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Abstract: Point set is a major type of 3D structure representation format characterized by its data
availability and compactness. Most former deep learning-based point set models pay equal attention
to different point set regions and channels, thus having limited ability in focusing on small regions
and specific channels that are important for characterizing the object of interest. In this paper,
we introduce a novel model named Attention-based Point Network (AttPNet). It uses attention
mechanism for both global feature masking and channel weighting to focus on characteristic regions
and channels. There are two branches in our model. The first branch calculates an attention mask
for every point. The second branch uses convolution layers to abstract global features from point
sets, where channel attention block is adapted to focus on important channels. Evaluations on
the ModelNet40 benchmark dataset show that our model outperforms the existing best model in
classification tasks by 0.7% without voting. In addition, experiments on augmented data demonstrate
that our model is robust to rotational perturbations and missing points. We also design a Electron
Cryo-Tomography (ECT) point cloud dataset and further demonstrate our model’s ability in dealing
with fine-grained structures on the ECT dataset.

Keywords: point cloud; attention mechanism; deep neural network

1. Introduction

Point cloud is a main type of geometric data representation of 3D structures. In addition to
techniques such as photogrammetry, the rapid development of sensors such as Velodyne spinning
Light Detection and Ranging (LIDAR) and tilting laser scanner also makes it drastically easy to collect
structural information of the real world using point clouds. This results in broad applications of the
combination between photogrammetry and laser scanning techniques. For example, the authors of [1]
integrate photogrammetry and laser scanning techniques to model digital 3D dinosaur footprints.
Point clouds are easy to learn from because of their expressive and compact representation [2].
Furthermore, compared with volumetric image representations, point cloud takes up significantly less
storage when representing the same structure.

In recent years, deep neural network has become a major tool for image analysis. Deep learning
is also increasingly popular for analyzing point set data due to its large scale learning capacity.
Since the invention of PointNet [3], which directly handles point sets, most recent works extract
the global features of a point set by grouping and aggregating features of all the individual points.
However, they are limited to detecting the structural differences between distinct objects. Therefore,
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when confronting similar and complicated structures, the above models may not perform well on
classification and segmentation tasks.

For this reason, we aim at specifically handling fine-grained structures by proposing a novel deep
learning model named AttPNet (Figure 1). The model is characterized by attention-based global feature
masking and channel weighting which correspond to the global attention module and CW-EdgeConv
(see Figure 2). The whole end-to-end model (Figure 2) takes N points as an input and learns a global
feature for classification and segmentation tasks. There are two main branches in the model. The first
branch focuses on the effect of each local point, therefore outputting a global mask at the end of the
branch, weighting the contribution of each point to the analysis task. In order to focus on the most
discriminative regions of the input structure, we multiply the global feature by the mask to obtain
our final attention-based feature. Another branch outputs global geometric information in the form
of a two-dimensional tensor by concatenating each point’s feature. We use channel weighting in this
branch to focus on informative and distinct channels.

Experiments show that our model outperforms existing models on the most widely used
ModelNet40 benchmark dataset. Note that on the ModelNet40 leaderboard, the 93.6% result of RSCNN
trains multiple models to vote for the final decision. For a fair comparison, following the practice of
most of deep learning papers, we compared our method with other models on ModelNet40 without
voting. The key reason why our work outperforms other models is that we innovatively introduce
the attention mechanism to point cloud feature extraction. Former models like PointNet [3] and
PointNet++ [4] do not distinguish the importance of each point. However, every point plays a unique
role in characterizing the overall structure. Therefore, we let our model assign every single point its
own weight in the feature integration phase. Moreover, the squeeze-and-excitation operation [5] used
for the channel attention in every convolutional layer also makes the model focus on the important
channels of features that representing the internal geometric information in high dimensional space.

Our main contributions are summarized as follows.

• We propose a novel model named AttPNet which uses attention mechanism for both global
feature masking and channel weighting to focus on characteristic regions and channels.

• Our model achieved 93.6% accuracy of overall instances on ModelNet40 benchmark dataset
without voting and outperforms the existing best point set model by 0.7%. Given that the
performance improvement is slow in recent years, the performance improvement of our model
is significant.

• Experiments show that our model generalizes better on test data with random translation, rotation,
and missing points perturbations Table 1).

Figure 1. Overview of AttPNet.
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Figure 2. The architecture for classification. This model takes N points as an input and mainly
contains two branches. The upper branch functions as a regular network to output the global feature.
The lower branch is a global attention module which outputs the global attention mask representing
different importance of each point. We directly operate an element-wise multiplication between the
feature and mask. Finally, we feed the outcome of this multiplication into the classification and
segmentation network to obtain the scores. c1 and c2 denote the dimensions of features. k represents
the quantity of points xi sampled in a ball centered at xc. m denotes the number of classes. The “++”
of “CW EdgeConv++” means that there is additional output from it for the global attention module.
The dimensions annotated in CW-EdgeConv and Global Attention Module (all blue boxes) are for
per-point features.

