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Abstract: Human motion capture (MoCap) plays a key role in healthcare and human–robot
collaboration. Some researchers have combined orientation measurements from inertial measurement
units (IMUs) and positional inference from cameras to reconstruct the 3D human motion. Their works
utilize multiple cameras or depth sensors to localize the human in three dimensions. Such multiple
cameras are not always available in our daily life, but just a single camera attached in a smart
IP devices has recently been popular. Therefore, we present a 3D pose estimation approach
from IMUs and a single camera. In order to resolve the depth ambiguity of the single camera
configuration and localize the global position of the subject, we present a constraint which optimizes
the foot-ground contact points. The timing and 3D positions of the ground contact are calculated from
the acceleration of IMUs on foot and geometric transformation of foot position detected on image,
respectively. Since the results of pose estimation is greatly affected by the failure of the detection,
we design the image-based constraints to handle the outliers of positional estimates. We evaluated
the performance of our approach on public 3D human pose dataset. The experiments demonstrated
that the proposed constraints contributed to improve the accuracy of pose estimation in single and
multiple camera setting.

Keywords: human pose estimation; inertial measurement units; single view; sensor fusion

1. Introduction

Inertial measurement units (IMUs) and RGB cameras are utilized for online human pose estimation
in real-world settings. IMUs comprise accelerometers and gyroscopes providing measurements of 3D
acceleration and calculated 3D orientation. The acceleration and orientation of the IMU attached to
each body segment helps infer human motion [1–3]. RGB cameras are the most commonly used optical
sensors and offer two-dimensional (2D) visual information of the environment. Recent image-based
human pose estimation methods detect joints of the human body on the image that offer a robust 2D
human pose [4–8]. Both devices are widely used in various motion analysis applications; however, they
have physical limitations. IMUs suffer from measuring translational motion due to the integration-drift
problem. The position error accumulates in time to reach a remarkable value if it is not reset or
compensated, so IMUs cannot provide accurate 3D joint positions in the global coordinates. For RGB
cameras, it remains difficult to obtain 3D human pose in the wild using a single view due to depth
ambiguity, i.e., the 3D position of the points projected onto the 2D image are indefinite in the optical
axis direction.

To compensate for these limitations, researchers have developed full-body motion capture
(MoCap) systems that incorporate information from IMUs and RGB cameras. 3D human posture
and position are simultaneously optimized to be consistent with the orientation of the IMUs and the
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silhouettes or joints obtained through convolutional neural networks (CNN) on the images. They have
achieved accurate and stable performance in MoCap, but images from multiple viewpoints are required
to localize the 3D human position.

Most measurement environments in the real world consist of a single camera rather than
multi-viewpoint cameras. In everyday life, cameras (e.g., cameras for surveillance, care systems
in the homes of the elderly, and worker-safety systems in factories) are placed to fully cover the space
to be monitored. The optimal camera arrangement is to place a minimal number of cameras so that
the area where fields of view overlap is small [9]. Assuming these cameras are utilized to capture
human posture for the purposes of health care [10,11] or human–robot collaboration [12], a technique
for online MoCap in a single-camera environment is desirable. Moreover, inertial sensors have become
affordable, and many studies have analyzed human motion using IMUs [13–15]. Recently, IMUs have
been embedded in many cellphones and smartwatches, and further spread of IMUs is expected.

In this paper, we present an optimization-based method for online 3D human pose estimation that
resolves the positional ambiguity of IMU-based poser with a single camera. Single-camera settings
impose two challenges on pose reconstruction: (1) A single-view image cannot constrain the position
of the human body in three dimensions due to depth ambiguity, and (2) the results of pose estimation
are greatly affected by the failure of image-based constraints, such as outlier detection of the joints.
For the first problem, we present 3D positional constraints of ground contact. The timing of the contact
is determined from acceleration of IMUs, and the contact position is calculated by back-projecting the
2D foot joints on the image into the floor plane. The joints on the image are detected by a CNN-based
method [6]. The proposed objective function is designed to handle the outlier detection of the joint
detector, which resolves the second problem.

