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Abstract: Technological advancement is currently focused on the miniaturization of devices,
and integrated circuits allow us to observe the increase in the number of Internet of Things (IoT)
devices. Most IoT services and devices require an Internet connection, which needs to provide
the minimum processing, storage and networking requirements to best serve a requested service.
One of the main goals of 5G networks is to comply with the user’s various Quality of Service (QoS)
requirements in different application scenarios. Fifth-generation networks use Network Function
Virtualization (NFV) and Mobile Edge Computing (MEC) concepts to achieve these QoS requirements.
However, the computational resource allocation mechanisms required by the services are considered
very complex. Thus, in this paper, we propose an allocation and management resources mechanism
for 5G networks that uses MEC and simple mathematical methods to reduce the model complexity.
The mechanism decides to allocate the resource in MEC to meet the requirements requested by the
user. The simulation results show that the proposed mechanism provides a larger amount of services,
leading to a reduction in the service lock number and as a reduction in the blocking ratio of services
due to the accuracy of the approach and its load balancing in the process of resource allocation.

Keywords: resource allocation; 5G; MEC

1. Introduction

Fifth-generation (5G) networks have been designed to attain a 1000-fold capacity, five-fold reduced
latency and 10-fold longer battery life than 4G networks [1,2]. This evolution is due to the proliferation
of high-demand mobile applications and the traffic growth exchanged daily by billions of mobile
wireless devices worldwide [3]. For instance, a study by Gartner Newsroom stated that around
5.5 million devices were used in 2016, and this number will be approximately 3.8 billion in 2021 [4].
Besides, AT&T states that data traffic on their mobile network has increased by about 250,000%
since 2007, and they expected this growth to increase 10-fold by 2020 [5]. This behavior is especially
true during the lockdowns implemented due to the COVID-19 concerns—several European Internet
Exchange Points (IXPs) reached an all-time peak during this period [6]. Therefore, this rapid traffic
growth brings technical challenges in terms of managing mobile devices and meeting different user
demands [7].

Sensors 2020, 20, 5449; doi:10.3390/s20195449 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9622-1913
https://orcid.org/0000-0001-6080-7699
https://orcid.org/0000-0001-9931-5763
https://orcid.org/0000-0003-1119-2450
https://orcid.org/0000-0003-2982-4006
http://www.mdpi.com/1424-8220/20/19/5449?type=check_update&version=1
http://dx.doi.org/10.3390/s20195449
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 5449 2 of 18

Fifth-generation networks rely on Mobile Edge Computing (MEC) to provide computational
resources at the network edge, reducing latency and improving the Quality of Service (QoS), as MEC
reduces communication delay and also data traffic on the back-hall networks [8–10]. MEC aggregates
idle resources, such as storage and processing, from mobile users sharing the same preferences.
Thus, MEC provides Cloud services, such as environment monitoring services, statistical processing
calculations, and other services, more closely to mobile users [11–13]. In this sense, some mobile
users could increase their capabilities by using MEC resources, while other mobile users lend their
resources to MEC [14,15]. In MEC scenario, mobile applications and services can be allocated on MEC
to meet user demands [16,17]. However, each MEC has a limited resource capacity that can be used to
provide services to mobile users [14]. It is therefore essential to design efficient resource management
approaches to handle MEC resources to serve a higher number of requested services, minimizing the
unnecessary reallocations caused by user mobility.

A resource management mechanism is implemented in two steps: (i) resource aggregation and
(ii) resource allocation [18–20]. Specifically, the resource aggregation step creates MEC; i.e., a pool
of available resources to be used by other mobile devices to meet users’ demands. This involves the
announcement of the available idle computational resources, which can be shared with other devices
belonging to the system, maximizing the pool of available resources that the system can use. On the
other hand, the resource allocation step involves the allocation of services based on the resources
available in MEC to better meet the requested services’ requirements. In this context, the choice of
when and where the service will be allocated by a resource allocation mechanism greatly impacts the
performance of the service provided.

However, the dynamic nature of users leads to a fluctuation in terms of the number of resources
in the pool of available resources for a given MEC, where users might frequently disconnect from
MEC depending on the user mobility pattern. This issue directly impacts the number of services
attended/allocated. Furthermore, user mobility leads to service reallocation inside MEC to maintain
service provision. Thus, user mobility highly impacts the service allocation/reallocation performance
in terms of service delivery [21]. This is because the service may not be served due to a lack of resources,
the service may be blocked in the search for a device to be allocated or reallocated, or it may have
its quality of service impaired due to the need to relocate the service. In recent years, many works
have proposed different resource allocation mechanisms to allocate services on MEC to provide better
services to users [22–30]. However, these strategies do not take into account the service length or
user mobility information. Besides, such works involve significant complexity in the decision-making
process, impacting the computation expense and inference times.

