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Abstract: Fluctuations of motor symptoms make clinical assessment in Parkinson’s disease a complex
task. New technologies aim to quantify motor symptoms, and their remote application holds potential
for a closer monitoring of treatment effects. The focus of this study was to explore the potential of a
stepping in place task using RGB-Depth (RGBD) camera technology to assess motor symptoms of
people with Parkinson’s disease. In total, 25 persons performed a 40 s stepping in place task in front of
a single RGBD camera (Kinect for Xbox One) in up to two different therapeutic states. Eight kinematic
parameters were derived from knee movements to describe features of hypokinesia, asymmetry,
and arrhythmicity of stepping. To explore their potential clinical utility, these parameters were
analyzed for their Spearman’s Rho rank correlation to clinical ratings, and for intraindividual changes
between treatment conditions using standard response mean and paired t-test. Test performance
not only differed between ON and OFF treatment conditions, but showed moderate correlations to
clinical ratings, specifically ratings of postural instability (pull test). Furthermore, the test elicited
freezing in some subjects. Results suggest that this single standardized motor task is a promising
candidate to assess an array of relevant motor symptoms of Parkinson’s disease. The simple technical
test setup would allow future use by patients themselves.
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1. Introduction

Parkinson’s disease is a progressive neurodegenerative disease with peak of onset in the sixth
decade of life. The brain structures and functions affected result in a movement disorder defined by
specific motor dysfunctions [1]. Patients with Parkinson’s disease (PWPD) may suffer from different
combinations of slowing and shortness of movement (bradykinesia), increased muscle tone (rigidity),
tremor, and typical postural instability [1]. This results in a hypokinetic gait disturbance, which may
also include freezing of gait (FOG), characterized by episodic hesitations of stepping, or inefficient
stepping with high frequency (festination), resulting in episodic arrest of locomotor behavior [2—4].
FOG may be triggered by various factors, has been related to increased risk of falling, and is a hallmark
of transition into advanced disease stages [2,5].

Today, several treatment options are available to relieve the symptoms of this disorder, and their
appropriate dosing depends on close observation of motor signs [6]. Thus, the recognition of these
motor signs is not only critical for the diagnosis of Parkinson’s disease (PD), but also forms the
basis of treatment decisions in PWPD [7]. Several instruments are clinically used for this purpose:
a standardized clinical rating scale, such as the ‘"Movement Disorder Society—Unified Parkinson’s
disease rating scale (MDS-UPDRS) [7] and the Hoehn and Yahr scale [8], or patient self-reported
outcomes [9]. A general limitation when assessing PD motor symptoms in a clinical setting is their
fluctuating nature. As a well-known and bothersome complication of long-term medication in PWPD,
the presence and severity of symptoms may considerably change in the short-term, e.g., in relation to
medication intake, which may span from rather unimpaired, in medication ON state, to immobile,
when drug effects wear off (medication OFF). Furthermore, additional motor features, such as
dyskinesia, may indicate adverse effects of PD treatment [10]. Single point clinical assessments are not
able to capture such fluctuations, and clinical rating scales may have limited sensitivity to quantify
small-range changes in motor symptoms.

A manifold of technologies is available for a potentially more sensitive and rater-independent
quantification of motor functions [11], which previous reviews explored for their application in
PD [12-15]. For the assessment of motor fluctuations in PWPD, two approaches have been proposed:
(1) non-standardized assessment, i.e., continuous tracking during everyday activities, which requires
wearable sensors [16,17]; and (2) multi-point assessment of relevant motor symptoms in standard
motor tasks, which requires technologies that are easily applicable by patients themselves. In this
study, we follow the second approach, using 3D full body motion capture by RGB-Depth (RGBD)
consumer cameras. The technology has already been applied for movement analysis in the clinical
context, e.g., to analyze postural control and gait in different neurological disorders (e.g., PD [18],
multiple sclerosis [19], and ataxia [20]), and showed good agreement with marker-based motion
analysis standards [21]. The analyses presented here are based on observations from lab-based
assessments, but the simple application of this technology would allow future application as
patient-based assessment.