Table 1. Robustness to translation and rotation in terms of classification accuracy. We evaluate the test
data with uniform translation in [−0.2, 0.2] and the different rotation with 10◦, 20◦, and 30◦. There is
no point set rotation in the phase of data augmentation during training.

Method Translation R10◦ R20◦ R30◦

Ours 93.4 93.2 92.1 86.3
PointNet++ 90.6 90.3 88.6 83.8

2. Related Work

2.1. Point Cloud Networks

2.1.1. Projection and Voxelization

Before the invention of PointNet [3], the deep learning methods for point clouds can be divided
into several types. The most important two techniques are projection and voxelization. The authors
of [6–8] project 3D point clouds into 2D images from multiple angles of view and feed 2D images into
traditional 2D convolutional layers. These approaches dominate for a long period due to efficiency
but they are limited by the problem of occluded objects. The authors of [9] propose a method that
partially solve object occlusion by aggregating different views from sensors. Voxelization [6,10–12]
is also a popular type of approach that subsample point clouds into volumetric grids so as to utilize
3D convolutional layers. Such methods are mainly constrained by the inflexible resolution and high
computational and storage cost. The authors of [13] propose a novel solution similar to voxelization
which projects the point clouds into high-dimension lattice and applies bilateral convolution layers [14].
Splatnet achieves competitive outcomes on several data sets compared with pointnet++ [4]. Octnet [15]
use unbalanced octrees to hierarchically partition the space through exploring the sparsity in 3D
volumetric data. Each leaf node of the unbalanced octree stores a pooled feature representation.
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2.1.2. PointNet & PointNet++

PointNet [3] is a pioneering work that directly consumes point clouds and utilizes symmetric
functions such as max pooling to respect the permutation invariance of points. It is highly efficient
and achieved better results than previous work. PointNet++ [4] is an improved version of PointNet.
By applying hierarchical abstraction layers, it is capable of learning local features with increasing
contextual scales and has significantly better results on several benchmark datasets than PointNet.

2.1.3. Graph Networks

The authors of [16] propose a new module (EdgeConv) which acts on graphs dynamically
computed in each layer of the network. The design of the dynamic graph module can also learn
both local neighborhood information and global shape properties. The architecture of AttPNet
model is mainly based on dynamic graph network (DGCNN). Key differences between AttPNet
and DGCNN include the extension of original EdgeConv and global attention module. Apart from
these two distinct differences, we made some minor structural adjustments to the network such as
feature dimension, number of module and the selection of activation function. The authors of [17] use
recursive feature aggregation on a nearest-neighbor graph computed from 3D positions to generate
local high-dimensional features and also defines a point-set kernel in analogy to 2D convolution
kernels for images. The authors of [18] propose a model named GS-Net to deal with data rotation and
translation. It adopts Eigen-Graph to collect geometric information from points in a distance. For points
in neighbors, this algorithm combines both Euclidean space and Eigenvalue space to generate features.

2.1.4. Point Convolution

Recently, there is an increasing interest in designing convolutions that directly operates on point
clouds, inspired by the great performance of CNN on 2D images. To design a point convolution
network, the authors of [19–21] attempt to construct continuous kernel functions to convolve on
local points. PointConv [19] uses a Multi-Layer Perceptron (MLP) to fit a kernel due to its ability to
approximate an arbitrary continuous function. It also consumes the inverse density as a feature
to convolve with the kernel function. SpiderCNN [20] found that the MLP did not work well
on approximating the kernels, so the authors propose the order-3 Taylor term which is a family
of polynomial functions applied with different weights to enrich the complexity of the filters.
Flex convolution [21] utilizes linear functions to act as a kernel which is actually an order-1 Taylor term
of SpiderCNN. Structure-aware Convolution (SAC) [22] matches neighbor points in the point cloud
through 3D convolution to extract geometric features. These convolution works all have significant
improvements in several data sets but the training and inference time are much longer than PointNet++
(usually double).

Although networks like SpiderCNN [20] and DGCNN [16] incorporate local neighborhood
information, these extraction steps are region-wise. Strategies mentioned above work well on
classification tasks between distinctive categories. However, they only consider the global and neighbor
effect between groups of points but ignore the location and other hidden information of a single point.
Our approach, AttPNet, has a point-wise branch to solve this problem.