In this article, we propose a resource allocation mechanism for 5G networks, considering Mobile
Edge Computing to meet user demand, called RELIABLE—REsource alLocatIon mechAnism for 5G
network, considering moBiLe Edge computing. We consider MEC infrastructure distributed in an
urban environment by aggregating idle resources from mobile devices; e.g., vehicles, mobile users and
other devices. Thus, each MEC iteration has a limited resource capacity that can be used to provide
services to mobile users. In this context, RELIABLE aims to maximize the availability of resources
used when requested by MEC. To this end, RELIABLE considers mobility prediction to decrease the
unnecessary reallocations caused by user mobility. Service time and network consumption are also
used to reduce service allocation and the impacts of reallocation. In this sense, RELIABLE considers a
multi-criteria mathematical method to deal with MEC resource allocation to meet the user’s demands
for Cloud services. Thus, RELIABLE decides where and when MEC services will be allocated based
on the multi-criteria mathematical method. Simulation results show that RELIABLE improved the
number of services to be provided compared with allocation mechanisms by 45%; i.e., for Greedy, Best,
and Worst mechanisms. RELIABLE also provided a reduction of 40% in the service locks number
due to its assertiveness, as well as a reduction in the blocking ratio of services about 45% due to its
load balancing in resource allocation. Therefore, the contributions of this work can be summarized
as follows:
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1. We propose a mechanism to allocate resources in MEC infrastructure as a way to maximize the
availability of resources which can be used when they are requested in MEC.

2. We consider the combination of mobility prediction and the resources required, as well as the
service time for proper decision making.

3. We perform simulation experiments to introduce the impacts and benefits of RELIABLE, where the
results show that RELIABLE can effectively mitigate the challenges related to resource allocation
in MEC infrastructure in terms of the number of services served, the number of services blocked
and the number of services denied for a different number of users requesting different services.

The remainder of this article is organized as follows. Section 2 describes the most relevant related
works in this area. Section 3 introduces the network scenario used in this article, as well as the
RELIABLE mechanism and its operation. Section 4 shows the evaluation of the simulation of the
performance of RELIABLE and its results. Finally, Section 5 presents the conclusions and directions for
future works.

2. Related Works

In the literature, some papers have been produced that include MEC resource allocation
mechanisms [31–40]. Song et al. [31] proposed a resource-allocation mechanism based on context-sensitive
clustering technology (VNF-RACAG - virtualized network functions resource allocation) to minimize the
delay in the service provisioning network. The mechanism uses a stochastic model of Network Function
Virtualization (NFV), as well as geographic contexts and user transfer histories in the allocation time
optimization process. Furthermore, VNF-RACAG uses individual users’ locations and characteristics
to group them into clusters for more efficient functional support. The iterative gradient descent method
is used to compute cluster numbers to minimize the end-to-end delay. Next, a graphical partitioning
algorithm is used to reduce movement among clusters, which is executed when the user’s trend phase
changes. Although the VNF-RACAG mechanism reduces communication time (delay), its complexity
increases the processing load of network elements.

van Lingen et al. [32] proposed an architectural approach that addresses some of the technical
challenges behind Cloud and Fog communication and resource allocation. This is a model-oriented and
service-centric architecture based on OpenFog Consortium (OFC) architecture [41]. This architecture
uses a two-layer abstraction model, which provides intercommunication between Cloud and Fog.
Additionally, it offers features for specific IoT modules. The approach was applied in Barcelona city,
focusing on a small number of use cases. Although this architecture provides intercommunication
among all devices, the evaluated environment does not reflect this architecture’s performance in a
larger environment with a broader set of IoT devices.

Yu et al. [33] proposed a computational and network resource allocation mechanism for mobile
systems using Orthogonal Frequency Division Multiplexing/Multiple Access (OFDMA) as a means of
communication. The authors performed sub-carrier allocation for task provisioning and CPU time
allocation for task execution in MEC. Thus, OFDMA was proven to be efficient and almost ideal in
terms of energy savings for mobile devices in this work. The authors showed that resource allocation
significantly impairs system performance through extensive simulations, even though the allocation
mechanism for each resource type is almost optimal. Therefore, instead of simply combining the
allocation mechanism separately, the two resource types’ congestion information should be considered
simultaneously. Moreover, this joint programming approach is more critical when the allocation of
computational resources can provide more prominent energy savings.