The stepping in place task (SIP), where patients are asked to repetitively walk on a spot while
suppressing forward locomotion, was used here, based on prior evidence and low requirement of
recording space. The task is long known as a clinical test for vestibular dysfunction when performed
with eyes closed [22], but may also test components of gait and postural control when performed with
eyes open [23]. SIP was used by Nantel et al. [24] to analyze temporal parameters, such as cadence,
time symmetry, and arrhythmicity, in PWPD with and without FOG, contrasting their performance
to a group of healthy subjects. They were the first to report that SIP triggered a freezing of stepping
movements in patients with FOG, which was later confirmed by Dijsseldonk et al. [25]. Based on these
findings, an array of relevant PD-specific motor symptoms may potentially be assessed in stepping in
place behavior.

Our study is the first to utilize RGBD technology to derive kinematic parameters from SIP, and our
spatial analysis of stepping behavior extends previous descriptions of SIP performance in PWPD.
The objective was to quantitatively describe PWPDs” performance of an SIP motor assessment using
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data from a single RGBD camera. For this purpose, algorithms for kinematic parameter extraction
were developed and outcomes were analyzed regarding their potential for clinical use. According to
previous experience and published evidence, we expected the test to be feasible for most patients with
PD, but might be experienced as challenging for those in higher disease stages. We further expected a
relation between test performance and disease severity, which would be expressed in correlations of
kinematic parameters to clinical ratings of disease severity, as well as parameter differences between
recordings taken in OFF and ON conditions.

2. Materials and Methods

2.1. Subjects and Clinical Testing

In total, data from 25 PWPD were used in this work (see Table 1), originating from two studies
performed at an academic medical center (Charité—Universitatsmedizin Berlin, Germany, IRB approval
EA1/012/17 and EA1/216/15). The studies explored motor outcomes from an RGBD sensor as a secondary
aim while measuring patients in different therapeutic states defined as ON (depending on study defined
as either optimized deep brain stimulation (DBS) or optimized symptomatic medication) or OFF (defined
as either standardized withdrawal of DBS or medication). Inclusion criteria for the two studies were
the clinical diagnosis of PD, according to UK Brain Bank Criteria [26]. Patients with limitations in motor
performance unrelated to PD, including major psychiatric or cognitive disturbance, were excluded.
For the purpose of this analysis, we additionally excluded recordings with dyskinesia reported at
the time of assessment. All participants gave written informed consent for the assessment, analysis,
and scientific publication of findings. Study data can be made available only on reasonable request.

Table 1. Description of subgroups, where metrical measures are given as mean and standard deviation
and ordinal data as number of reached scores for each value.

ALL ON OFF ON-OFF
N subjects 25 20 13 10
male 18 15 8 6
female 7 5 5 4
Age (years) 65.3 (£9.4) 65.5 (£11.05) 66.2 (+8.0) 65.3 (£8.7)
Weight (kg) 75.0 (£13.5) 74.1 (£13.5) 76.3 (£12.5) 76.2 (£13.8)
Height (cm) 168.4 (+6.8) 167.7 (+6.1) 170.4 (+7.8) 168.4 (+5.3)
Disease Duration (years) 12.8 (£8.1) 12.1 (+8.0) 11.6 (£6.6) 10.1 (£7.2)
ON: 28.8 (+13.4)
MDS-UPDRS-IIT 28.3 (+14.7) 25.3 (£13.7) 34.9 (£15.1) OFF: 37.2 (+14.5)
N-item 11 (FOG) ON: 8/2/0/0/0
0/1/2/3/4 23/4/6/0/0 14/3/3/0/0 9/1/3/0/0 OFE: 7/3/0/0/0
N-item 12 (Pull test) ON: 4/3/2/1/0
0/1/2/3/4 12/10/6/1/1 8/4/5/2/0 4/6/1/1/1 OFF: 1/6/1/1/1

The dataset comprised 20 assessments in ON and 13 assessments in OFF (including 10 intraindividual
data pairs of ON and OFF assessments). The sample size requirements were based on recommendations
from [14] for technical feasibility studies, which suggests first trials in up to 10 participants. Each assessment
consisted of the performance of the full MDS-UPDRS 111, as well as one recording of the stepping in place
task. From the MDS-UPDRS 1II, the total score (range 0-142) and ratings for freezing of gait (item 11,
range 0—4) and pull test (item 12, range 0—4) were available for analysis.

