
sensors

Letter

Deep Reinforcement Learning for Indoor Mobile
Robot Path Planning

Junli Gao † , Weijie Ye, Jing Guo * and Zhongjuan Li

School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
jonygao621@gdut.edu.cn (J.G.); ye_wei_jie@163.com (W.Y.); lizhongjuan@126.com (Z.L.)
* Correspondence: jing.guo@gdut.edu.cn; Tel.: +86-20-3932-2563
† Current address: Guangzhou Higher Education Mega Center, No.100 Waihuan Xi Road, Panyu District,

Guangzhou 510006, China.

Received: 21 August 2020; Accepted: 23 September 2020; Published: 25 September 2020
����������
�������

Abstract: This paper proposes a novel incremental training mode to address the problem of Deep
Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the
related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight
2D environment. Then, we design the algorithm based on DRL, including observation states,
reward function, network structure as well as parameters optimization, in a 2D environment to
circumvent the time-consuming works for a 3D environment. We transfer the designed algorithm to
a simple 3D environment for retraining to obtain the converged network parameters, including the
weights and biases of deep neural network (DNN), etc. Using these parameters as initial values,
we continue to train the model in a complex 3D environment. To improve the generalization of
the model in different scenes, we propose to combine the DRL algorithm Twin Delayed Deep
Deterministic policy gradients (TD3) with the traditional global path planning algorithm Probabilistic
Roadmap (PRM) as a novel path planner (PRM+TD3). Experimental results show that the incremental
training mode can notably improve the development efficiency. Moreover, the PRM+TD3 path planner
can effectively improve the generalization of the model.

Keywords: mobile robot; reward function; path planning; incremental training mode;
deep reinforcement learning; deep neural network; generalization

1. Introduction

A mobile robot with autonomous navigation capability can search for one path within specific
time to move from a start point to an endpoint without collision [1]. For indoor environments,
traditional navigation frameworks employ Simultaneous Localization and Mapping (SLAM) [2] to
map unknown environments, then exploit localization algorithms, for instance, Adaptive Monte Carlo
Localization (AMCL) [3] to determine the current location of a robot and move it to the destination
through a path planning module [4,5]. Path planning is one of the key technologies in navigation
system, which usually includes the global as well as local planners [6,7]. The global planner searches
the global map to obtain a feasible path by means of planning algorithms, such as Dijkstra, A-star (A*),
PRM, Rapidly Exploring Random Tree (RRT) algorithms, and so on [8–12]. The Dijkstra is a classic
algorithm for finding the shortest path between two points due to its optimal capability for global
planning. The A* achieves better performance by using heuristics to guide its search, which can be seen
as an extension of Dijkstra. A motion planning algorithm sampling-based, PRM, solves the problem of
determining a path between a starting configuration and a goal configuration while avoiding collisions.
The RRT is an algorithm designed to search non-convex, high-dimensional spaces by randomly
building a space-filling tree. However, the local planner is used for real-time collision-free based on the

Sensors 2020, 20, 5493; doi:10.3390/s20195493 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0327-3616
http://www.mdpi.com/1424-8220/20/19/5493?type=check_update&version=1
http://dx.doi.org/10.3390/s20195493
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5493 2 of 15

global path by means of planning algorithms, such as Artificial Potential Field (APF), Dynamic Window
Approach (DWA) and Timed Elastic Bands (TEB) [13–15]. The APF treats a robot’s configuration as a
point in a potential field that combines attraction to the goal, and repulsion from obstacles to track the
safe path. One velocity-based local planner, DWA, calculates the optimal collision-free velocity for a
robot required to reach its goal, which translates a Cartesian goal (x,y) into a velocity (v,w) command.
The TEB merges the states, control inputs and time intervals into a joint trajectory to enable the path
planning of time-optimal trajectories. Most of the global path planning algorithms are suitable for
path-finding of static scenes and require prior map information. With the increase of complexity
and uncertainty of the environment, their efficiency will be greatly reduced. The local path planning
obtains the surrounding environment information through sensors, and generates a collision-free
path in a related small scope with better adaptability and embarrassed local minimum. In conclusion,
the traditional path planning suffers from the issues of map-dependence, low real-time performance,
or expert experience-dependence [16].

In recent years, there is a growing trend to apply DRL for mobile robot indoor path planning with
much success achieved [17]. DRL has the advantages on map-free, strong learning ability and low
sensor accuracy dependence, etc., whereas the prohibitively long training duration for DRL-based path
planning has severely hindered its wide application to mobile robots, especially for the scenario of
limited computation resources. In most cases, DRL-enabled robots need to be trained in a 3D simulation
environment with a physics engine. In this scenario, the robot’s movement is limited by physical
rules. It is implemented based on interactive trial-and-error, which dramatically increases the training
duration [18]. When the environments or tasks are complex, it is difficult for the algorithm to converge
to the desired targets with randomly initialized network parameters. For example, the weights and
biases [19] may further deteriorate the performance of the DRL-enabled path planning. Moreover,
because actions are always carried out whenever influences from observation states are derived in
most DRL framework and they are mostly local, this may reduce the ability of a mobile robot to make
a satisfactory global decision.

This paper aims to tackle the above issues, and the major contributions are summarized as follows:

• We propose an incremental training mode, which includes environment and network parameters
transfer to improve the development efficiency and convergence of the DRL-based path planning
for a mobile robot. It can also contribute to test and evaluate the algorithms, network structure,
and so on, to polish the path planning scheme conveniently.