We experimentally evaluated our method using the public 3D dataset TotalCapture [16],
which includes all-synchronized videos, IMU data, and ground-truth human pose. The experiments
demonstrated that the cost terms incorporated into our objective function contributed to the accuracy
and stability of pose estimation.

2. Related Work

2.1. IMU-Based Motion Capture

Many approaches for IMU-based MoCap have been proposed over the last decade. Huang et al.
regressed the pose parameter of the human model from a small set of IMUs and achieved semi-realtime
human pose estimation [1]. However, their method does not provide the global position of the solved
human model. Although IMU provides accurate orientation in a high frame rate, it is susceptible
to drift in global position. A survey reported that a commercial marker-less motion capture suit
composed of 17 IMUs suffers from large positional error [17].

To handle this potential hurdle, von Marcard et al. reconstructed human motion using global
optimization [2]. As a result that their method optimizes the pose in all frames simultaneously, it is
offline. Another approach focused on human–object contact, which constrains one or more positions
the subject touches [3]. This method works well when the contact positions are predefined. However,
it accumulates the positional error when the contact positions are determined online. Inspired by the
contact constraints on pose reconstruction, our approach utilizes RGB images to compensate for the
contact’s position ambiguity.
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2.2. Image-Based Motion Capture

Improvements of deep neural networks have gained the attention of many researchers in human
pose estimation. A recent data-driven method estimates 3D human configuration using only a single
RGB camera [18–22]. The image-based 3D posers can be roughly divided into two approaches:
estimating the 3D position of keypoints (joints and face landmarks), and inferring the pose parameters
of a pre-defined human model. The former approaches do not provide the limbs orientation. The latter
estimates the full-body posture including the limbs orientation; however, the literature noted that these
framewise estimators are typically trained and evaluated on 3D datasets recorded in constrained and
unrealistic environments [23]. On the other hand, the accuracy of 2D pose estimators, which detect
human keypoints, has been improved by a number of studies over the last decade [4–8]. Due to its
performance stability, we utilized one of the open-source 2D joint detectors [6].

2.3. Motion Capture Fusing IMUs and Other Sensors

A line of research on combining IMU and visual information has aimed to achieve full-body
MoCap free from positional drift. Images from multi-view cameras are utilized to constrain the
subject’s position three-dimensionally [16,24–27]. The posture and the global position of the subject is
optimized by minimizing the difference between the human silhouettes on the images and the solved
human model projected onto the images [24]. Other studies have found that joint positions on 2D
images obtained by a CNN-based keypoints detector improve the performance of 3D MoCap [16,25].
The above-mentioned IMUs and image fusion approaches optimize the pose parameter of the human
model using the silhouettes and keypoints. Recent work estimate the 3D joint position by lifting 2D
multi-view keypoints to the 3D space [27]. As a result that it directly infers the joint position, it does
not provide the limb’s orientation. Although these approaches are appealing because of their stability
and accuracy, at least two viewpoints are required to resolve depth ambiguity and localize the subject.

Researchers have addressed pose estimation combining IMU and single view. Some studies have
performed 3D human tracking with IMUs and a single depth sensor, such as Kinect [10,28]. However,
the measurement accuracy of Kinect decreases outdoors. The only study that has dealt with 3D MoCap
with IMUs and a single RGB camera simultaneously optimizes human pose for a certain period of
frames, and the global optimization is processed offline [29]. An offline method uses all frames in a
sequence to optimize the human pose of a certain frame in the sequence. Offline methods are used
for motion analysis after the movement of the subject, especially in the sports and rehabilitation field.
On the other hand, online methods that use current frame and/or previous frames to estimate the
human pose can be applied to human–robot interactions and monitoring the subjects for healthcare.
To the best of our knowledge, no study addressed online MoCap using IMUs and a single RGB camera.

3. Methods

3.1. Pose Parameterization and Calibration

We parameterize the subject’s pose using a Digital Human Model (DHM) [30] that consists of a
48 degrees of freedom (DoF) link configuration. The model provides kinematics and the body mesh
when the pose including the global translation θ (∈ R51) is determined. We extend the IMU-based
MoCap method [3] for pose parameterization and optimization.