2.2. Stepping in Place

The study protocol of both studies included a standardized instruction of SIP to induce performance
in self-selected, comfortable pace. To avoid exhaustion after performance, the SIP was limited to 40 s
recording length, starting from onset of performance to automated stop of recording. Participants were
explicitly told to avoid forward movement, but received no further instructions on leg or arm
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movements, nor prior demonstration of the task. A short testing performance of the task was explicitly
allowed. If participants moved further than 1 m forward, the task was repeated, while reminding them
to remain on spot and avoid moving forward. The tests were performed in common street clothing
and usual footwear, excluding heeled shoes. Very loose clothing was asked to be taken off.

2.3. Technical Setup

Instrumental recording of SIP used a marker-free motion capture technology based on a consumer
RGBD camera (Microsoft Kinect for Xbox One). The Kinect camera was accessed by the official
Microsoft Kinect SDK (Version 14.09) at a framerate of 30 Hz, using software developed for that
purpose (Motognosis Labs V1.2, Motognosis GmbH, Berlin, Germany). The camera was placed on a
movable trolley at 1.4 m height with a vertical angle of —9° (see Figure 1). Since the area of highest depth
resolution is between 1.5 and 3.5 m, participants were placed facing the camera at a 2.5 m distance.

| 4,50m =
| 1,50m
/ V4

Figure 1. Technical setup of the motion capture system. Kinect camera was attached at 1.4 m height on
a movable trolley with a pitch angle of roughly —9° while participants stood at a 2.5 m distance.

The Microsoft Kinect SDK provided depth point clouds of the person in the measurement area,
and identified 25 artificial anatomical landmarks (see Figure 2) representing the location of body parts
and major joints (e.g., knees, ankles, hands, head), which were recorded and exported as .csv files.

2.4. Data Processing and Calculation of Kinematic Parameters

Since the anatomical landmarks of the feet and ankles tend to show noisy behavior during SIP
according to prior technical validation [21], 3D knee movements were used to detect stepping behavior
and to derive a parameter set for use in PWPD. Stepping movements were split in stance and step
phases, similar to the stance and swing phase of each leg in a gait cycle during normal walking
(see Figure 3).
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Figure 2. Recorded depth data of a masked participant (left) with 25 artificial anatomical landmarks
(right) provided by the Kinect SDK.

-
o
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Knee Amplitude [cm]
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Figure 3. Representation of anterior—posterior movements of the right (thick black line) and left (thin
dotted line) knee. The dashed box shows a complete stepping cycle including one step of each side.
The following two phases are differentiated: Step phase of the right leg (from point 1 to 3) and stance
phase (from point 3 to 4). Point 2 indicates the moment of anterior knee excursion (maximum hip
flexion) and is used for the calculation of the knee amplitudes.

Data pre-processing comprised the following steps:

1. Tocompensate for the subject’s position changes in the measurement area, we used the 3D positions
of each knee as time series in relative position to the relating hip position. This eliminates possible
errors due to the tendency to move towards the sensor.

2. A median filter (window size 5 frames) was applied to smoothen the anterior—posterior knee
movement signal and reduce noise.

3. All minima of the filtered signal were detected and interpolated linearly, creating a minima-signal
to provide a base level of minor landmark shifts over time caused by changes in the detected 3D
user mask.

4. The minima-signal was subtracted from the anterior-posterior knee movement signal to eliminate
smaller measurement errors when the knees were straight.
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5. Athreshold of 2.5 cm for anterior-posterior knee amplitude was defined as suitable to differentiate
between step (>2.5 cm) and stance (<2.5 cm) phase. The threshold was identified by visual
inspection of recordings.

From the detected step and stance phases, we derived eight kinematic parameters to describe
major motor features of PD (Table 2). All parameters, besides cadence and asymmetry, were calculated
separately for each body side, and then combined as their mean for further analysis.

Table 2. Description of eight kinematic parameters from VPC recordings of stepping in place (SIP)
task performance.

Parameter Name Unit Description
Cadence Steps/min Steps per minute
Knee Amplitude cm Anterior—posterior range of motion of knees
Asymmetry Y% Logarithmic ratio between knee amplitudes of larger side to smaller side
Average Step Time s Average time required for a step during the measurement
Longest Step Time s Maximal time required for a step during the measurement
Arrhythmicity % Ratio between standard deviation and average of the step time
Average Stance Time s Average time between step movements
Longest Stance Time s Maximal time between step movements

Equations for the calculation of arrhythmicity (step time coefficient of variation) (1) and asymmetry
(2) were taken from common definitions, as, for example, provided by Plotnik et al. [27].

td (StepTi
Arrhythmicity = 100 # std( €p 1r'nes) )
mean(StepTimes)
mean( AmplitudesAmplitudes, .
Asymmetry = 100 = (Amp p SmallerSide @

mean(AmplitUdesLargerSide)

Since asymmetry is expressed as ratio between both sides, persons with small knee amplitudes
show higher asymmetry measures for similar absolute amplitude differences.