Ali et al. [36] proposed a resource allocation algorithm based on the device’s power profile using
the 5G communication network. This work focused on small devices such as healthcare sensors.
The approach is divided into three steps: in the first step, the device’s consumed energy is compared to
a selected maximum energy budget value obtained from the QoS metric based on the IoT applications’
power requirements; consequently, the number of sub-carriers is calculated. In the second step,
an efficient solution is implemented by inducing a limit value. A given threshold value is selected using
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mapping based on a QoS metric. The threshold enhances sub-carrier selection for less highly-powered
devices. Finally, a suitable threshold value is selected. The threshold value improves sub-carrier
calculation for less energy-consuming devices.

Peng and Shen [37] proposed an asset assignment plan to help with distinctive vehicular
applications; they considered two normal MEC designs and defined multi-dimensional asset
streamlining issues, which as a rule suffered from high calculation unpredictability and an overlong
critical thinking time. In this manner, they exploited reinforcement learning (RL) to change the two
figured issues and explained them by utilizing Deep Deterministic Policy Gradient (DDPG) and
various leveled learning models. Considering vehicles on a two-path straight national street, with one
path for every heading, macro eNodeB (MeNB) and Wi-Fi Access Points (APs) were consistently sent
to one roadside, with various Wi-Fi APs included in the MeNB approach. Additionally, the authors
present the point-by-point range of the board techniques executed by the regulators and introduced by
the MeNBand Edge Node (EN)-mounted MEC workers, including range cutting among MeNBs and
Wi-Fi APs and range designation among vehicles related to a similar base station (BS).

Agarwal et al. [40] proposed a resource allocation appliance based on VNFs to support the vertical
services in 5G networks. They considered that portable system administrators are responsible for
planning the prerequisites of the vertical services into a framework of executive choices. This task is a
part of the system coordination and involves settling on choices concerning (i) the position of the VNFs
required by the verticals over the foundation; (ii) the tasks of CPU, memory and capacity assets for the
VNFs; and (iii) the directing of information across organized hubs. These choices are correlated with
one another in manners that are perplexing and regularly outlandish. In this paper, the center was
around the distribution of computational and system assets, and such choices were considered together,
representing (i) the prerequisites of each VNF and vertical service, (ii) the abilities of the system
administrator’s foundation and (iii) the limit and inertness of the connections between organized hubs.
A key part of this work—regularly ignored by past research on 5G and VNF arrangements—is that our
methodology permits the adaptable distribution of the computational abilities of each host among the
VNFs it runs.

Wang et al. [38] proposed a resource allocation mechanism based on the VNF choice technique
which isolates the vehicular system into a few layers, as indicated by the request for VNFs in an SFC.
In each layer, each parcel that appears should be lined first. At that point, the parcel is communicated
to a next VNF layer that is chosen by the scheduler. VNFs are chosen by the traffic distinguishing
proof, while also considering the system ongoing data transfer capacity and registering assets.

Kiani and Ansari [39] proposed a resource allocation mechanism called Non-Orthogonal Multiple
Access - NOMAbased on Edge Computing, which aims to decrease the energy expenditure between the
user and the MEC device. To this end, the authors formulated the mechanism to minimize the power
consumption of MEC users, optimizing the number of user clusters and the allocation of computing
and communication resources, as well as the transmission rate. In particular, similar to frequency
resource blocks, the authors split the computing power available in MEC; thus, this approach uses
radio-frequency allocation and computational resources for users assigned to different order indices.

Existing resource allocation mechanisms have significant complexity, meaning that MEC can
be overwhelmed in the allocation process. Furthermore, most of the existing works do not consider
mobility prediction as a decision parameter for carrying out resource allocation. Another important
parameter for these mechanisms is the service time; i.e., when the resources will be allocated to attend
the requested service, enabling the better management of available resources. Finally, it is essential
to consider the computational impact of the execution of the decision mechanism. Depending on
the technology used, such as artificial neural networks, the fuzzy approach or other more complex
techniques, the execution of the mechanism may affect the execution of the requested services.

