

demonstrates that the proposed algorithm performs approximately 7% better than the next best 

algorithm (Benchmarked I) at one thousand nodes. Benchmarked algorithms I and II utilize the social 

interest, but they do not consider both distance and channel conditions among the users for clustering 

the users. Our result shows that consideration of both metrics does have a positive effect on the 

system’s throughput. This is because many users that are in proximity to each other may not have 

better channel conditions due to various factors (e.g., shadowing). 
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Figure 9. Aggregate throughput: comparison with the benchmarked (�� =  0.4, �� =  0.6). 

5.2.2. Energy Consumption of Users 

The result shown in Figure 10 represents the energy consumption of the nodes in Joules with a 

varying number of users. It is evident from Figure 9 that we achieved better throughput as compared 

to the rest of the algorithms. If the file size of 100 kbits is constant, then the energy consumptions will 

be significantly dependent on the transfer rate. Consequently, the proposed algorithm performed the 

best (demonstrated by least energy consumptions) at different user densities as compared to the other 

algorithms. At one thousand nodes, the proposed algorithm approximately consumed 6% less energy 

as compared to the second-best algorithm. 

 

Figure 10. Energy consumption: comparison with the benchmarked (�� =  0.4, �� =  0.6). 

The energy consumption of the proposed algorithm is further elaborated in Figure 11. The 

Cumulative Distribution Function (CDF) of the energy consumption is presented for the proposed 

algorithm and the benchmarked clustering algorithms at a user density of one thousand. We can 

observe that even at the node level, the proposed algorithm outperformed the benchmarked 

algorithms in all quartiles with regard to energy consumption. Therefore, the overall lower energy 
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consumption was not achieved by favoring a few nodes to a large extent while disregarding the 

others. 

 

Figure 11. Cumulative Distribution Function (CDF) of energy consumption (�� =  0.4, �� =  0.6). 

5.2.3. Area Spectral Efficiency 

Area Spectral Efficiency represents the sum of average achievable rates per unit bandwidth per 

unit area [71]. To the best of the authors’ knowledge, ASE has not been evaluated for all the five 

benchmarked algorithms. It can be observed in Figure 12 that the ASE of the proposed algorithm was 

better than all the benchmarked algorithms. ASE depends significantly on average rates of the users 

if the area and per unit bandwidth remain constant. Therefore, the proposed algorithm has higher 

ASE. Furthermore, the performance was better than all the other benchmarked schemes. It is also 

encouraging to observe that the performance improved for the proposed algorithm as the user 

density increased. This shows the scalability of the proposed algorithm. The proposed algorithm 

showed approximately 3% improvement in ASE at the node density of one thousand, as compared 

to the benchmarked scheme I that showed the second-best performance. The classical algorithms for 

generic clustering are not purpose-built for a D2D scenario and are far inferior to the proposed, 

“Benchmarked I” and “Benchmarked II” algorithms. 

 

Figure 12. ASE: comparison with the benchmarked (�� =  0.4, �� =  0.6). 
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5.3. The Optimal Number of Clusters 

We investigated the effect of the number of clusters on the energy consumption and ASE. It has 

not been reported in the literature considering D2D Content-Centric Networks. The selection of the 

number of clusters significantly affects the clustering performance. A trade-off always exists when it 

comes to selecting the number of clusters. Increasing the number of clusters up to a certain extent 

will bring benefits but at the expense of increased signaling and complexity. The clustering metrics 

that we selected for the proposed algorithm can vary significantly; thus, it is not easy to predetermine 

the cluster size. Therefore, the size of the cluster is variable. 

However, there should be a criterion that can help determine the number of clusters that can be 

formed based on a given scenario such as user distribution, values of the clustering metrics, etc. In 

this study, the Calinski–Harabasz (Cal–Har) criterion [66] was selected. It is also termed as the 

variance ratio criterion. Mathematically, it can be defined as: 

������� ����(�������) =  
��

��

∗
(� − �)

(� − 1)
 (12) 

In Equation (12), between-cluster and within-cluster variance are represented by ��  and 

��, respectively. The total number of users is denoted by �, whereas � is the number of clusters 

against which this criterion will be judged. Clustering metrics determine the variance between and 

within clusters. To find the optimal solution, Equation (12) needs to be maximized with respect to the 

number of clusters. As the ratio of the variances given in Equation (12) increases, user segregation 

becomes more precise which leads to the optimal number of clusters. 