2.5. Statistical Analysis

Descriptive statistics are given for metric kinematic parameters as mean and standard deviation.
To explore confounding effects of age, height, and weight on SIP parameters, Pearson’s correlations
were performed in the ON subgroup.

Relation to disease severity was explored by correlating pooled recordings with the corresponding
MDS-UPDRS III total score and pull test score, using Spearman’s rank correlation. Pooled data is
here used to provide higher heterogeneity in clinical symptom severity. From the subgroup of 10
patients with paired data from recordings in ON and OFF available, within-group comparisons were
calculated between ON and OFF therapeutic states, reported as absolute and relative differences
(percentage change from value in OFF condition), along with statistics from paired t-tests. Additionally,
the standardized response mean (SRM) was provided as ratio of average difference and standard
deviation of differences between OFF and ON. Due to the exploratory nature and small cohort size,
analyses were not corrected for multiple comparisons, and the significance levels for all tests were set
at 1%.

All statistics were calculated using Python 3.5 and the SciPy package version 0.18.1. Diagrams were
created with Seaborn (package version 0.7.1) and Matplotlib (package version 2.0.0).
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3. Results

3.1. Descriptive Statistics and Analysis of Potential Confounding Effects

The descriptive statistics of all eight derived kinematic parameters are provided for the pooled
dataset, as well as the subsets of recordings acquired in ON and OFF (Table 3). In the subset of ON
recordings, i.e., in a state of least expression of PD motor symptoms, the correlations between kinematic
parameters and age, height, or body weight did not indicate relevant confounding effects by overall
non-significant and small correlation coefficients (|7| < 0.27 for age, <0.15 for height and <0.36 for
weight).

Table 3. Descriptive statistics for SIP parameters on the left for the whole sample and subset of
recordings in ON and OFF treatments states, and on the right, estimation of confounding effects of age,
height, and weight in the subset of recordings in ON.

Descriptive Statistics Confounder Analysis in ON (z = 20)
Mean (SD) Pearson’s Correlation Coefficient r (p-Value)
ALL(#=33) ON (=200 OFF(@#n=13) Age Height Weight
Cadence (steps/min) 97.6 (27.3) 96.6 (27.1) 99.2 (28.6) —0.271 (0.247) 0.132 (0.682) —0.358 (0.253)
Knee Amplitude (cm) 12.5(7.4) 13.9 (5.5) 10.2 (9.3) 0.228 (0.334) 0.151 (0.640) 0.280 (0.378)
Asymmetry (%) 18.2 (19.9) 15.6 (14.1) 221(268)  —0.133(0.577)  0.066(0.839)  —0.173 (0.591)
Average Step Time (s) 0.72 (0.21) 0.77 (0.21) 0.64 (0.19) —0.114 (0.632)  —0.108 (0.739)  —0.215 (0.503)
Longest Step Time (s) 0.88 (0.24) 0.93 (0.23) 0.80 (0.26) 0.209 (0.376) —0.038 (0.906) 0.259 (0.417)
Arrhythmicity (%) 11.6 (5.58) 11.3 (6.5) 12.2 (4.0) 0.264 (0.261) 0.118 (0.715) 0.350 (0.265)
Average Stance Time (s) 0.65 (0.60) 0.61 (0.60) 0.72 (0.61) 0.258 (0.272) 0.108 (0.739) 0.348 (0.267)
Longest Stance Time (s) 1.69 (2.39) 1.63 (2.75) 1.77 (1.77) —-0.271 (0.247) 0.132 (0.682) —0.358 (0.253)

3.2. Relation of SIP Parameters to Disease Severity and Postural Instability

In total, two out of the eight parameters—knee amplitude and longest stance time—were correlated
with clinical ratings MDS-UPDRS 111, and another two (arrhythmicity and average stance time) showed
a trend (p < 0.05). Specifically, knee amplitude was reduced in subjects with higher clinical ratings
(MDS-UPDRS HI tho = —-0.507, p-value = 0.003), while longest stance time increased (rho = 0.523,
p-value = 0.002). The correlations with pull test ratings of postural instability were in the same
direction, but reached significance only for longest stance time (Table 4). Trends indicated an increase
of arrhythmicity and average stance time with more severe clinical ratings.