• We enhance the PRM path planning approach with TD3 to be a PRM+TD3 planner,
which outperforms the popular algorithms, for instance, A*+DWA, A*+TEB and TD3, for a
mobile robot indoor navigation.

• We extensively evaluate and analyze the performance of PRM + TD3 on various application scenes,
compared with A*+DWA, A*+TEB and TD3 according to the same environment and criteria.

The rest of this paper is organized as follows. Section 2 introduces the related works. Section 3
presents the path planning problem on a mobile robot, and details the proposed incremental training
mode. Then, the related graphic search algorithms and RL algorithms are tested and evaluated.
Section 4 formulates the observation states and reward function. Afterwards, build the environment
and agent for DRL. Section 5 analyzes the experimental results before conclusion in Section 6.

2. Related Work

DRL was first applied in discrete control of mobile robots to realize obstacle avoidance [20].
Pfeiffer et al. [21] adopted the planning results from Dijkastra and DWA as the labels for convolutional
neural networks (CNN) to train a path planner. Tai et al. [22] proposed the end-to-end obstacle
avoidance strategy of mobile robot based on deep Q learning. After that, Tai et al. [23] presented a
map-free indoor navigation system according to sparse laser radar signals and DRL. Faust et al. [24]
achieved long-range robotic navigation by combining PRM and RL. Francis et al. [25] used PRM as the

Sensors 2020, 20, 5493 3 of 15

sampling-based planner, and AutoRL as the RL method in the indoor navigation context to realize
long-range indoor navigation. Zeng et al. [26] presented a jump point search improved asynchronous
advantage Actor-Critic (JPS-IA3C) for robot navigation in dynamic environments, which computes an
abstract path of neighboring jump points (sub goals) by the global planner JPS+ and learns the control
policies of the robots’ local motion by the improved A3C (IA3C) algorithm. Here, the IA3C denotes
the local planner combined with the global planner to realize path planner for a robot. Iyer et al. [27]
proposed an approach of collision avoidance robotics via meta-learning (CARML) to explore a 2D
vehicle navigation equipped with a lidar sensor and compare against a baseline TD3 solution to solve
the same problem. Sánchez-López et al. [28] presented a real-time 3D path planning solution for
multi-rotor aerial robots, where a probabilistic graph is utilized to sample the admissible space without
taking into account the existing obstacles and the generated probabilistic graph is then explored by
an A* discrete search algorithm with an artificial field map as cost function in order to obtain a raw
optimal collision-free path. Kim et al. [29] designed a motion planning algorithm using TD3 with
hindsight experience replay to enhance sample efficiency, where the designed paths are smoother
and shorter than those designed by PRM. Zhu et al. [30] developed a vision-based indoor navigation
system in a data-driven manner. Stooke et al. [31] accelerated training speed by improving the
utilization of CPU and GPU based on optimized RL algorithms. Carlos et al. [32] decomposed complex
problems into multiple sub-problems to search the maze path according to dynamic programming.
Chiang et al. [33] considered PRM and RRT as global path planning methods, respectively, to find
intermediate way-points for DRL algorithm in large-scale indoor navigation.

Inspired by the above related works, we propose a novel incremental training mode for path
planning of DRL-enabled mobile robot, to reduce the time for algorithm training and testing.
Through transferring the network parameters from simple to complex environment, the convergence
issue caused by random initialization is alleviated. Moreover, a path planner of PRM+TD3,
which combines the global path planning algorithm PRM and DRL algorithm TD3 [34] is proposed
to decompose large-scale paths into multiple local paths and improve the generalization of trained
models. Experimental results show that the incremental training mode can significantly improve the
development efficiency. Besides, PRM+TD3 path planner has better generalization in large-scale scene.

3. The Methodology

At first, we present the path planning problem on mobile robots. Next, detail the proposed
incremental training mode. After that, the related graphic search algorithms and RL algorithms are
tested and evaluated for the next work on DRL-based path planning.

3.1. Problem Description

In this paper, we formulate the path planning problem as a Markov Decision Process (MDP),
modeled as a tuple (S, A, T, R, γ) [35], where S and A denote the system’s state space and action space,
respectively. At each time step, the system takes an action a ∈ A and moves from the current state s ∈ S
to a new state s′ ∈ S. T(s, a, s′) = P(s′ |s, a) gives the transition probability that the system lies in s′ ,
after taking action a in state s. R : S× A→ R is the reward function. The system receives a real-valued
reward R(s, a) that depends on its state s and action a at each time step. γ ∈ [0, 1] is a discount factor
that reflects the preference of immediate rewards over future ones. The agent’s action selection is
modeled as a map called policy π : S→ A prescribes an action a ∈ A for each state s ∈ S. A policy is
called optimal if it achieves the best expected return from any initial state. The value function vπ(s) is
defined as the expected return starting with state s, i.e., S = s, and successively following policy π,
which estimates "how good" it is to be in a given state. While the maximum possible value of vπ(s) is
defined as v∗(s). Given a state s, an action a and a policy π, the action value of the pair (s, a) under π

is defined as qπ(s, a), whilst the optimal action value function is called q∗(s, a).
Under a model-based environment, i.e., the state transition probability P is known, the MDP

problems can be solved by dynamic programming techniques. As for model-free, the model can