The transformation matrices among global coordinates SG, camera coordinates SC,
body coordinates SB, j-th joint coordinates SJ

j , and i-th IMU local coordinates SI
i are required for fusing

the sensors on motion tracking. Figure 1 shows relations between the coordinates and transformation
matrices. The transformations between the global coordinates and the camera coordinates TGC is
determined using a checkerboard [31]. In our configuration, the checkerboard is placed on the floor.
The Z-axis of the global coordinates (Xw, Yw, Zw), defined by the checkerboard, points in the opposite
direction of gravity, and the Zw = 0 plane coincides with the floor. Note that the checkerboard can
be removed after the camera is calibrated and fixed. After the camera setup, the subject wearing
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IMUs takes a calibration pose (e.g., T-pose: standing upright and keeping both arms horizontal).
The rotational transformation from each IMU to the joint coordinate is obtained from

RIJ
i = RJ

i(θ0) · (RI
i(t0))

−1, (1)

where RI
i(t0) represents the i-th IMU sensor orientation in the global coordinates when the subject

takes the calibration pose, and RJ
i(θ0) denotes the rotation matrix of the model joint belonging to the

bone to which the IMU is attached in the global coordinates. t0 and θ0 represent the frame and pose
parameter of the calibration pose, respectively. As illustrated in Figure 1, RJ

i(θ0) can be represented
by the conversion of the coordinates from the global coordinates SG to the local coordinates of each
joint SJ

j of the human model. It can be calculated by transformation matrix TJB
j (θ0) and TBG(θ0).

TJB
j (θ0) denotes the transformation from SJ

j to the body coordinates SB. In our method, SB is defined
to correspond with the local coordinates of the pelvis joint of the human model. The transformation
TJB

j (θ0) can be obtained from the forward kinematics of predefined link configuration of the model.

TBG(θ0), transformation from the body coordinates to the global coordinates, is determined by the
position and orientation of the subject taking the calibration pose.
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Figure 1. Relations among the local coordinate systems.

For synchronizing the data from IMUs and a camera, a physical cue that can be detected from
both the camera and IMUs can be used when it is difficult to synchronize a camera and multiple IMUs
with a signal synchronizing apparatus. For example, a footstamp is applicable because, for the camera,
the timing of the cue is obtained from the motion of ankle joint detected on the image, and for the
IMUs, the timing can be calculated from the acceleration measurements of the IMU attached to foot.
The synchronization should be performed after the calibration pose.

3.2. Full-Body Pose Optimization

We follow the paradigm of constraint-based motion tracking. More specifically, we minimize the
following total cost function composed of multiple cost terms on a per-frame basis.

E(θ) = EO(θ) + λRoMERoM(θ) + λPEP(θ) + λGEG(θ), (2)

where EO(θ) and ERoM(θ) constrain the orientation and the range of motion of the model joints,
respectively. EP(θ) and EG(θ) represent the positional error of the joints and the ground contact
points, respectively. We design these positional error terms so as to stably estimate the human
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pose in an under-constrained environment. Every term is weighted by a corresponding weight λ.
The quasi-Newton algorithm [32] is applied to solve the optimization problem.

3.2.1. IMU-Based Constraints

The orientation of the kinematic links is estimated from the measured orientation of IMU sensors.
The cost term is represented as the sum of the orientation differences between IMU measured and
estimated bone orientation. Here, the i-th IMU offers its orientation in each local coordinates. Using the
transformation matrix from the sensor coordinates to the joint coordinates RIJ

i (Equation (1)), the cost
EO(θ) can be expressed as

EO(θ) =
NI

∑
i=1
‖RIJ

i · R
I
i − RJ

i(θ)‖
2
F, (3)

where RI
i , and RJ

i(θ) denote the sensor measurement and solved value of bone orientation in the
current frame, respectively. NI describes the number of IMUs.