2.1.5. Sequence Network

The authors of [23] employ a sequence model to capture the correlations by aggregating multi-scale
areas of each local region with attention. Point2Sequence utilized LSTM [24] as the main module of
the encoder and decoder to highlight the importance of different area scales. However, due to the
introduction of LSTM, the model is hard to train and needs more time to converge.
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2.2. Attention-Based Methods in Computer Vision

The attention mechanism has been well studied in computer vision and help achieve great
improvement in scene analysis [25]. From the era of deep learning, attention mechanism was widely
known because of a sequence model [26] in translation to focus on key words in natural language
processing. In recent years, it also demonstrated useful in extracting the core information in images.
Such approaches can be divided into hard attention and soft attention. The work in [27] uses a
classical method of hard attention. The author proposes an APM module to focus and crop the
distinct area in fine-grained classification tasks. This hard-attention module only acts in looking again
(in comparison to look once in YOLO model) at the crucial area and ignoring all other pixels. To resolve
the problem of non-differentiable cropping, many researchers attempt to utilize the soft attention
mechanism which learns an alignment weight and place it on all pixels such as [28,29]. From another
perspective, the attention mechanism can also be separated into two parts: spatial-domain attention
and channel-domain attention. SENet [5], as a championship winner in 2017 ILSVR, utilized SE block,
which can be regarded as a channel-domain attention module that adaptively recalibrates channel-wise
feature responses by explicitly modeling interdependencies between channels. SENet produces
significant performance improvements at little computational cost and initiates the methods on
channel-wise recalibration and attention.

There are also few works using the idea of attention mechanism to improve the results
on classification and segmentation. The work in [30] includes a simple contextual modeling
mechanism to automatically select contextual region and aggregate features. The work in [31] uses
a parameter-efficient Group Shuffle Attention (GSA) and develops Point Attention Transformers
(PATs) to construct an end-to-end learnable model. The work in [32] introduces a geometry-attentional
network which combines features from geometry-aware convolution, attention module and other
hierarchical architectures. The work in [33] proposes an local relation learning module based on the
attention mechanism in order to extract local features. However, the improvement of these works
on point cloud datasets such as ShapeNet and ModelNet40 are limited. The best classification result
of the work in [30] on ModelNet40 is 90.0% and best part segmentation result is 84.6% (mean class
accuracy) which are both lower than the results of PointNet++ [4]. For the model [31], the classification
result on ModelNet40 is 91.7%. The authors of [34] use a Graph Attention Convolution (GAC) to solve
semantic segmentation tasks, but their attention mechanism is based on the subgraph of a point cloud
and only accept neighbor feature as input. In contrast, our model applies a different design of attention
mechanism which combines global feature and channel feature during training process and gains
significant improvement.

3. Method

In this section, we first describe the CW-EdgeConv and the global attention module. Then,
we overview the whole model for classification and segmentation. Finally, we compare several
structures of attention modules.

3.1. Channel Weighting Edge Convolution (CW-EdgeConv) Module

Our CW-EdgeConv module is an extension of EdgeConv and it consists of four steps:
(1) calculate k nearest neighbors using kNN query, (2) map low-dimensional geometrical features
to high-dimensional features using Multilayer Perceptron (MLP) [35], (3) channel weighting, and (4)
aggregate features of nearest neighbor points into features of a single point. The original EdgeConv
will be described in the last of this subsection.

The first step is kNN query, which inputs a set of points and calculates the k nearest neighbors for
each point. Specifically, consider an point set input x = {xi| i ∈ [1, N]} ∈ RN×C}, where N is the total
number of points and C is the dimension of geometrical features of a point, such as 3D location and
normal. Given that our model does not resample points before each CW-EdgeConv layer, the number



Sensors 2020, 20, 5455 6 of 20

of points considered remains N. For each xi, we define a subset centered at it and choose k− 1 nearest
points except the center xc. Therefore, a kNN query of xc can be calculated as

Fr(xc) = {xj | ‖xj − xc‖2 ≤ ‖xc − xk‖2} ∈ Rk×C (1)

where xk is the k th nearest point from xc, calculated using the kNN query. Therefore, the grouped
input can be represented by

{Fr(xi) | xi ∈ x} ∈ RN×k×C (2)

We apply the kNN query method to group the point set in each layer due to simplicity and less
inference time.

The second step is using MLP to map low dimensional geometrical features to high-dimensional
features. These low dimensional geometrical features include the edge feature in form of xj − xi and
the original input points xi, where xj ∈ Fr(xi). The choice of such features strictly follows the best
option in EdgeConv [16]. Given such features, we use MLP to calculate high-dimensional features.
Specifically, we apply a 2D 1× 1 convolutional layer followed by a batch normalization layer [36]
and a ReLU activation function [37]. We use the following notation to represent this convolutional
operation of one group.

hΘ(xj − xi, xi), xj ∈ Fr(xi)

Note that hΘ is shared through all groups in that it works as a nonlinear function to discover the
intrinsic features of each group in high dimensional space such as density, mean distance, etc. This is
achieved by extracting the correlation of the input geometric features (xj − xi, xi).