Sensors 2020, 20, 5493 4 of 15

be fitted by means of sampling methods, which are suitable for RL. The main difference between
the classical dynamic programming methods and RL algorithms is that the latter do not assume
knowledge of an exact mathematical model of the MDP and they target large MDPs where exact
methods become infeasible. The expectations are approximated by averaging over samples and
using function approximation techniques to cope with the need to represent value functions over
large state-action spaces for model-free RL. The two basic approaches to compute the optimal action
value function are value iteration and policy iteration. An alternative method is to search directly
in the policy space, in which the problem becomes a case of stochastic optimization, for instance,
the gradient-based and gradient-free methods. We adopt RL algorithm TD3 for robot path planning,
which utilizes the optimal value function and policy function detailed in Section 4.4.

3.2. Incremental Training Mode

The proposed incremental training mode includes environment/network structure/parameter
transfer, and the training process. Here, the word “incremental” means the training process and
application scene are more and more complex based on the previous phase, successively.

3.2.1. 2D to 3D Environment Transfer

Usually, the DRL model for a robot can be prior-trained in a simulation environment equipped
with a physics engine before real application. We take the Gazebo in Robot Operation System (ROS) [36],
a widely used robot platform, as the 3D simulation environment, which integrates with the physical
Open Dynamics Engine (ODE). Furthermore, the mobile robot TurtleBot3 is modeled by Unified Robot
Description Format (URDF). As shown in Figure 1a, TurtleBot3 implements path planning for the
preset targets to avoid the rotating obstacles in this environment. The tasks, such as DRL algorithm
verification, parameter debugging, inevitably consume significant computational time and resources
in a 3D simulation environment loaded with a physics engine, which leads to inefficiencies.

(a) 3D Gazebo environment (b) 2D Gym environment
Figure 1. The 2D and 3D simulation environments (4× 4 m2).

To improve the development efficiency, we developed a corresponding 2D Gym environment
without physics engine as shown in Figure 1b, according to the Pyglet package of Gym [37].
The basic characteristics in Gym are as same as Gazebo in Figure 1a, i.e., continuous space, real-time
obstacle avoidance, preset goals, perceptible environment, and so on. All the positions of robot and
rotating obstacles, are calculated, i.e., known, based on the velocity and time of the previous state,
which correspond to the lidar readings in Gazebo. Furthermore, Gym has the interface for Gazebo,
which means the algorithm codes in Gym can be reused in Gazebo easily, except the codes about
environments. The general principle of the incremental training mode is to deploy the complex tasks
such as DRL algorithm verification and parameter debugging to the lightweight Gym for preliminary
training, before transferring the best solution back to Gazebo. Experiments have demonstrated that
the proposed solution is capable of a 5-fold increase in development efficiency for the DRL-based path

Sensors 2020, 20, 5493 5 of 15

planning. As an illustration, it takes about 26 and 5 h in Gazebo and Gym, respectively, with the same
tasks and hardware platform [38].

The position information of a mobile robot is reported in polar coordinates, the reward function is
defined in Equation (2), and TD3 is adopted as the DRL algorithm. In order to compare the convergence
and generalization capability of the DRL algorithm in a complex environment, we build the 8 × 8 m2

and 13 × 13 m2 simulation environment as shown in Figure 2, where the Figure 2a,b are used for
training and testing, respectively. The corresponding experimental results and analyses are detailed in
Section 5.

(a) 8×8 m2 3D training scene (b) 13×13 m2 3D testing scene
Figure 2. Complex 3D simulation environments.

Remark 1. The network structure (including parameters) and reward function in Gym are as same as Gazebo,
except the state set S, which also is the basis for “2D to 3D transfer".

3.2.2. Parameter Transfer

DNN in DRL are sensitive to the initial weight assignments. Random initialization of these
parameters may cause slow convergence or even non-convergence at times. Therefore, taking TD3
as an example, before formal model training, we first train 1× 105 time steps in a 4 × 4 m2 simple
scene, then transfer the corresponding model parameters to a 8 × 8 m2 complex scene. The parameters
obtained after 1× 105 time steps in the previous phase are adopted as the initial weights. As shown in
Figure 3, the proposed transfer approach yields better convergence on TD3, compared with training
2× 105 time steps directly (i.e., no_transfer) in the 8 × 8 m2 scene, which cannot reach the target point.
Moreover, the reward tends to be −100 instead of a positive value, which indicates that the model has
failed to learn from the data to perform the desired path planning task.

Figure 3. Parameters transfer effect.

3.2.3. The Training Process

The incremental training process for DRL is revealed in Figure 4, where we take TD3 and
PRM+TD3 as examples. Firstly, the time-consuming works are conducted in the lightweight 2D Gym,

Sensors 2020, 20, 5493 6 of 15

for instance, setting reward function, evaluating algorithms on path planning, debugging parameters,
and so on. Secondly, transfer the optimal solution to the 3D Gazebo (4 × 4 m2) including
network weights W, biases b, algorithm codes, etc. and keep training for 1 × 105 time steps.
Thirdly, after incremental transfer again, the model is further trained for 5 × 105 time steps in an
8 × 8 m2 3D scene. Since then, we can further evaluate the generalization of DRL algorithms following
Figure 4.