Table 4. Spearman’s rank correlation of the eight kinematic parameters with clinical ratings acquired at
the time of each SIP recording; analyzed from the pooled dataset (1 = 33).

Spear. Corr. MDS-UPDRS III Spear. Corr. Pull Test

Rho (p-Value) Rho (p-Value)

Cadence (steps/min) —0.234 (0.189) —-0.328 (0.072)

Knee Amplitude (cm) —0.507 (0.003) —0.436 (0.014) *
Asymmetry (%) 0.202 (0.260) 0.170 (0.361)
Average Step Time (s) —0.287 (0.105) —-0.274 (0.136)
Longest Step Time (s) —-0.291 (0.101) —0.242 (0.191)
Arrhythmicity (%) 0.352 (0.045) * 0.452 (0.011) *
Average Stance Time (s) 0.374 (0.032) * 0.374 (0.038) *
Longest Stance Time (s) 0.523 (0.002) 0.468 (0.008)

Statistically significant outcomes are set in bold; * indicates trend (p-value < 0.05).

3.3. Comparison between Recordings Tnken in ON vs. OFF States

As expected, the clinical rating indicated relevant within-group change in motor symptoms from
OFF to ON states (29% decrease in MDS-UPDRS I1I) in the subset with assessments available from both
conditions. Changes in SIP behavior from OFF to ON were reflected in increase of knee amplitude
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(85.4%, p-value = 0.002) and average step time (14.5%, p-value = 0.007), a decrease of step asymmetry
(=19.6%, p-value = 0.007) with a similar trend for arrhythmicity, while cadence remained unchanged
(Table 5). On inspection of corresponding data plots, a consistent change between OFF and ON
was only seen for knee amplitude, which closely reflected respective differences in MDS-UPDRS III
(Figure 4). The pronounced increase in longest stance time from OFF to ON, though non-significant,
was unexpected in direction. This parameter reflects hesitations in stepping that would be expected to
become less with effective therapy. However, inspection of data revealed one very long FOG episode
(>20 s) during one recording in ON condition with a relevant impact on parameter mean.

Table 5. Changes in SIP parameters and clinical rating from OFF to ON state in the subset with
assessments in both conditions available (1 = 10).

Mean (SD) OFF  Mean (SD) ON  Diff Abs.  Diff [%] SRM  Paired t-Test p-Value

MDS-UPDRS III 37.2 (14.53) 28.8 (13.37) 10.64 —28.6 1.69 <0.001
Cadence (steps/min) 96.6 (29.0) 96.9 (20.7) 0.36 04 —-0.02 0.954
Knee Amplitude (cm) 7.08 (4.0) 13.1 (6.2) 6.05 85.4 -1.34 0.002
Asymmetry (%) 21.9 (27.6) 17.7 (18.3) —4.30 -19.6 0.14 0.007
Average Step Time (s) 0.61 (0.17) 0.71 (0.14) 0.09 14.5 -1.09 0.007
Longest Step Time (s) 0.76 (0.21) 0.81 (0.14) 0.05 7.2 —-0.35 0.298
Arthythmicity (%) 11.9 (3.50) 8.46 (3.93) —3.49 -29.3 0.84 0.025
Average Stance Time (s) 0.80 (0.67) 0.62 (0.51) -0.18 -23.0 0.55 0.114
Longest Stance Time (s) 1.88 (1.87) 3.67 (8.04) 1.79 94.6 -0.27 0.423

Statistically significant outcomes are set in bold.
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Figure 4. Changes of knee amplitude between treatment states (left) and knee amplitude changes
related to disease severity change.