The other IMU-based constraint, ERoM(θ), adds cost when the estimated joint angle
exceeds or falls short of the RoM ψ. ψ defines the minimum and maximum joint angles,
i.e., ψ ∈ {(ψmin

r , ψmin
p , ψmin

y ), (ψmax
r , ψmax

p , ψmax
y )}, where r, p, and y represent the three principal axes

in the joint coordinates. The cost for each joint is calculated according to

eRoM(φ(θ), ψ) = ∑
k∈{r,p,y}


ρ((φk(θ)− ψmin

k )2) (φk(θ) < ψmin
k )

ρ((φk(θ)− ψmax
k )2) (φk(θ) > ψmax

k )

0 (otherwise)
, (4)

where φk(θ) represents the estimated rotation around the k-axis of the joint. ρ(·) is a loss function
detailed in Section 3.2.2. Then, we can compute the RoM cost for the entire body by

ERoM(θ) =
NJ

∑
j=1

eRoM(φ(j)(θ), ψ(j)), (5)

where NJ, φ(j)(θ), and ψ(j) denote the number of joints whose rotation is estimated, the j-th joint angles,
and the j-th joint RoM, respectively. We adopt the RoM defined in the commercial Digital Human
Model [30].

3.2.2. Image-Based Constraints

EP(θ) constrains positional differences between keypoints on an image pC detected by a CNN-based
2D pose estimator [6] and corresponding 3D joint positions projected onto the image p̂C. The 3D point of
the solved model in the body coordinates P̂B can be projected to the camera coordinates by

p̂C(θ) = TGCTBG(θ0)P̂B(θ), (6)

where Pj denotes the 4D column vector, which represents the 3D joint position in a homogeneous
coordinate system. TGC and TBG(θ0) are the 4× 3 translation matrices described in Section 3.1.

As a result that the global position of the estimated model is constrained by visual information
from only one RGB camera, the failure of the 2D joint detector seriously compromises motion tracking
accuracy. To improve the robustness to such outlier detection of keypoints, we extend Tukey’s biweight.
Specifically, the cost term of a joint is less weighted when the joint-position estimate is far from the
model joint in the previous frame. The weight is calculated by

wp =

 exp(− d2
p

2s2k2
p
) (dp ≤ βdskp)

0 (otherwise)
, (7)
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where p (1 ≤ p ≤ NP), βd, and s are the index of detected joints, a hyperparameter that controls
the range of nonzero weight, and the scale of distribution, respectively. Here, NP = 18, βd = 2,
and s = 140 in our experiments. dp represents the Euclidean distance between the detector estimate
and the projected point of the corresponding joint in the previous frame, and kp denotes the standard
deviation of the weight distribution. The distribution of keypoints detected by the data-driven 2D
pose estimator depends on the keypoint type. For example, the distribution of an eye must be smaller
than that of hips. The value of kp is defined by object keypoint similarity (OKS) [33], which is used to
evaluate the performance of the 2D keypoint detectors; that is, keypoint detectors ensure accuracy in
this distribution. The positional cost weighted with wp is expressed as

EP(θ) =
NP

∑
p=1

ρ(wpcim
p ‖pC

p − p̂C
p (θ)‖2

F), (8)

where cim
p represents the confidence score from the keypoint detector.

In our single-camera setting, EP(θ) alone cannot localize the global position of the model due
to the camera’s depth ambiguity. To optimize the model position three dimensionally, we present
the ground contact cost term EG(θ). Fusing IMU acceleration and positional measurement from the
camera, EG minimizes the distance between foot position and ground contact point.

We define the cost as depicted in Figure 2. Let P̂B
g(θ), where g ∈ {le f t_ f oot, right_ f oot} is the

left or right ankle position of the estimated model, and let PB
g be the intersection between the contact

surface and the line where the 2D ankle keypoint is back-projected into three dimensions. The contact
surfaces are the planes parallel to the floor plane, and each contact surface passes through each
ankle of the solved model. The floor plane can be determined by camera calibration as described in
Section 3.1. The confidence score cG

g that the foot is on the ground is determined from the acceleration
of the foot-attached IMU and the height of the foot. The resulting ground contact cost is calculated
according to

EG(θ) = ∑g ρ(cG
g wgcim

g ‖PB
g − P̂B

g(θ)‖2
F), (9)

where cG
g = δ +

{
βG/‖ag‖ (βG/‖ag‖ ≤ 1)
1 (otherwise)