For a user density of one thousand, the Cal–Har criterion result is depicted in Figure 13. The 

criterion value was highest when the number of clusters was seven. Therefore, for the given user 

distribution and node density, the optimal number of clusters should be seven. We then investigated 

whether this is the optimal choice when considering energy consumption, and ASE. Results for both 

parameters for a various number of clusters are presented in Figures 14 and 15, respectively. A trade-

off can be seen for the choice of the number of clusters. As shown in Figure 14, the result for energy 

consumption aligns with the Calinski–Harabasz criterion, as the lowest energy consumption 

occurred when the number of clusters was seven to ten. On the other hand, the optimal number of 

clusters for ASE appears to lie between 10 and 15. 

 

Figure 13. Optimal number of clusters: Cal–Har criterion. 
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Figure 14. Energy consumption and the number of clusters: a comparison. 

 

Figure 15. ASE and the number of clusters: a comparison. 

It is not straight forward to suggest a certain number of clusters based on the above-mentioned 

results. It is important to consider a few additional factors that might influence the selection. The 

signaling overhead and complexity of cluster maintenance increase with the increase in the number 

of clusters. Moreover, we can observe from the results presented in Figures 14 and 15 that ASE did 

not differ significantly when forming seven to ten clusters as opposed to forming 10–15. Therefore, 

seven is likely to be a better choice, since it represents the lowest energy consumption while 

sacrificing minimal ASE gain for lower signaling overhead and complexity. 

Various external factors influence the choice of the number of clusters as well. As discussed 

earlier, our study considers forming clusters only for those users that are interested in content 

sharing. Therefore, in some situations, only a few users might be interested in content-sharing, and 

hence, making a certain number of clusters is not necessary. On the other hand, a scenario can build-

up where a large group of users is interested in content-sharing, but even in this case, the physical 

location of the users might influence the choice of the number of clusters. A large number of closely 

packed users at a concert or a sports event only needs a few clusters. As opposed to this scenario, 

users sharing a common interest might be dispersed in a geographical area, requiring a higher number 
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of clusters. More clusters can also be formed in a scenario where users might be in close vicinity, but 

they have different content of interest. In that case, users sharing the same interest are expected to be in 

one cluster, whereas the rest of the users should form a separate cluster. Moreover, some users may be 

better served by the BS, and it should not be mandatory for all the users to be considered for the 

clustering. 

5.4. Throughput Fairness 

The benchmarked algorithms considered in this study do not consider throughput fairness as a 

potential performance parameter. The literature suggests that fairness is crucial for evaluating a 

cellular network [72,73]. Therefore, we extended the proposed algorithm to suit the throughput 

fairness as well. To target the fairness, we introduced another clustering metric—the variance among 

the channel conditions of the users. 

Considering only absolute channel conditions might disregard many users having not so good 

channel conditions. Therefore, in that case, there would be a significant difference in the throughputs 

of the individual users. Owing to this reason, we introduced variance of channel conditions, and our 

assumption is validated by the results demonstrating throughput fairness, shown later in this section. 

Moreover, since we are considering a multicasting scenario, we are looking for approximately 

similar channel conditions with each node. The reason being, in a multicasting scenario, if each device 

receives the transmission at significantly different rates, then the complexity of the system would 

increase and might become infeasible [74]. 

Let us take an example of a scenario where a video stream needs to be broadcasted to a group 

of users. Assume that there are a few users with higher rates as compared to the others. Since we are 

considering broadcasting, the maximum achievable rates are determined by the worst physical link 

in the group. Therefore, users having higher rates will face long delays waiting for the other users to 

catch up. This reason makes it even more significant to have variance in channel conditions as an 

important factor in addition to just the absolute channel conditions. Though, owing to the 

degradation in the throughput performance, variance in channel conditions cannot be selected as the 

sole criterion. Therefore, the modified clustering algorithm considers all three different metrics which 

are attached to their respective weights. 

The introduction of variance among channel conditions modifies the Equation (2), to the 

following; 

�� = �. ��� ∗ �(�,�) + �� ∗ (
1 

ℎ�� 

) + �� ∗ ���(ℎ)� (13) 

�� represents the weights given to variance of the channel gains. The term "���(ℎ)" represents the 

variance among the channel conditions of the users. The weights represented in Equation (13) are 

such that ∑ ��
�
��� = 1. The node with the minimum �� is chosen as the CH. 