For the third step, given the middle features outputted from convolutional layers hΘ, we apply
channel weighting on these middle features by adapting a squeeze and excitation block (SE-Block2d) [5]
layer. The architecture of SE-Block is shown in Figure 3. Here, we simply abbreviate the SE-Block
as Fse.

xse = Fse(hΘ(xj − xi, xi)) ∈ RN×k×Cout
, xj ∈ Fr(xi) (3)

where Cout is the number of the output channels of hΘ.

Figure 3. SE-Block architecture.

We made two modifications to the SE-Block [5]: (1) We adapt a 1d channel weighting model to fit
the dimension of the concatenated feature; (2) We keep the original channel size of a layer in the block
because the reduction of layer parameters limits the performance of channel weighting.

In the fourth step, we aggregate features of k nearest neighbor points Fr(xi) into features of a single
point xi. This is similar to 2D convolution networks that each pixel value should be aggregated from
several values of a kernel. Here, we follow the convention of PointNet, PointNet++, and EdgeConv;
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the aggregation function is Max(·) instead of ∑. The output for a group centered at xi is calculated
as follows.

xCW
i = max

j ∈ [1, k]
xse(xi, xj), xj ∈ Fr(xi), xi ∈ x (4)

Finally, the output of the whole CW-EdgeConv is calculated as follows.

xCW = {xCW
i | i ∈ [1, N]} ∈ RN×Cout

(5)

We denote the output of the l th CW-EdgeConv layer as (l)xCW.
After the output (4)xCW of the last CW-EdgeConv layer, we further utilize an shared MLP hg

Θ and
a SE-1d block to obtain the global feature g.

g = Fse(h
g
Θ(

(4)xCW)) ∈ RN×Cout
(6)

Remarks: The only difference between first CW-EdgeConv++ layer and following CW-EdgeConv
layers is that there are additional geometric features for the global attention module (see more detail in
the next subsection). The form of this additional output is represented as

xCW2
i = {xi, xj, xj − xi, ‖xj − xi‖2} ∈ Rk× 10 (7)

where xi ∈ x, xj ∈ Fr(xi), ‖ · ‖2 denotes the euclidean distance, and k specifies the number of points
in a group.

Remarks: The original EdgeConv module only contains step 1, 2, and 4 of CW-EdgeConv.
Compared with Equation (4), the output xEC

i for a group centered at xi in EdgeConv can be calculated as

xEC
i = max

j ∈ [1, k]
hΘ(xj − xi, xi), xj ∈ Fr(xi), xi ∈ x (8)

3.2. Global Attention Module

The input of this module is the output xCW2
i of the CW-EdgeConv++ module (see Figure 2).

Similar to the channel attention in SENet [5], we utilize two 1× 1 2D convolutional layers to reduce
the dimensions of grouped features (the input of this module) and one sigmoid function to generate
the soft attention mask (Figure 2). For a specific point group Fr(xi) centered at xi, the importance xGA

i
is calculated as

xGA
i = max

j ∈ [1, k]
Sigmoid(hΘ2(x

CW2
i )) ∈ R1× 1 (9)

where the number of output channels of hΘ2 is one and Sigmoid denotes the sigmoid activation function
which is 1

1+e−x ∈ (0, 1). Finally, the module outputs a learned soft mask xGA = {xGA
i | i ∈ [1, N]}.

The motivation of this design is simple: We consider the classification task as an example.
Each object class has its characteristic patterns that make it distinct from other classes. Examples of
such characteristic patterns include the string of guitars, the wings of airplanes, etc. Such characteristic
patterns may be neglected due to excessive amount of features extracted during the pooling aggregation
process. Therefore, it is necessary to measure the importance xGA

i of each group Fr(xi) and use such
xGA

i to weight the global feature g by our learned soft mask xGA.
The reason why we feed more pivotal geometric information (i.e., ‖xj − xi‖2 in Equation (7)) into

the global attention module is to accelerate and improve the learning of the global soft mask xGA.
Though MLP can approximate any nonlinear functions theoretically such as high-order information
like the square of the euclidean distance (2-order: ‖xj − xi‖2

2) from a group, experiments show that
the model with high-order convolutional filters such as (ω1x + ω2x2 + ω3x3) can achieve higher
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classification accuracy in several benchmarks [20]. To resolve this same problem in our model,
inspired by this idea, we here feed additional pivotal geometric information (i.e., ‖xj − xi‖2 in
Equation (7)) to assist the shared MLP to efficiently find features of characteristic patterns and
determine the importance xGA

i of every input point xi.
In summary, this module aims at automatically discovering the characteristic patterns of point

clouds and generate a point-wise soft attention mask xGA to multiply the global feature g.