,

where ag and βG represent the acceleration measured by the IMU attached to the foot g and a constant
value to determine the gradient, respectively. For all experiments, βG = 5 and βG/‖a‖ was calculated
using βG/(‖a‖+ ε), ε = 1.0× 10−6 to avoid zero division. δ takes 1 when the lowest mesh of g is
lower than that of the other foot, and 0 otherwise. wg is also multiplied for handling outlier detection
of foot keypoints. In our method, the Cauchy loss function, ρ(x) = log(1 + x), is used as a loss
function ρ(·) in the range of motion cost term ERoM, image-based positional cost term EP, and ground
contact cost term EG. The Cauchy loss function suppresses extremely large values so that the effect
of the error of one joint on the total loss does not become too large in the process of the optimization
calculation. An example of extremely large error is that when the distance from the camera to the
subject is large and camera position is relatively low, the small 2D position error of detected joints on
the image causes huge error in the 3D space.



Sensors 2020, 20, 5453 7 of 12

floor surface 𝑍" = 0

detected ankle

left contact surface 𝑍" = ℎ&

RGB image

right contact surface
𝑍" = ℎ'

ℎ&

ℎ'
𝐏&) 𝐏*&)

𝐏')
𝐏*')

Figure 2. Visualization of the ground contact constraint.

4. Evaluation

4.1. Dataset

We quantitatively evaluate the performance of our approach on 3D human pose dataset
TotalCapture [16]. TotalCapture provides 60 fps of all-synchronized IMU data, HD videos from
fixed cameras, and ground-truth human pose measured by optical MoCap. A total of 13 IMUs are
attached on the head, sternum, pelvis, upper and lower limbs, and feet. Our method uses acceleration
and orientation of IMUs, and an image sequence from a single camera. Note that optical MoCap
data are not used for our approach. The original ground-truth of the joint position and orientation is
obtained by fitting the marker position measured by optical motion capture system to the surface of
the human model. The human model of the optical motion capture has a different definition of the
link structure from that of DHM we used for pose estimation. For example, the pelvis joint to neck
joint is divided into 5 segments in the original ground-truth, but it is divided into 3 segments in DHM.
Therefore, it is not possible to make a strict comparison of the joint position and orientation between
the estimated pose of DHM and the original ground truth. Hence, we determined the joint position
and orientation of DHM so that the Vicon 57-point markers defined in advance on the DHM surface
matches the marker position measured by optical motion capture [30], and used it as the ground-truth
in this experiment.

We quantitatively evaluated our method following the standard evaluation protocol defined
in [16]. In the protocol, the test set consists of 15 scenes in total including the scenes Walking 2 (W2),
Acting 3 (A3), and Freestyle 3 (F3) of Subjects S1, S2, S3, S4, and S5. However, there are several
sequences in which both feet are off the ground for several frames in a row, such as jumping, in S2-F3,
S3-F3, and S5-A3. These scenes are excluded from our dataset and we used S2-ROM3 (S2-R3), S3-F1,
and S5-F1 instead. The limitations on the scenes where our method is effective will be mentioned in
Section 5.

4.2. Implementation Details

We utilized a human model generated statistically from the height and weight of the subject,
which is offered by DHM software [30]. Before starting the pose estimation, the subject took T-pose
as a calibration pose. During the calibration pose, the global coordinates (XW, YW, ZW) is defined
so that the subject stands on the plane at ZW = 0. For the model of the 2D joint detector used in
image-based constraints, we utilized the weights of public pretrained model [6]. No additional training
or finetuning is conducted.

The weighting parameter controls the contribution of each cost term to the overall cost Equation (2).
The algorithm based on Tree-structured Parzen Estimator is used to seek the parameter values.
Several scenes other than the test set are used for parameter tuning and the value found are
λRoM = 0.01, λP = 5.0× 10−4, and λG = 5.0× 10−3. The parameters are fixed through all experiments.
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4.3. Contribution of the Proposed Cost Terms

We evaluated how the proposed cost term EG(θ) and the adaptive biweight wp work in the
constraint-based pose optimization. In this experiment, a full set of 13 IMUs and a single camera that
captures entire movement in the field of view were used. The position error in this section represents
the mean 3D Euclidean distance between the estimated model and the ground truth over the 16 joints.