Figure 4. The incremental training process.

3.3. Graphic Search Algorithms

PRM and RRT are the classic sampling-based path planning algorithms, which belong to the
graphic search techniques. The simulation results, using PRM and RRT algorithms under the 2D
Gym environment, namely, graphic search based on sampling to quickly select intermediate points
from the global map, are shown in Figure 5. The green, yellow and red points denote the starting,
ending and sampled points, respectively, and the red curve is named global path. It is noted that the
fewer intermediate way-points, the more stable the paths can be generated while maintaining the
connectedness between the start point and endpoint. To ensure the performance of the RRT, the step
size generally keeps very small to cause denser way-points on the map (Figure 5a. In contrast, the PRM
only selects the way-points from the limited sampling points, which is preferred for our path planning
tasks (Figure 5b).

(a) Path exploring based on RRT (b) Path exploring based on PRM
Figure 5. Graph search algorithm based on sampling.

Sensors 2020, 20, 5493 7 of 15

3.4. RL Algorithms

To determine the optimal RL algorithm for path planning, we evaluate several popular algorithms
for continuous state-action space, like Proximal Policy Optimization (PPO) [39], Deep Deterministic
Policy Gradient (DDPG) [40], Soft Actor-Critic (SAC) [41] and TD3 [34] based on 2D Gym, which can
be reused in 3D Gazebo easily, discussed in Section 3.2.1. The DDPG, SAC and TD3 fuse value and
policy function, while the PPO is only based on policy gradient. All the algorithms were implemented
by Tensorflow 2.0, running 5× 105 time steps. The observation states and reward function follow the
Equations (1) and (2), respectively. Take the negative of the distance between agent and target position
as the instant reward. The collision-free reward is 100, and the negative reward is −150 with collision.
As shown in Figure 6, the convergence of all the RL algorithms are depicted. By comparison, TD3 has
better convergence, which means the mobile robot can learn the planning ability to reach the target
position without collision much more quickly.

Figure 6. The convergence evaluation on RL algorithms.

A desirable DRL algorithm can output an instant reward and action instruction based on the
observation values. For mobile robots, however, the observations by the lidar or vision camera are
mostly local, which may limit to making globally optimal decisions. On the other hand, it is difficult to
obtain observations in a larger scene for global path planning on the fly, where the final target needs to
be broken into a series of intermediate way-points. Furthermore, the DRL algorithm performs multiple
path planning based on these way-points, for long-range navigation in this scene. The algorithm for
selecting intermediate way-points should satisfy that any two points including the start point and
endpoint must be able to be connected. And the connection should not pass through the obstacles.

After a systematic consideration about the aforementioned methodology, we propose the
PRM+TD3 path planner, which utilizes global planning algorithm PRM to select intermediate
way-points, and integrates with TD3 algorithm for local planning.

Remark 2. The convergence of the PRM+TD3 algorithm is only determined by TD3, because the PRM only
supplies the way-points for TD3 with no impact on the convergence, verified through the next experiments.

4. Deep Reinforcement Learning

In this section, we formulate the observation states and reward function, then build the DRL
environment and the agent for the next experiment and analysis in Section 5.

4.1. Observation States

The training goal of the DRL model is to maximize the total reward R during interactions between
the agent and environment. At a given time step t, the state st is composed of the lidar data om

(10-dimensions), the geometric relationship, i.e., the angle and distance og (2-dimensions) between
the agent and target point, the linear velocity vt−1 and angular velocity ωt−1 (2-dimensions) at the

Sensors 2020, 20, 5493 8 of 15

previous time step. Regarding the DRL model as a planner f (∗), it maps the observation states st as
the linear velocity vt and angular velocity ωt (2-dimensions, Action set A, the DNN’s outputs) of a
mobile robot at the current time step, illustrated in the Equation (1).

vt, ωt = f (st) = f (om, og, vt−1, ωt−1) (1)

Whenever the observation states st change, the environment will feed back an instant reward rt,
which refers to the correctness of the current decision. The more it meets the task requirements,
the greater reward rt will be assigned, and vice versa. Due to lack of the prior knowledge of
the environment, the transition probability P between each state is unknown, so model-free DRL
algorithms are preferred.

4.2. Reward Function

The observation states aforementioned in Section 4.1 determine the input/output of the DRL
algorithm. Next, we design the reward function to supervise the agent to learn and obtain the optimal
policy. The instant reward is a key element in DRL, which can be obtained by the reward function at
each time step. Therefore, the model can learn the specified functions on condition that the reward
function is designed reasonably. For robot path planning, the learning goal is that a robot quickly
moves from a start point to an endpoint without collision. According to the literature [23], the reward
function is defined in the Equation (2), beyond that we augment an inflation layer for more reliable
obstacle avoidance.

r(st, at) =


200 i f (dt < dgoal)

−150 i f (dt < dmin)

1− dt
ri+rs

i f (dt < ri + rs)

α ∗ (dgoal − dt) otherwise

(2)

where dt represents the distance between the current position of a robot and target point, and dmin
is the defined minimum distance from the obstacle. We take ri + rs as the inflation layer to maintain
more safety from obstacles, including the radius of a robot ri and the safe distance rs. dgoal − dt

denotes whose opposite value between the current position and target point as an instant reward.
The threshold distance dgoal determines whether it can reach the target point. α is a scale factor. In view
of the definition, a mobile robot will move from the start point to target point while maintaining a
certain safe distance from obstacles based on the Equation (2).