Jain’s fairness model [75] was used to evaluate the fairness performance of the proposed 

algorithm. The Jain’s fairness index denoted by �(�) is represented by Equation (14). 

�(�) =  
(∑ ��

�
��� )�

� ∑ ��
��

���

 (14) 

�� represents the throughput of the ��� user, given that there are total M users. 

We simulated the proposed algorithm with the weights as follows: �� = �� = 0.1, �� = 0.8. The 

weights selected for this result were empirically adjusted to enhance fairness. So, the maximum 

weight is given to the variance of channels. Though the selected weights did not yield the best energy 

consumption and ASE, it did outperform all the benchmarked algorithms when it comes to fairness. 

This is depicted in Figure 16. At the user density of one thousand, the proposed algorithm performed 

approximately 7% better than the benchmarked scheme I, which performed the best among the 

existing algorithms. This result demonstrates the flexibility of the proposed algorithm. By simply 

adjusting the weights, it is possible to achieve better fairness. It should be noted that the works 
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reporting the benchmarked algorithms I and II do not discuss fairness. These algorithms also do not 

have any parameter to perform this trade-off. 

 

Figure 16. Jain’s Fairness Index: Comparison with the benchmarked (�� = �� = 0.1, �� = 0.8). 

5.5. The Trade-Off Among Different Performance Parameters 

The energy consumption and ASE for the weights �� = �� = 0.1 and �� = 0.8 are presented in 

Figures 17 and 18, respectively. It can be observed that the cost of improved fairness is a slight 

degradation in performance with regard to energy consumption and ASE. However, the performance 

of the proposed algorithm is satisfactory in the sense that it is better than the other four benchmarked 

algorithms and there is only a very small performance gap with the best scheme. The proposed 

algorithm is able to trade-off energy consumption and ASE with fairness, which is not possible in any 

of the benchmarked algorithms. Our algorithm provides this flexibility by adjusting the weights to 

enhance the desired performance parameter accordingly. It can achieve the best performance for a given 

parameter while providing a satisfactory performance with respect to the rest. 

To the best of the author’s knowledge, the algorithms considered for benchmarking in this study 

have not been investigated for all the three performance parameters i.e., energy consumption, ASE, 

and fairness. 

 

Figure 17. Energy consumption: comparison with the benchmarked schemes (�� = �� = 0.1, �� =  0.8). 
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Figure 18. ASE: comparison with the benchmarked schemes (��  =  �� =  0.1, ��  =  0.8). 

6. Conclusions 

This paper presented a content-sharing framework for D2D communication in a multicasting 

scenario. We utilize Content-Centric Networking and Network Virtualization to propose a 

distributive architecture. This study showed the significance of spatial distribution and social-ties on 

the throughput’s performance and established that both are vital for enhancing the performance of 

the Content-Centric Network. 

A novel weighted clustering algorithm was incorporated in the proposed architecture. It is 

evident from the results that clustering enhanced the system’s performance. The performance of the 

proposed algorithm was thoroughly investigated against different popular clustering algorithms. 

The proposed algorithm shows a 6% improvement in energy consumption while achieving 3% better 

ASE as compared to the best-benchmarked algorithm. The effect of the number of clusters on the 

energy consumption of users and ASE was also investigated. A trade-off exists between the two 

metrics in the selection of the number of clusters. The optimal energy consumption was achieved at 

a smaller number of clusters as compared to ASE. It is suggested that signaling overhead required to 

set up more clusters should be considered while selecting the number of clusters. Hence, the 

formation of a smaller number of clusters showing optimal energy consumptions at the cost of 

marginal degradation in ASE is acceptable. A slight modification in the algorithm and weight 

adjustment improved throughput fairness up to 7%. On the contrary, all the benchmarked algorithms 

do not consider fairness. 

For future research, it would be important to apply machine learning algorithms to optimally 

select the weights according to the system’s requirements. The authors also intend to investigate the 

performance of the proposed scheme for various multimedia applications. Additionally, the 

comparative study of the signaling overhead required for the proposed algorithm needs to be explored 

as well. Moreover, while this study provides an approach to finding the number of clusters, one of the 

future directions could be a comprehensive study of optimal selection of the number of clusters. 
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