The graph of Figure 3a represents per-frame mean Euclidean distance between the solved pose
and ground-truth. Figure 3b,c visualize the output of the 2D joint detector [6], and the human models
colored in green, red, and blue represent the 3D human pose solved by the IMU only method [3],
the proposed method, and optical MoCap (ground-truth), respectively. The estimated 2D joints and
3D models in (b) and (c), respectively capture the same frame in the same scene.
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Figure 3. The top graph (a) represents per joint mean position error for each frame. The bottom figures
(b) and (c) illustrate the the view of the used single camera and the detected joints by the 2D joint
detector, OpenPose [6]. The human models colored in green, red, and blue represent the inference by
IMU only, the proposed approach, and ground-truth from optical MoCap, respectively. It is observed
that the position of the foot touching the ground is estimated correctly.

Figure 3a and the human model visualized from above revealed that our approach using a single
camera prevented the accumulation of position error. The right foot in (c) is self-occluded and the
misdetection occurred; however, our approach robustly optimized the 3D full-body pose. Focusing on the
feet in (b) and (c), the foot touching the ground and fixed (right foot in (b) and left foot in (c)) are estimated
with higher accuracy in these frames. It would be due to the proposed ground contact cost term.

Table 1 summarizes the quantitative results for pose estimation using the position error metric.
RGB only [34] is the state-of-the-art of 3D human pose estimation using only a single RGB camera.
F(EO, ERoM, EP) estimates the human pose by minimizing the cost function composed of EO(θ),
ERoM(θ), and EP(θ). The results revealed that the ground contact cost term EG(θ) improves the
positional error. F( f ull, wp = 1) optimizes the pose by Equation (2), but adaptive weight wp is fixed to
1. Meanwhile, the proposed cost function F( f ull) calculates wp according to Equation (7). Although
the mean error of F( f ull) in the 15 scenes was smallest, F( f ull, wp = 1) estimated the human pose with
the highest accuracy in more than half of the test scenes. Especially in Walking 2 (W2), F( f ull, wp = 1)
outperformed F( f ull) in 4 out of 5 trials. The results indicate that in the scene where the 2D joint
detector estimates the 2D pose of the subject with high accuracy, the 3D pose reconstruction accuracy
is slightly lowered by the adaptive biweight wp; however, wp stabilizes the 3D pose estimation when
there are misdetections of the joints on a image due to the self-occlusion or unusual posture of the
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subject (included in Freestyle 3 and Acting 3). The effect of the ground contact cost term is validated
from Figure 4a. It represents per-joint position error of human model estimated by the proposed
method with a single view and 13 IMUs. Although the estimation error of the hands and feet tends to
be large because the limbs move a lot, the positional error of the ankle is relatively small due to the 3D
positional constraints of the ground contact.
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Figure 4. (a) Mean per-joint positional error of the human motion capture (MoCap) by the proposed
method on all the scenes in the test set. The error values of wrist, elbow, shoulder, ankle, knee, and
hip represent the average error of the both side of the segments, i.e., the error of the wrist denotes the
average error of left wrist and right wrist. (b) Mean 3D position and orientation errors on subjects
S3-F1 and S4-F3 with 8 to 13 IMUs.

The mean orientation error of joints is shown in the bottom of Table 1. The error of IMU only and
the proposed method (F( f ull)) were 8.75 degrees and 8.83 degrees, respectively, and no significant
differences were observed.

Table 1. 3D position error (cm) on TotalCapture dataset.