4.3. DRL Environment

To integrate robot path planning with DRL, it needs to transit the planning problems into
the framework of DRL. Therefore, We design the agent/environment interface according to the
Equation (3). The main part of DRL environment is consisted of the functions step(), reset() and
render(), where the reset() and render() are often embedded in the step(). The step() determines the
interactive rules between the agent and environment and implements the path planning algorithm.
While the reset() and render() are used for the DRL environment reset and visualization.

Env = (step, reset, render) (3)

As shown in Figure 7, the agent interacts with the Gym or Gazebo environment through the
step(). After initialization, the agent selects the action a to interact with the environment. When it
changes, the agent determines whether has collisions or up to the maximum time step by the Boolean
ending flag done. If Yes, it resets the environment, and returns the current reward r∗, next state s

′
and

ending flag done. For No, provided that the agent has moved to the target position, it regenerates
another target position and return (r

′
, s
′
, done). If still not reach, it returns (r

′′
, s
′
, done) directly. Here,

Sensors 2020, 20, 5493 9 of 15

the r∗/r
′
/r
′′

are the reward rt under different conditions. It loops until up to the maximum time step,
while the data (s, a, r, s

′
, done) is used for DRL algorithm training.

Figure 7. The flowchart of partial DRL environment.

4.4. The Agent

DNN can be used for nonlinear approximation of the value and policy functions in DRL.
The network framework of TD3 [34,42] adopted in this paper is shown in Figure 8, including one
value function network (two-Q) and one policy function network, in where each layer is consisted
of connection type (fully connected: FC), neurons and activation function except the input layer.
TD3 fuses the value and policy functions, which adopt the similar DNN.

Figure 8. The TD3 network.

After determined the network framework, the approximation approaches to train the DNN is
presented as the Equations (4)–(6). The Equation (4) is adopted by the two Q networks to update the
value function and use the minimum Q value based on Bellman equation to descend the overestimation
problem. The Equation (5) updates the Q function by gradient descent to decline the approximation
error, while the Equation (6) updates the policy by gradient ascent. The rate for the Q function and
policy function is 2:1, i.e., delayed update policy to relieve the fluctuations during training. For the

Sensors 2020, 20, 5493 10 of 15

policy function network, Gaussian noise ε is added before output, which contributes to the exploration
ability during the interactions between the agent and environment.

y(r, s′, done) = r + γ(1− done) min
i=1,2

Qφtargeti
(s′, a′(s′)) (4)

∇φi

1
|B| ∑

(s,a,r,s′ ,d)∈B
(Qφi (s, a)− y(r, s′, done))2, f or i = 1, 2 (5)

∇θ
1
|B| ∑

s∈B
Qφ1(s, µθ(s)) (6)

where y is the target value for the two Q function. r and s
′
denote the reward and next state, respectively.

The Boolean ending flag done indicates the iteration is over or not at the batch size B. The discount
factor is γ ∈ [0, 1]. While, φtargeti

and φi (i = 1, 2) are the Q function parameters. The target action after
clipped is a

′
(s
′
). θ is the policy parameter and µθ(s) is the policy function. For our implementation of

TD3 [34], we use the codes provided by the author (https://github.com/sfujim/TD3).

5. Experiment and Analysis

Given the experiment settings and evaluation criteria first. Then, test and evaluate the proposed
PRM+TD3 path planner with the A*+DWA, A*+TEB, TD3 based on the same criteria and environment.
Analysis the path planning results and generalization at different application scenes in the end.

5.1. Experiment Settings

For the application of path planning on the mobile robot TurtleBot3, the algorithms to be compared
and analyzed are divided into three groups: I-A*+DWA, II-A*+TEB, and III- PRM+TD3, respectively.
Here, I/II are the traditional path planning algorithms, III is the combination of the traditional
global path planning algorithm PRM and modern DRL TD3. In contrast with the path planning
and generalization ability of these algorithms, the application scene was classified into small-scale
(8 × 8 m2) and large-scale (13 × 13 m2), relatively. Both scenes are Gazebo-based. All experiments are
conducted on a standard laptop with I5-8250U@1.6 GHz processor and 8 GB RAM. The parameters
of TurtleBot3 are set as follows: linear velocity [0, 0.2] (m/s), angular velocity [−2, 2] (rad/s),
scanning distance of 2D lidar [0.2, 3.5] (m), and scanning angle [0, 2] (rad). The evaluation criteria are
explained in Table 1.

Table 1. Evaluation parameters.

No. Item Description

1 dep Path planning map dependence or not (yes/no)
2 tpath Duration from start point to end point (s)
3 tstep Duration from sensor data input to action command output (s)
4 lpath Path length from start point to end point (m)
5 c Percent complete for agent when publish 20 different targets continuously (%)

5.2. Small-Scale Scene

To verify the planning performance of DRL in different scenes, we implement TD3 in a small-scale
scene (8 × 8 m2) first, then compare TD3 with PRM+TD3 in large-scale scene (13 × 13 m2) (Section 5.3).
At the beginning, we generate 7 target points in sequence to conduct path planning with A*+DWA,
A*+TEB, and TD3, respectively, while four obstacles rotate anticlockwise. The simulation results
are plotted in Figure 9, where the red/purple/green curve represent the planned path with the
corresponding I/II/III algorithms, respectively. It can be seen that TD3 is better than the other two.

https://github.com/sfujim/TD3

Sensors 2020, 20, 5493 11 of 15

(a) A*+DWA (b) A*+TEB (c) TD3
Figure 9. Path planning in small-scale scene.