Table 1 summarizes the analyzed resource allocation mechanisms, in which we consider user
mobility patterns, mobility prediction methods, the service time and the complexity of the method.
The method will consume a significant amount of resources which some services could use; for instance,
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a given work is classified as high if it requires greater overheads and processing in resource
management, including methods based on software-defined networks using artificial neural networks.
On the other hand, a given work is classified as low if it uses the standard communication protocols
and adds an allocation mechanism. Besides, user mobility means the speed at which the mobile user
or device moves, where high mobility means vehicles or low mobility means a mobile user or fixed
IoT device, for example. Based on our state-of-the-art analysis, we conclude that the works described
do not consider the high mobility of the user or the service time and fail to perform a forecast of
the mobility of the service flow in which it seeks to reduce unnecessary allocations, given the highly
dynamical environment. Therefore, RELIABLE considers all these questions in its decision mechanism
with low mathematical complexity. To the best of our knowledge, RELIABLE is the first technique to
incorporate all of these critical features in a resource allocation mechanism.

Table 1. Summary of resource allocation mechanisms.

Works User Mobility Mobility Prediction Service Time Method Complexity

Song et al. [31] high no no high
Lingen et al. [32] low no no high
Yu et al. [33] low no no low
Ali et al. [36] low no no low
Peng and Shen [37] low no no high
Agarwal et al. [40] low no no high
Wang et al. [38] low no no high
Kiani et al. [39] low no no high
RELIABLE high yes yes low

3. RELIABLE

In this section, we introduce RELIABLE’s mechanism to maximize the usability of MEC resources
available on a 5G network. RELIABLE is designed to handle resource management and allocation
for a 5G network to serve a higher number of requested services, minimizing the unnecessary
reallocations caused by user mobility. To this end, RELIABLE takes into account the bandwidth,
mobility prediction, and service time as input parameters for the allocation decision mechanism.
In the following, we introduce the 5G network scenario considering MEC, and we also describe the
RELIABLE mechanism in detail.

3.1. Network Scenario

We consider a 5G scenario composed of a set of mobile users (e.g., vehicles, mobile users and
other devices) ue with an individual identity e ∈ [1, w], where w is the maximum number of users.
At any moment, a given mobile user ue could need to run a service, but their computational resources
would not support the processing of such a service [14]. In this sense, the device sends a request
message to a controller node CN deployed at the 5G network infrastructure to process the service
in MEC. We consider MEC mk (k ∈ [1, o], where o is the maximum number of MEC) composed of
a group of mobile devices sharing the same preferences that could lend their resources to create a
pool of resources that could be made available to 5G network mobile nodes [42]. Specifically, a given
mobile node ue might have idle computational resources, such as processing or storage, which can be
aggregated and managed by a controller node CN [43].

In this context, a given mobile node ue could increase its capabilities by using the available
resources of MEC mk, while other entities lend their resources to MEC mk [44,45]. Therefore, MEC mk
could provide services sa (a ∈ [1, q] where m is the maximum of the number of services) up to wlim
mobile users at the network edge. Figure 1 shows the scenario in which the RELIABLE can be deployed
in the controller node to manage the resources coming from the urban environment composed of
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mobile nodes connected through the 5G network infrastructure. The controller node is a centralized
entity that has a global view of each MEC iteration and all users to allow better allocation.

Figure 1. Fifth-generation (5G) network environment considering Mobile Edge Computing (MEC).

In this scenario, a given mobile node ue that may be moving around the urban perimeter may
request a given service sa—e.g., traffic monitoring or entertainment, among others—from the controller
node CN. This service sa requires computational resources, such as processing, storage and runtime,
to efficiently serve the user request. In this context, the controller node CN receives the request and
takes all decisions regarding when and where to allocate the service sa on a given MEC mk based on
the RELIABLE resource allocation mechanism. It is essential to highlight that the controller node CN
has an overview of each service and node status to decide which MEC mk has the required resources
rserv to allocate a given service sa.

Resources made available by MEC mk can be used to allocate a service sa as requested by users.
To solve the problem of resource allocation for a given service sa, we consider that each MEC can
manage up to qserv services, and each MEC supports up to wlim users. Finally, the controller node CN
may need to migrate a given service sa to another MEC device to continue to efficiently meet the user’s
request. This is due to user mobility and resource availability, or even the need to provide load balance.

3.2. Allocation Decision

RELIABLE decides whether or not to allocate resources for a given service sa and which MEC mk such
a service will be allocated to in order to meet the needs of the service. To this end, RELIABLE considers
an allocation decision step, which takes the decision based on the mobility prediction f (y|x), service time
sevtime and bandwidth BW.