3.3. Architecture for Classification and Segmentation

After obtaining the mask xGA from the global attention module and the global feature g,
we operate an element-wise multiplication between them and utilize the ReLU activation function to
generate the new global feature gm denoting the g after being masked.

For classification (Figure 2), we use both max-pooling and average-pooling to aggregate all points
in global feature gm and concatenate them. Finally, we use a 3-layer MLP to output the classification
scores. C, C/R, and C are dimensions of three neural layer of the MLP, respectively, where R is the
reduction factor to reduce the amount of parameters.

For segmentation, similar to other approaches, we first tile the one-hot category label and
concatenate it with the global feature gm and the output of ReLU and max-pooling on gm (Figure 2).
The following 4-layer MLP eventually outputs the point-wise segmentation scores.

The selection of aggregation function through all points was actually discussed in a few
researches [16]. Most models use the max-pooling other than average-pooling layer due to
the convention inherited from PointNet. Intuitively, the max-pooling ought to be better than
avg-pooling because the strongest activation is probably the most prominent feature of one class.
However, the outcome of avg-pooling can also reflect an important trait of a class; otherwise, the models
using avg-pooling will not have a reasonable result. In order to gather more valuable information,
we choose to concatenate both results from avg-pooling and max-pooling layers into a complete vector
for classification whose dimension is 2048.

3.4. Alternative Attention Modules

Inspired by convolution neural network models on 2D images and sequence models, we propose
two other modules of attention mechanism (Figure 4) on point clouds as follows.

Figure 4. Different structures of attention mechanism. (a) Global-attention module with hard-attention.
(b) EdgeConv with spatial attention.
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3.4.1. Global Hard-Attention Module

From Figure 4a, we can see that the global hard-attention module is similar to the one in Figure 2.
The input is still represented by xCW2

i as mentioned above. First, we use shared MLP and sigmoid
function to condense the high-dimensional geometric features. Then, we apply an average-pooling
layer to extract the mean response of all features in a group.

x̄CW2
i = avg

j∈[1, k]
Sigmoid(hΘ(x

CW2
i )) (10)

In order to suppress all redundant points, we construct the boolean mask xHA by comparing the
x̄CW2

i and 0.5 as below.

xHA
i = x̄CW2

i ≥ 0.5 ∈ {0, 1} (11)

Before operating the element-wise multiplication, we expand the channel dimension of the
boolean mask xHA = {xHA

i | i ∈ [1, N]} as the same size of the global feature g.

3.4.2. Spatial-Attention Edgeconv

As the global attention module only takes into account the low-dimensional geometric
information, the performance may be limited by the lack of high-dimensional intrinsic features
in all groups. Therefore, we propose a Spatial-Attention EdgeConv module by further integrating
point-wise attention with EdgeConv, as shown in Figure 4b.

Specifically, following the notation in the CW-EgdeConv subsection, we have the input point set
x. Furthermore, we denote the Fr(xc) as the group centered at xc by kNN query method. The output of
the upper branch of Figure 4b is written as following, which is identical to EdgeConv.

xEC
i = max

j ∈ [1, k]
hΘ(xj − xi, xi), xj ∈ Fr(xi), xi ∈ x (12)

xEC = {xEC
i | i ∈ [1, N]} ∈ RN×Cout

(13)

In the lower branch of Figure 4b, we first concatenate geometric information represented by c(xi).
Unlike the first CW-EdgeConv++ layer in Figure 2, c(xi) does not include the euclidean distance due to
the problem of gradient explosion. In practice, we found that the loss would become NaN after several
mini-batches because of the numerical instability when computing the gradient of high-dimensional
distance. We calculate the point-wise soft mask xsp-att

i as follows.

xsp-att
i = max

j∈[1, k]
Sigmoid(hΘ(c(xi))) (14)

xsp-att = {xsp-att
i | i ∈ [1, N]} (15)

In our implementation, hΘ contains a batch norm layer after the shared MLP.
Finally, combining the output of the two branches, the output of this whole module is calculated as

xSA = x̃sp-att · xEC (16)

where x̃sp-att represents the soft mask xsp-att being expanded as the same size of xEC. Though the amount
of parameters of Spatial-Attention EdgeConv seems to be less than CW-EdgeConv, the computational
cost is more expensive than the Fse operation and the performance is also inferior, as shown from the
experiments (see Table 2).
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Table 2. Classification results on ModelNet40. (Model-num denotes the model with num layers.
+n represents that the input contains normal vectors. OA means the overall accuracy.)