From Table 2, TD3 does not need prior map in comparison with I/II algorithms. The traditional
path planning requires global-planning by the map first, then the local-planning is performed after
the local cost map is generated by the sensor data. That is why the tstep of I/II algorithms can only
have a variable range with dynamic environment. The more complex the local cost map, the less
efficient of the planning. As for TD3, the decision at each step is generated through a fixed forward
neural network operation, whose duration maintains at millisecond level, i.e., better responsiveness
to complex environments. In a dynamic and narrow environment, the traditional algorithm I/II
occasionally have collision issues due to its inferior real-time performance. While TD3 can almost
complete the planning task. With the inherent mechanical characteristics, the collision seldom occurs
at the starting phase, when the agent and obstacles are very close. Because of the embedded physical
engine ODE in Gazebo, the acceleration and velocity of the agent are smaller than the mobile obstacles,
it is consistent with the practice and the collision will disappear at the normal running phase.

Table 2. Planning indexes in small-scale environment.

No. Algorithm dep lpath(m) tstep(s) tpath(s) c

I A*+DWA yes 36.96 0.07∼0.5 256.3 75%
II A*+TEB yes 35.11 0.06∼0.7 202.1 85%
III TD3 no 30.70 0.001∼0.01 171.5 90%

5.3. Large-Scale Scene

In the 13 × 13 m2 scene, the group III still only uses TD3 at first. The planning effect of the
algorithms are verified through a long-distance target, shown in Figure 10. It can be found that
TD3 (Figure 10c) cannot complete the task without the global path planning to provide intermediate
way-points, while the traditional I/II algorithms can achieve it (Figure 10a,b). It is proved that
although TD3 has higher real-time performance, it is incapable of global planning, particularly in
large-scale scene.

(a) A*+DWA (b) A*+TEB (c) TD3
Figure 10. Path planning in large-scale scene.

Sensors 2020, 20, 5493 12 of 15

Next, the PRM is added to the III group, which provides the global intermediate way-points
for TD3, and decomposes the path into multiple local sub-paths, as shown in Figure 11a. It samples
50 points in the map first, then performs path searching. The red curve represents the global path
planned by PRM. TD3 takes the intermediate way-points from the global path as the sub-targets,
and performs path planning in multiple segments to achieve large-scale path, plotted in Figure 11b.

(a) PRM (b) PRM+TD3
Figure 11. Path planning based on PRM+TD3.

From Table 3, it can be seen that in large-scale path planning, TD3 requires PRM to search for
intermediate way-points in the global map, i.e., map dependence (dep = yes). Since PRM is complete
probabilistic, the results of each planning are different and might not be optimal. The path length
lpath and total time consumption tpath for PRM+TD3 are longer than the other two. Nevertheless,
the single-step time tstep for PRM+TD3 is still shortest, which has better flexibility in dynamic and
narrow small-scale scenes. As listed in Table 3, the 13 × 13 m2 scene has no dynamic narrow area
compared with the 8 × 8 m2 scene, so the percentage completed is higher than the other algorithms.
At the same time, because PRM can provide intermediate way-points to enable TD3 to have better
generalization capabilities in the 13 × 13 m2 testing scene, which can fulfill the path planning.

Table 3. Planning indexes in small-scale environment.

No. Algorithm dep lpath(m) tstep(s) tpath(s) c

I A*+DWA yes 14.54 0.06∼0.3 74.50 95%
II A*+TEB yes 13.64 0.05∼0.4 72.10 100%
III PRM+TD3 yes 15.60 0.001∼0.01 80.24 100%

6. Conclusions

Aiming at addressing the issues of low development efficiency, poor convergence, and weak
generalization ability of DRL-enabled robot in a 3D simulation environment, a incremental training
mode is proposed for conducting the path planning. Firstly, we deploy the complicated tasks such
as DRL algorithm verification and parameter debugging in a lightweight 2D Gym environment for
training, then transfer the best solution obtained from Gym to the 3D Gazebo environment, which can
enhance the development efficiency of the DRL-enabled mobile robot by 5 times for path planning.
By the network parameters transferring, we perform prior training in a 4 × 4 m2 simple scene first,
then transfer the model to an 8 × 8 m2 scene to re-train, which can alleviate the convergence issue
of TD3 caused by the random initialization of DNN. Given that TD3 only fits well in small-scale
scene, PRM+TD3 path planner is proposed for larger scene. Experiments show that it can decompose
long-distance target navigation into multiple sub-target, and get better generalization to new large-scale
scene. Even if the incremental training mode can improve the development efficiency, convergence and
generalization of the DRL enabled mobile robot, the PRM is a type of sampling algorithm in nature.
The results of each planning are different and might not be optimal. Our further work will improve

Sensors 2020, 20, 5493 13 of 15

this kind of non-optimal path planning algorithm with DRL [26] continuously. Moreover, we will also
consider the path planning for multiple robots [43,44].