In this way, the controller node CN monitors the network traffic flows to predict mobility flow
between regions; i.e., anticipating the resource utilization in a given place. According to Bui et al. [46],
the user network flow follows a continuous distribution in time, and we can use a Gaussian method
to predict the user flow among different MECs. This prediction method aims to anticipate the use of
resources. For this purpose, Bayesian and the regression of the Gaussian process are used to perform
the forecast, and it is necessary to monitor the flows in which they reflect the historical resource
allocations used in MEC. Therefore, to carry out this forecasting method efficiently, a particular
terminology us defined: the monitoring window, which describes a fixed workload collection period.
Table 2 describes the important notations.
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Table 2. List of important notations.

Term Description

ue Mobile node (user devices)
w Maximum number of mobile nodes

wlim Maximum limit of connected users at an edge
mk Available resources in MEC k
o Maximum number of MEC
sa Service α
q Maximum number of services available from MEC

qservice Maximum service managed by MEC
rserv Required resources

f (y|x) Mobility prediction
sevtime Service time

BW Bandwidth
CN Controller node

x Vector of location based on time slot
xt Location of the flow in the time slot t
t Maximum number of time slots
y Joint Gaussian distribution of historical (random value)

gp Gaussian process
k(x, x′) Kernel function

p(x) Mean function to evaluate at the time location
Ai,z Decision matrix
M Normalized matrix

Assuming the input data are a collection of locations based on a limited time slot
x = [x1, x2, x3, . . . , xt], where xt is the location of the flow in the time slot t, a finite set of random
variables y = [y1, y2, y3, . . . , yt] represents the corresponding joint Gaussian distribution of historical
flow monitoring statistics regarding the time order. This set, over time, forms the Gaussian process gp,
as we can see in Equations (1)–(3), where the prediction function f (y|x) is composed of a kernel function
k(x, x′) [47]. This kernel function is used to define the prior underlying relationship knowledge through
a positive–definite function that comprises some special parameters that specify its shape. p(x) is the
mean function used to evaluate the time location x. Thus, the controller node CN can compute the
probability that a given flow from a mobile user ua migrates from one location x to another x′ based
on Equation (3).

f (y|x) ∼ gp(p(x), k(x, x′)) (1)

p(x) = E( f (x)) (2)

k(x, x′) = E(( f (x)− p(x))( f (x′)− p(x′))) (3)

RELIABLE also considers the available bandwidth BW as an input parameter for the selection of
the best MEC mk to allocate a given service sa. The bandwidth BW is used to check the impact it would
have if a given MEC mk allocates the service sa; i.e., it evaluates the impact (bandwidth consumption)
on the network that the flow exchange would cause, considering that it is necessary to carry out
the allocated service. In this way, the controller node CN captures the bandwidth BW, allowing the
controller node CN to compute the network impact in case it needs to migrate or allocate a given
service sa to another MEC mk.

Finally, RELIABLE considers the service length that requires resources to be allocated to fulfill the
user request. In this sense, the service time sevtime enables us to estimate the start and end time of a
given service requested through the sum of the services allocated execution times in MEC mk. Thus,
the service time sevtime is used to compute the duration for which the resources used to serve a given
service will be allocated.

RELIABLE calculates different importance degrees for decision making based on the Analytic
Hierarchy Process (AHP) method. AHP provides the influence factor for each parameter. It assigns
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weights to the parameters used; that is, the parameter with the greatest importance over the others
will have a greater weight at the end of AHP processing. We consider five importance levels for the
comparison between each parameter pair, which indicates the importance of one parameter over the
others, as shown in Table 3.

Table 3. Pairwise importance levels.

Value Degrees of Importance

3 The parameter is much more important than the others
2 The parameter is more important than another
1 Two parameters have the same importance
1/2 The parameter is less important than another
1/3 The parameter is much less important than the others

To model the AHP, we consider a weight matrix of Ai,z, in which the mobility prediction f (y|x) has
a higher priority over the other parameters because RELIABLE minimizes the number of unnecessary
exchanges caused by user mobility. We also consider that the bandwidth BW has a higher priority over
the service time servtime because if the service needs to be transferred, this transfer will not impact
the performance of the system. Therefore, the matrix Ai,z indicates what influence parameter i will
have on the other parameters z. Table 4 shows the weight assignments used in our AHP. Therefore,
these values will be used as a weight to establish the decision matrix, as we can see in Equation (4).

Table 4. Influence factor. BW: bandwidth.