Method Input OA (%)

PointNet [3] 1024 89.2
PointNet++ [4] 1024 90.7
PointNet++ [4] 5000 + n 91.9
PointCNN [38] 1024 92.2
DGCNN [16] 1024 92.2
PCNN [39] 1024 92.3
SpiderCNN [20] 1024 + n 92.2
SpiderCNN-4 [20] 1024 + n 92.4
PointConv [19] 1024 + n 92.5
Point2seq [23] 1024 92.6
RS-CNN [40] 1024 92.9
SO-Net-2 [41] 2048 90.9
SO-Net-3 [41] 5000 + n 93.4

Ours (BASELINE) 1024 92.5
Ours (global attention) 1024 92.9
Ours (hard attention) 1024 92.5
Ours (multi-attention) 1024 93.3
Ours (global + channel) 1024 93.6

4. Experiment

4.1. Implementation Details

Our models are implemented in Pytorch. All training and testing experiments run on a single
GPU (GTX 1080 Ti). We utilize the SGD optimizer with 0.03 initial learning rate and cosine annealing
scheduler (Tmax = training epochs & minimum learning rate = 0) [42]. Our models often reach 91.0%
within three hours and approximately take 16∼18 h on ModelNet40 to converge and achieve best
results. The channel size of four EdgeConv layers (1 CW-EdgeConv++ and 3 CW-EdgeConv) for
classification are (64, 64, 128, 256) sequentially.

4.2. Classification Results

Datasets

In the task of classification, we evaluate on several datasets ModelNet40 [10] and Electron
Cryo-Tomography (ECT) [43]. ModelNet40 is a dataset made up of 40 common object categories
with 100 CAD models per category, among which all the point sets are augmented by scaling,
translation, and shuffling. The single-particle ECT [43] dataset consists of 3D images of seven classes
of macrocellular structures. We apply constant sampling to generate 400 point cloud data for each
class. Compared with other general point cloud dataset, the structures between different classes in
ECT dataset are more similar to each other.

4.3. ModelNet40

In Table 2, we compare our model with existing state-of-the-art models on ModelNet40 datasets.
For a fair comparison, we strictly follow the technique of training and data augmentation in DGCNN
(translation, scale and shuffle). Besides, we forsake the voting test because decision by multiple models
will largely increase the cost of time and space and conceal the real capability of a single model.
Results showed that our (global+ channel attention) model achieves state-of-the-art (93.6%) when
the input is 1024 points without majority voting. Other models with different attention mechanism
also achieved improvement compared with existing state-of-the-art models with 1024 input points.
(BASELINE) represents the baseline model which contains only EdgeConv (no CW-EdgeConv and
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global attention module). The architecture of this baseline model is slightly different from the
DGCNN [16]. (multi-attention) means that every Spatial-Attention EdgeConv layer is substituted
for CW-EdgeConv and Global-Attention is removed. (hard-attention) represents the model only using
the Hard-Attention module.

As shown in Table 2, the overall accuracy (OA) of our baseline model reaches 92.5%. Only with
the extension of global attention module which increasing very few parameters, the model can achieve
92.9% OA. Replacing all EdgeConv with CW-EdgeConv and retaining the global attention module,
the model performs 1.1% better than our baseline.

Actually, Spatial-Attention EdgeConv shares the same idea with Global-Attention module
except for the number and location of masking. In order to carry out the ablation study of such
attention mechanism, we first remove all SE-Blocks and the Global-Attention Module in Figure 2.
Then, we replace different number of common EdgeConv with Spatial-Attention EdgeConv (from left
to right in Figure 2) and compare the results in Table 3. From the outcomes, when the number
of replacements is 0, which means only common EdgeConv in our model, the result reach 92.8%.
Moreover, we find the model numbers 1 and 4 generate better results than the others. This inspire
us that probably the fundamental geometric information extracted right after the first layer and the
masking on the global feature are more important, thus prompting us to design the Global-Attention
Module which can achieve a best trade-off between accuracy and complexity of time and space.

Table 3. The overall accuracy (OA) with different number of Spatial-Attention EdgeConv replacing
normal EdgeConv. We first remove all SE-Blocks and the Global-Attention Module in Figure 2.
Then, we replace different number of common EdgeConv with Spatial-Attention EdgeConv (from left
to right in Figure 2).