S1 S2 S3 S4 S5

W2 A3 F3 W2 A3 R3 W2 A3 F1 W2 A3 F3 W2 F1 F3 Mean

Mean position error (cm)

RGB only [34] 52.4 90.1 22.5 33.3 22.6 27.4 51.4 26.9 24.6 50.4 53.3 56.1 57.7 37.1 43.1 43.3
IMU only [3] 45.0 42.7 44.2 144 63.9 8.91 34.8 72.3 62.4 42.3 221 39.4 124 32.9 81.0 70.6
F(EO, ERoM, EP) 54.4 41.7 29.4 142 63.3 12.2 33.0 68.8 68.5 42.8 224 39.2 124 28.2 78.1 70.0
F( f ull, wp = 1) 19.6 14.8 11.9 11.5 9.22 7.37 15.3 10.1 14.3 15.7 13.8 14.6 14.9 46.7 17.5 15.8
F( f ull) 20.2 15.6 12.2 12.2 10.2 7.32 15.2 12.5 11.1 16.3 12.3 14.7 16.0 10.0 16.9 13.5

Mean orientation error (degrees)

IMU only [3] 9.32 8.25 9.43 8.59 8.27 12.5 6.50 6.55 10.6 7.10 8.14 9.51 6.59 8.37 11.6 8.75
F( f ull) 9.38 8.45 9.45 8.74 8.51 12.5 6.65 6.63 10.9 7.07 8.20 9.52 6.72 8.37 11.3 8.83

The minimum error values are shown in bold.

The proposed method can easily be extended to use multi-view cameras by adding the
image-based cost function EP(θ) and EG(θ) for each camera and simultaneously minimize the total
cost. We performed the experiments using 8 cameras and 13 IMUs. The state-of-the-art approach
for 3D MoCap that infers both joint position and orientation from IMUs and multiple images [25]
extracted several images from TotalCapture to test their approach. The performance of our approach
was compared with [16,25] on the same scenes as the test set of [25], excluding the scenes where the
subject jumped. As shown in Table 2, in several scenes, our method outperformed the conventional
approach that optimizes the pose parameter to reconstruct human motion. In the scene where our
approach was inferior in accuracy (S2-R3), the subject frequently crouched and bent forward. It appears
that these motions caused self-occlusion of the ankle and the ground contact constraint did not work.
The experiments demonstrate that the proposed ground contact constraint contributes to improve the
accuracy of 3D human pose estimation in multi-view camera setting as well as single-camera setting
when the floor plane is pre-defined and the foot can be detected from the camera.
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Table 2. 3D orientation error (degrees) on TotalCapture dataset.

S1-F3 S2-R3 S3-F1 S4-F3 S5-F1 Mean

Trumble et al. [16] 9.4 9.3 13.6 11.6 10.5 10.9
Malleson et al. [25] 7.4 3.9 6.7 6.4 7.0 6.3
Fmulti( f ull) 6.25 5.66 6.70 6.32 5.91 6.17

The minimum error values are shown in bold.

4.4. The Number of IMUs

Wearing many IMUs takes time and hampers the subject’s range of motion. Towards the real-world
use of our method, we investigated the relation between the accuracy of the pose estimation and
the number of IMUs. The experiments were conducted with (1) 13 IMUs: full set as described in
Section 4.1, (2) 12 IMUs: full set without head, (3) 10 IMUs: IMUs on upper arms removed from (2),
and (4) 8 IMUs: IMUs on upper legs removed from (3). 3D position and orientation errors in different
IMU configurations are shown in Figure 4b.

The decrease of the IMUs largely affects the accuracy of both position and orientation. It would
be because our single-camera approach does not constrain joint positions other than the foot in three
dimensions. In the experiments on IMU only and F(EO, ERoM, EP), the objective function diverged
with 8 IMUs. The proposed ground contact cost term EG(θ) and wp contributed to the convergence of
pose estimation.

5. Conclusions and Future Work

We have presented the first online approach to estimate the 3D human pose fusing IMUs and a
single camera. In order to constrain the position of the solved model in three dimensions, the proposed
cost term detects the timing and position of foot grounding. We handle the outlier of visual information
by extending the biweighting algorithm. The experimental results showed that the proposed objective
function stably estimated the 3D human pose, including the global position.

To calculate the confidence of foot grounding, it is assumed in Equation (9) that one foot is
grounded. Therefore, the accuracy of the proposed approach degrades in a sequence in which a subject
lifts both feet off the ground for long time, such as by jumping. We confirmed that the short period
of foot takeoff does not seriously affect the accuracy by the experiment on S5-F1, which included
side-skip steps. This limitation will be overcome by inferring ground contact confidence from visual
context and IMU data.
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