Author Contributions: Conceptualization, J.G. (Junli Gao) and W.Y.; methodology, J.G. (Junli Gao), W.Y. and
J.G. (Jing Guo); software, W.Y.; validation, J.G. (Junli Gao), W.Y. and J.G. (Jing Guo); writing—original draft
preparation, J.G. (Junli Gao), W.Y.; writing—review and editing, J.G. (Junli Gao), W.Y., J.G. (Jing Guo). and Z.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by National Natural Science Foundation (NNSF) of China under Grant
61803103 and China Scholarship Council (CSC) under Grant 201908440537.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DRL Deep reinforcement learning
RL Reinforcement learning
PRM Probabilistic Roadmap
TD3 Twin Delayed Deep Deterministic Policy Gradients
SLAM Simultaneous Localization and Mapping
AMCL Adaptive Monte Carlo Localization
A* A-star search algorithm
RRT Rapidly-exploring Random Trees
APF Artificial Potential Field
DWA Dynamic Window Approach
TEB Timed Elastic Band
CNN Convolutional neural networks
A3C Asynchronous advantage Actor-Critic
CARML Collision avoidance robotics via meta-learning
MDP Markov Decision Process
ROS Robot Operation System
URDF Unified Robot Description Format
ODE Open Dynamics Engine
PPO Proximal Policy Optimization
DDPG Deep Deterministic Policy Gradient
SAC Soft Actor-Critic

References

1. Zhang, L.; Chen, Z.; Cui, W.; Li, B.; Chen, C.Y.; Cao, Z.; Gao, K. WiFi-Based Indoor Robot Positioning Using
Deep Fuzzy Forests. IEEE Internet Things J. 2020. [CrossRef]

2. Dissanayake, G.; Huang, S.; Wang, Z.; Ranasinghe, R. A review of recent developments in Simultaneous
Localization and Mapping. In Proceedings of the 2011 6th International Conference on Industrial and
Information Systems, Kandy, Sri Lanka, 16–19 August 2011; pp. 477–482.

3. Zhang, L.; Zapata, R.; Lépinay, P. Self-adaptive Monte Carlo localization for mobile robots using range
finders. Robotica 2012, 30, 229–244. [CrossRef]

4. Chen, W.; Liao, T.; Li, Z.; Lin, H.; Xue, H.; Zhang, L.; Guo, J.; Cao, Z. Using FTOC to track shuttlecock for the
badminton robot. Neurocomputing 2019, 334, 182–196. [CrossRef]

5. Cao, Z.; Liao, T.; Song, W.; Chen, Z.; Li, C. Detecting the shuttlecock for a badminton robot: A YOLO based
approach. Expert Syst. Appl. 2020, 164, 113833. [CrossRef]

6. Levine, S.; Pastor, P.; Krizhevsky, A.; Quillen, D. Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

7. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that
Matters. arXiv 2018, arXiv:1709.06560.

http://dx.doi.org/10.1109/JIOT.2020.2986685
http://dx.doi.org/10.1017/S0263574711000567
http://dx.doi.org/10.1016/j.neucom.2019.01.023
http://dx.doi.org/10.1016/j.eswa.2020.113833
http://dx.doi.org/10.1177/0278364917710318

Sensors 2020, 20, 5493 14 of 15

8. Fadzli, S.A.; Abdulkadir, S.I.; Makhtar, M.; Jamal, A.A. Robotic Indoor Path Planning Using Dijkstra’s
Algorithm with Multi-Layer Dictionaries. In Proceedings of the 2015 2nd International Conference on
Information Science and Security (ICISS), Seoul, Korea, 14–16 December 2015; pp. 1–4.

9. Latombe, L.E.K.J.C. Probabilistic roadmaps for robot path planning. In Pratical Motion Planning in Robotics:
Current Aproaches and Future Challenges; Wiley: Hoboken, NJ, USA, 1998; pp. 33–53.

10. Lavalle, S. Rapidly-exploring random trees: A new tool for path planning. Comput. Sci. Dept. Oct. 1998,
98, 11.

11. Cao, Z.; Guo, H.; Zhang, J.; Niyato, D.; Fastenrath, U. Finding the Shortest Path in Stochastic Vehicle Routing:
A Cardinality Minimization Approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1688–1702. [CrossRef]

12. Cao, Z.; Guo, H.; Zhang, J.; Niyato, D.; Fastenrath, U. Improving the Efficiency of Stochastic Vehicle Routing:
A Partial Lagrange Multiplier Method. IEEE Trans. Veh. Technol. 2016, 65, 3993–4005. [CrossRef]

13. Rimon, E.; Koditschek, D. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom.
1992, 8, 501–518. [CrossRef]

14. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot.
Autom. Mag. 1997, 4, 23–33. [CrossRef]

15. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic
constraints of autonomous robots. In Proceedings of the 7th German Conference on Robotics, Munich,
Germany, 21–22 May 2012 .

16. Zhu, D.Q.; Yan, M.Z. Survey on technology of mobile robot path planning. Control Decis. 2010, 25, 961–967.
17. Wu, Y.; Song, W.; Cao, Z.; Zhang, J.; Lim, A. Learning Improvement Heuristics for Solving Routing Problems.

arXiv 2019, arXiv:1912.05784.
18. Bao, Q.Y.; Li, S.M.; Shen, H.; Men, X.H. Survey of local path planning of autonomous mobile robot. Transducer

Microsyst. Technol. 2009, 9, 1–4,11.
19. Xu, X.N.; Lai, R. Present Situation and Future Develepment of Mobile Robot Path Planning Technology.