3.4. Implications of FOG and Other Motor Patterns

Freezing of stepping was clinically observed during 7 out of 33 recordings (ON: n = 6; OFF:
n = 1). Examples from our sample (Figure 5) illustrate possible effects of FOG behavior on SIP
parameters. In contrast to normal stepping behavior with constant rhythm and amplitude (Figure 5
top), hesitations and slower movements would be expected to result in increase of longest and average
stance time, step time, and, therefore, lower cadence (Figure 5, line two from top). Related to this
movement behavior, arrhythmicity can be found as well, and may show remarkable asymmetry (lines
two and three). Festination prior to freezing manifestation may result in decrease of average knee
amplitude, step, and stance timing, with remarkable asymmetry (third example). The manifestation
of freezing will clearly result in massive increases of longest stance time as the prominent and
possibly defining feature (lines three and four), usually in company with reduced knee amplitude and
increased arrhythmicity.
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Figure 5. Illustration of freezing of gait (FOG) related changes on SIP behavior from our sample:
normal rhythmic stepping behavior of regular and symmetric amplitude (top); hesitations of stepping
with asymmetrical inconsistent stepping behavior and slowing of movements at the end (second from
top); progressively ineffective stepping with small movement, asymmetry, and freezing of stepping at
the end (third from top); ineffective highly irregular low-amplitude stepping and freezing of stepping
in first half and at the end (bottom).

4. Discussion

Our study explored the instrumental assessment of motor signs in patients with Parkinson’s
disease using SIP as a standard motor task performed in front of a single RGBD camera. Both technology
and task were chosen for their potential application as patient-based assessment in the home setting,
although recordings were done in the lab at this stage.

The 3D motion signals of knees were used to derive eight different kinematic parameters for
the description of stepping behavior in SIP. This extends previous SIP descriptions [23,24,28] to the
spatial domain, including amplitude and spatial symmetry of stepping. Although foot signals from
RGBD recordings have been used for step detection in normal gait [29,30], we preferred knee signals,
because they showed less noise behavior compared to foot and ankle landmarks in an earlier validation
of our system [21]. The kinematic parameters were selected to reflect key motor aspects of PD.
Knee amplitude and step time are conceived to describe hypo/bradykinesia, similar to shortening of
stepping during gait at self-selected speed, which can be considered the main gait characteristic in
PWPD [31,32]. Temporal asymmetry is an important feature, specifically in the early stages of the
disease [33,34], and reduced interlimb coordination has also been related to FOG [4,27]. Interestingly,
spatial asymmetry of stepping during gait has been related to postural control [35] instead of temporal
asymmetry, and might be specifically affected in subtypes of PWPD [36].

Changes in cadence were not consistently seen in previous gait descriptions in PWPD, but an
increase of cadence and shorter step times in PWPD may indicate festination of stepping. In contrast,
increasing stance times may indicate hesitations, and excessive longest stance times may indicate
episodes of ineffective stepping or freezing. Variability of stepping, specifically step and stride timing
during gait, forms a separate domain of gait as conceptualized by Lord et al. [32], which has gained
increasing interest in the assessment of PWPD [16,37]. We therefore included arrhythmicity of stepping,
similar to the coefficient of variance for step or stride time that is used as common descriptor in gait
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analysis, which is sensitive to number of steps, as well as the gait paradigm used for recording [38].
Although the similarity of SIP movement to stepping during gait is intriguing, we are aware of only
one small study [23] which compared cadence from SIP and gait recordings. Thus, our parameter
wording should not imply that we consider specific parameters directly comparable to gait descriptions
in PWPD. We therefore also refer to freezing of stepping in our observations, although it obviously
shares features with FOG.

Prior to this work, there were only a few publications on the instrumental assessments of SIP.
In our study, stepping in place was instructed to evoke self-selected stepping pace without any external
cueing. Differences in task instructions as well as sample characteristics may contribute to explain the
slightly lower cadence reported here, compared to previous reports (97-99 steps/min in our study vs.
100-112 steps/min from [23,24,28]). Derived spatial asymmetry values presented in this work were
notably higher than the reported temporal swing time asymmetry during SIP by Nantel et al. [24],
which may indicate limitations in the comparability of spatial and temporal asymmetry measures.
Comparability of measurements to age-matched healthy volunteers should be considered for future
works, to define normal stepping behavior in this task and corroborate evidence on analogies and
differences to stepping behavior during gait. Furthermore, although our results did not suggest
dependency on age, body height, or weight, potential confounders need to be analyzed in more
appropriate datasets, as well as variability of performance with repeated testing. For use in PWPD,
this test series showed excellent applicability of RGBD-instrumented SIP, even in higher disease stages.
Still, the need for well-standardized procedures of data acquisition and for quality control of acquired
data, specifically in remote application, needs not be neglected to make this a useful aid to clinicians
and disease management in PWPD.