Number 0 1 2 3 4

OA (%) 92.8 93.1 92.6 92.9 93.3

4.4. ECT

In the test on ECT dataset (Table 4), our model achieved 96.28% accuracy with global attention and
channel weighting. By contrast, PointNet poorly classified fine-grained structures with only 47.78%
accuracy probably because it only has global feature aggregation and does not extract local features.
PointNet++ achieved 94.62% when integrated the hierarchical local feature extraction. Thanks to the
attention mechanism to focus on distinct parts of macro-molecules, our model outperforms existing
methods and achieves 96.28%.

Table 4. Classification results on the ECT dataset.

Method OA (%)

PointNet [3] 47.78
PointNet++ [4] 94.62

Ours (global + channel) 96.28
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4.5. Part Segmentation Results

4.5.1. Dataset

We evaluate our models on ShapeNet for part segmentation. The ShapeNet dataset contains
16 categories of objects and consists of 50 different parts in total. Each category has been annotated
with two to six parts unequally. The training and testing 3D point sets are 14,006 and 2874, respectively.
The aim is to assign every point a part label from 0 to 49. The two evaluation metrics we used are the
mean IoU of 16 classes and all instances same as in [3,4,13,19].

4.5.2. Shapenet

The sizes of 4-layer MLP channels in our segmentation model are 256, 256, 128, and 50. The number
of the last channel is the amount of part labels in ShapeNet. In the training phase, we used 16 batch
size and consumed approximately 10 G memory on GPU. The total training time is slightly more than
that in classification. From Table 5, we can see that our model achieves competitive results comparing
to the models with additional input (normal vectors). The mean IoU per class is 82.8% and per instance
is 85.2%.

Table 5. Part segmentation results (%) on ShapeNet. Here we list the mean IoU for class and instance.
(“*”: add normal vectors with points; “m”: use mesh as input).

Method Class mIoU Instance mIoU

PointNet [3] 80.4 83.7
PointNet++ * [4] 81.9 85.1
SpiderCNN [20] 82.4 85.3
SPLATNet [13] 82.0 84.6
SyncSpecCNN m [44] 82.0 84.7
DGCNN [16] 82.3 85.1
SO-Net * [41] 80.8 84.6

Ours 82.8 85.2

Considering the slight difference of architecture between AttPNet and DGCNN, it is evident
that our CW-EdgeConv and global attention module have impact on the performance of whole
model. Compared with minor improvement between previous state-of-the-art models (see Table 5),
AttPNet achieves 0.5% improvement in class mIou than DGCNN.

4.6. Visualization of Attention

We visualize the global-attention mask on point clouds of ModelNet40 dataset. In Figure 5,
the color from dark to light represents the soft-attention weight from high to low. Therefore, the darker
area is the focus of our global-attention model. We can see that our model underlines the corner
and boundary of objects such as airplanes, desks, chairs probably because the point groups of these
regions have unique geometric information. Furthermore, our model automatically focuses on such
characteristic regions as the strap of bags and the flowers of a vase which make them distinct from
other classes.
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Figure 5. (a) Visualization of the attention mask on several point clouds of ModelNet40 dataset.
The color changed from dark to light represents the weight from 1 to 0. (b) Visualization of part
segmentation results on ShapeNet. We visualize some part segmentation results on ShapeNet across
several categories. The left of each pair is the prediction of our model and the right is the groundtruth.

4.7. Robustness

4.7.1. Missing Points

We study the robustness of our model to random input dropout compared with PointNet++
without retraining. Figure 6 showed that our approach still can achieve more than 80%+ on both
overall and average accuracy of ModelNet40 dataset with only a half of the original number of points.
Moreover, the accuracy of our model is significantly better than PointNet++ when the number of input
points is between 384 to 768.

Figure 6. Classification accuracy of our model and PointNet++ with a different number of input points
on ModelNet40 test data. (a) Overall accuracy across all instances. (b) Average of per-class accuracy.
The experiments were done without retraining.
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4.7.2. Rotation and Translation Perturbations

We also compare the robustness to rotation and translation invariance between our model and
PointNet++. The results (Table 1) demonstrate that our model is completely translation invariant and
highly robust to the small-range rotation difference with training dataset. There is no point set rotation
in data augmentation when training.

5. Additional Visualization of Rotated Attention Mask

We exploit the influence of rotation of point sets on the generation of our global attention mask.
Figure 7 demonstrates that our global attention mask is robust to rotation of point sets. Take the first
figure of the plane as an example, although there are some minor difference between two attention
masks (such as the the head of the plane), most weight of points in the generated mask remains the
same when the input rotates. It still pays more attention to margin areas such as the tail and wings
than inner parts of the plane.

Figure 7. Visualization of rotated structures and attention masks. The first row are original and
randomly rotated point sets. The second row are visualization of our generated attention masks
respectively. The colors from dark to light correspond to the weights from 1 to 0.