Comput. Simul. 2006, 10, 1–4.
20. Tai, L.; Liu, M. Towards Cognitive Exploration through Deep Reinforcement Learning for Mobile Robots.

arXiv 2016, arXiv:1610.01733.
21. Pfeiffer, M.; Schaeuble, M.; Nieto, J.; Siegwart, R.; Cadena, C. From perception to decision: A data-driven

approach to end-to-end motion planning for autonomous ground robots. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1527–1533.

22. Tai, L.; Liu, M. A robot exploration strategy based on Q-learning network. In Proceedings of the 2016
IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia,
6–10 June 2016; pp. 57–62.

23. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots
for mapless navigation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 31–36.

24. Faust, A.; Ramírez, O.; Fiser, M.; Oslund, K.; Francis, A.; Davidson, J.O.; Tapia, L. PRM-RL:
Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-Based Planning.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 5113–5120.

25. Francis, A.; Faust, A.; Chiang, H.L.; Hsu, J.; Kew, J.C.; Fiser, M.; Lee, T.E. Long-Range Indoor Navigation
With PRM-RL. IEEE Trans. Robot. 2020, 36, 1115–1134.

26. Zeng, J.; Qin, L.; Hu, Y.; Yin, Q.; Hu, C. Integrating a Path Planner and an Adaptive Motion Controller for
Navigation in Dynamic Environments. Appl. Sci. 2019, 9, 1384. [CrossRef]

27. Iyer, A.; Mahadevan, A. Collision Avoidance Robotics Via Meta-Learning (CARML). arXiv 2020, arXiv:2007.08616.
28. Sánchez-López, J.L.; Wang, M.; Olivares-Méndez, M.A.; Molina, M.; Voos, H. A Real-Time 3D Path Planning

Solution for Collision-Free Navigation of Multirotor Aerial Robots in Dynamic Environments. J. Intell.
Robot. Syst. 2019, 93, 33–53.

29. Kim, M.; Han, D.K.; Park, J.; Kim, J.S. Motion Planning of Robot Manipulators for a Smoother Path Using a
Twin Delayed Deep Deterministic Policy Gradient with Hindsight Experience Replay. Appl. Sci. 2020, 10, 575.
[CrossRef]

http://dx.doi.org/10.1109/TITS.2015.2498160
http://dx.doi.org/10.1109/TVT.2015.2480964
http://dx.doi.org/10.1109/70.163777
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.3390/app9071384
http://dx.doi.org/10.3390/app10020575

Sensors 2020, 20, 5493 15 of 15

30. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference
on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3357–3364.

31. Stooke, A.; Abbeel, P. Accelerated Methods for Deep Reinforcement Learning. arXiv 2018, arXiv:1803.02811.
32. Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; Abbeel, P. Reverse Curriculum Generation for

Reinforcement Learning. arXiv 2017, arXiv:1707.05300.
33. Chiang, H.T.L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic Motion Planning via Learning

Reachability Estimators From RL Policies. IEEE Robot. Autom. Lett. 2019, 4, 4298–4305. [CrossRef]
34. Fujimoto, S.; Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods.

In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1582–1591.

35. Bandyopadhyay, T.; Won, K.; Frazzoli, E.; Hsu, D.; Lee, W.S.; Rus, D. Intention-Aware Motion Planning.
In Algorithmic Foundations of Robotics X; Springer: Berlin/ Heidelberg, Germany, 2013.

36. Quigley, M. ROS: An open-source Robot Operating System. In Proceedings of the ICRA 2009, Kobe, Japan,
12–17 May 2009.

37. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym.
arXiv 2016, arXiv:1606.01540.

38. Ye, W. Research on Path Planning of Indoor Mobile Robot Based on Deep Reinforcement Learning.
Master’s Thesis, Guandong University of Technology, Guangzhou, China, 2020.

39. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms.
arXiv 2017, arXiv:1707.06347.

40. Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2016, arXiv:1509.02971.

41. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. arXiv 2018, arXiv:1801.01290.

42. Konda, V.R.; Tsitsiklis, J. Actor-Critic Algorithms. In Proceedings of the NIPS 1999, Denver, CO, USA,
29 November–4 December 1999.

43. Cao, Z.; Jiang, S.; Zhang, J.; Guo, H. A Unified Framework for Vehicle Rerouting and Traffic Light Control to
Reduce Traffic Congestion. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1958–1973. [CrossRef]

44. Cao, Z.; Guo, H.; Zhang, J.; Fastenrath, U. Multiagent-Based Route Guidance for Increasing the Chance of
Arrival on Time. In Proceedings of the AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LRA.2019.2931199
http://dx.doi.org/10.1109/TITS.2016.2613997
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Methodology
	Problem Description
	Incremental Training Mode
	2D to 3D Environment Transfer
	Parameter Transfer
	The Training Process

	Graphic Search Algorithms
	RL Algorithms

	Deep Reinforcement Learning
	Observation States
	Reward Function
	DRL Environment
	The Agent

	Experiment and Analysis
	Experiment Settings
	Small-Scale Scene
	Large-Scale Scene

	Conclusions
	References