With respect to clinical validity, correlation analysis in our cohort indicated that smaller knee
amplitude and longer stance times reflect higher disease severity. As knee amplitude can be conceived
as the spatial parameter of stepping, this finding corresponds well to reduced step length during
gait. While stance time during gait may increase with need to stabilize gait, often in parallel with
reduction in gait speed, it has, to our knowledge, not been explored as an indicator of hesitations in
stepping, nor has longest stance time been reported as an indicator of FOG episodes. Our observation
of excessive longest stance time in individuals who experience freezing of stepping during SIP would
support this concept. Future study may define useful thresholds for an automated detection of freezing
and related behaviors, as exemplified in Figure 5. Both knee amplitude and longest stance time,
but also arrhythmicity, showed substantial correlations to the clinical rating of postural instability
from pull test performance. This is remarkable, as postural instability in PWPD is a motor feature of
high clinical relevance regarding prognosis, fall risk, and interventions, yet hard to assess clinically.
Pull test performance and rating notably suffers low reliability [39]. Therefore, future study should
aim to corroborate this finding, which further supports the notion that SIP tests aspects of postural
control, in addition to aspects of gait.

From the 33 SIP recordings, seven included freezing episodes, according to operator observation,
as well as inspection of knee signals. This supports the notion that the SIP task triggers freezing
of stepping [24,25]. The occurrence of FOG is known to depend on environmental cues as well
as the type of motor task, where increased task complexity and cognitive demands increase FOG
appearance [40,41]. Previous reports indicating cognitive demand of SIP execution [28] could explain
the appearance of freezing in this task. However, our study was not designed to further explore the
diagnostic accuracy of SIP for FOG detections. This would need a study design that compares matched
samples of freezers and non-freezers, defined along established standards and against more detailed
clinical ratings of FOG and related phenomena. Other motor tasks, such as 360° turns or walking
through doorways, might have a higher probability of triggering FOG [25]. Unfortunately, due to
occlusion of body parts during execution, the extraction of reliable kinematic parameters from turn
tasks proves difficult when using markerless motion capture technology.
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The comparison between ON and OFF recordings from a subgroup of 10 PWPD aimed to explore
the sensitivity to effects of intervention. As expected, these were reflected in a decrease in MDS-UPDRS
I from OFF to ON, which can be considered as clinically relevant, both with regard to absolute and
relative change [42,43]. This overt change in clinical state, however, left cadence unchanged, while knee
amplitude and average step time increased and spatial asymmetry decreased (trend for decrease in
arrhythmicity). Specifically, the average proportional increase of knee amplitude (85%) was much
higher than the relative change observed in clinical ratings (—29%), suggestive of a higher sensitivity to
change compared to clinical rating. This can, however, only be confirmed if retest reliability has been
determined. Concerning average step time, the appearance of a very long FOG episode (>20 s) in one
ON recording might have influenced statistical analysis of this parameter, and explains the massive
increase in longest stance time for OFF to ON.

The advantage of markerfree motion capture, in comparison to single or multiple wearable
sensors, is the potential analysis of the full body. After consideration of required accuracy levels,
signal analysis may extend to other body parts, and could be used to describe arm swing or torso
sway dynamics during task performance. From clinical observation, such measures seem interesting
candidates for a description of dyskinesia in PWPD. This was not considered in our study, as recordings
with dyskinesia were deliberately excluded, but is clearly needed in further validation of this task for
clinical application in PWPD.

From this first kinematic analysis, SIP alone may capture a variety of clinically relevant PD motor
symptoms within one test, including FOG, although the relation of SIP performance to hand functions
and dyskinesia have not yet been investigated. The task could also be modified with respect to duration
or by adding cognitive or motor dual task conditions. The literature shows that, in conventional gait
tasks, adding further cognitive load via dual tasking increases FOG appearance and alters movement
patterns in PWPD [8,44]. Whether this also holds true for SIP, as a non-locomotor stepping task,
still needs to be shown.

5. Conclusions

In this sample of 25 PWPD, all patients were able to perform the 40 s stepping in place task in
OFF and ON therapeutic state. Freezing episodes were seen during some of the SIP performances in
OFF as well as ON, confirming previous reports. From all recordings, a set of kinematic parameters
were derived, describing range of movement (knee amplitude), arrhythmicity, and asymmetry, as well
as stance timing. As an indicator of clinical validity, some parameters showed relations to clinical
ratings of disease severity, specifically postural instability. Measures of knee amplitude showed also
consistent changes between OFF and ON states, indicating high responsiveness of this parameter.
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