6. Additional Ablation Study on the ModelNet40 Dataset

Attention Mechanism. Addition to the examination of our attention mechanism in Section 4.2
and Table 3 of main text, we compare the accuracy of five different models with respect to the number of
epochs to demonstrate the general trends. In Figure 8, the model numbers 1 and 4 always achieve high
overall accuracy after epoch > 220. Except for model number 2, all other models with Spatial-Attention
EdgeConvs attain better outcomes than number 0. It demonstrate that the results between models with
and without our attention modules have distinct gap after training about 200 epochs and the accuracy
does improve by our attention mechanism. In Figure 9, we can see that the accuracy of the model with
only Global-Attention Module is always higher than the other which also proves the effectiveness of
our design.



Sensors 2020, 20, 5455 15 of 20

Figure 8. Overall accuracy of different models on ModelNet40 with epochs (epoch > 15). The models
are defined according to Table 3 of the main text.

Figure 9. Overall accuracy of different models on ModelNet40 with epochs (epoch > 15). Number 0
means removing the Global-Attention Module and all SE-Blocks in our model. With Global-Attention
Module denotes that we only remove SE-Blocks in our model.

Other Layers. In Table 6, we demonstrate the model performance in different situations.
We consider factors including number of points, batch norm layers [36], dropout layers,
activation layers, and aggregation functions. From the results in Table 6, we can see all these factors
do improve performance except for increasing the number of input points. The phenomena that the
increase in the number of points does not increase the performance has also been observed in other
state-of-the-arts work [40].

Number of points k of a group. In Table 7, we also evaluate the effects of different number k of a
neighboring point group. Experiments show that small k (k ≤ 20) achieves similar accuracy both with
1024 and 2048 input points. By contrast, the performance of large k (k ≥ 25) will decrease quickly when
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having 1024 input points probably because it is hard to find discriminative patterns in large groups.
However, more input points (2048 points) will make point sets dense so that groups containing large
number of neighboring points may cover regions of same volumes as in sparse point sets with less
input points (1024 points), thus maintaining a high accuracy. Besides, despite fed on different input
points, k = 20 achieves best result 93.6% in both models B2 and B6 in Table 7.

Table 6. Ablation study of AttPNet on ModelNet40 dataset. “BN” denotes batch norm layers [36].
“DP” represents dropout layers. “Act.” indicates activation layers. “max&avg.” means that we combine
the results from two aggregation functions. Model A4 corresponds to AttPNet.

Model #Points BN DP Act. Max Max&Avg. Acc

A1 1 k LR X 90.8
A2 1 k X LR X 91.6
A3 1 k X LR X 93.2
A4 1 k X X LR X 93.6
A5 1 k X X R X 92.8
A6 2 k X X LR X 93.6
A7 1 k X X LR X 93.3

Table 7. Ablation study of AttPNet on ModelNet40 dataset. Nknn indicates the number of points in a
neighboring group.

Model #Points Nknn Accuracy

B1 1 k 15 93.3
B2 1 k 20 93.6
B3 1 k 25 92.8
B4 1 k 30 92.6

B5 2 k 15 93.5
B6 2 k 20 93.6
B7 2 k 25 93.5
B8 2 k 30 93.5

DGCNN [16] 1 k 5 90.5
DGCNN [16] 1 k 10 91.4
DGCNN [16] 1 k 20 92.9
DGCNN [16] 1 k 40 92.4

7. Conclusions

In this paper, we propose a novel model named AttPNet that combines a global point-wise
attention mechanism and channel weighting to improve performance of point set analysis. AttPNet
outperforms the best model in ModelNet40 classification benchmark by 0.7%, which is a significant
improvement. In addition, AttPNet is robust to rotational perturbations and missing points. Further
experiments also demonstrate that our model performs well on the classification of fine-grained point
sets such as the ECT dataset. Furthermore, we provide the visualization of our attention masks on the
objects in ModelNet40 and the results of part segmentation in ShapeNet (see Figure 10).
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Figure 10. More visualizations of segmentation on ShapeNet dataset. Different segments are
represented by different colors. The upper object of a pair is the prediction of AttPNet and the
lower one is the ground truth.

In the future, we will continue optimizing the AttPNet and apply it to other fields such as
semantic segmentation. In addition, experiments indicate that there is still considerable potential for
improvement in recognizing data with large-angle rotation. Therefore, we will keep working on the
robustness of our model. Besides, in many data sets, points are always distributed in an unequal
spatial distribution. We will attempt to adapt our model to such attributes in point set and make it
focus more on dense areas to attain greater performance.
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