Factor f (y|x) BW sevtime

f (y|x) 1 2 3
BW 1/2 1 3

sevtime 1/3 1/3 1

The influence factor In fi of a given parameter i is computed by the sum of the current value
multiplication of a metric Fi; i.e., f (y|x), BW and sevtime, with the relative importance of the other
metrics Ai,z, as we can see in Equation (4). Therefore, each metric value Fi and metric importance Ai
parameter is calculated by MEC through the applied computational resource monitoring, the service
execution time and the bandwidth used.

In fi = Fi ·
n

∑
z=1

Ai,z (4)

In an urban environment, a given mobile user ua can request different services with different
requirements; i.e., a service related to public or driver safety must have a higher priority than services
related to advertising a restaurant close to the user. In this way, we divide services into three classes
based on [48], where the safety class has priority 1 (C1), the comfort class has priority 2 (C2) and the
entertainment class has priority 3 (C3). This priority value for each service is multiplied with the
influence factor In fi to obtain the values of the decision matrix (Equation (5)). The matrix values
will be used to choose the best MEC mk, in which the resources will be allocated depending on the
service importance.

M =

C1 · In f1 C2 · In f2 C3 · In f3
...

...
...

C1 · In fo C2 · In fo C3 · In fo

 (5)
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However, the values of this matrix have a high variation due to the characteristics of each
parameter. In this way, we performed a simple normalization of these values to find a more accurate
choice, as shown in Equation (6).

Mk,j =
(vk,j − vJ)

o
, (6)

where vk,j is the matrix value for MEC K and vJ is the all-value arithmetic average contained in column
j of the matrix.

Once data are normalized, we perform a simple calculation of parameter differentiation for each
MEC, and the results are stored in a vector as follows.

Result =
n

∑
j=1

(
Mkj − Fk+1,j

)
(7)

where Mkj represents the current MEC normalized data and the MEC device to which the resources are
allocated, and Fk+1,j represents the candidate MEC device’s normalized data to allocate the resource.
Therefore, Result contains the values of each MEC device, where the chosen MEC device corresponds
to the one with the highest final value (Equation (8)).

MEC = Max(Result) (8)

3.3. RELIABLE Operations

Algorithm 1 shows a decision phase overview of the RELIABLE mechanism. RELIABLE must be
aware of the available resources at each MEC mk, which is provided by communication between MEC
devices with the controller node CN, allowing a MEC mk to inform the controller node CN about its
idle resources. In this way, these resources become available resource pool parts (lines 1–3). A given
MEC mk allocates resources for a given service sj, where those resources must be reallocated in another
MEC mk′ before the user ui disconnects from MEC mk. It is important to mention that the resource and
service migration is beyond the scope of this work, since we focus on the choice of MEC mk to allocate
resources for a service sj.

Algorithm 1 Abstraction of RELIABLE
1: if (MEC_Communication) then

2: Pool = Pool + RecMEC_Resource
3: end if
4: if (request) then

5: probMEC = Func_choose_MEC
6: while (probMEC ≤ Number_MECs) do

7: if ((probMEC_res ≤ res_res) && (probMEC==MECInTraj) then

8: service_allocated
9: else

10: service_blocked
11: end if
12: end while
13: service_droped
14: end if

Once a mobile user ui is connected to the controller node CN via the 5G network, it can request a
particular service. At each service request, the controller node CN checks which is the best MEC mk
to allocate resources to provide such a service. To do this, the controller node CN performs the MEC
select function (lines 4–6), which uses AHP and which is also performed when a mobile user ui leaves
one MEC device network and connects to another due to mobility. If the selected MEC mk does not
have the necessary resources to allocate the service, the next MEC generated by the function will be



Sensors 2020, 20, 5449 10 of 18

selected; i.e., the service is blocked until the controller node CN finds a valid MEC mk (lines 7–11).
If no MEC mk is selected, the requested service is discarded.

4. Performance Analysis

This section describes the performance assessment of the RELIABLE resource allocation
mechanism for the 5G network based on a multi-criteria mathematical method.

4.1. Scenario Description and Methodology

We implemented RELIABLE’s mechanism using the Python language. We considered that
RELIABLE would be executed in an urban environment composed of users moving following a
Random Waypoint Mobility model with pause time, as this mobility model enables users to stay in a
location in the city (such as a conveniences store) for a while. For RELIABLE evaluation, we considered
that the user input and output and MEC followed a Pearson Type III distribution [49].

The simulation considered a variation in the number of users (i.e., 327, 499, 596, 930, and 1088)
to represent different situations and to provide a comparison between the best and worst-case
(the best case was the simulation with few users while the worst-case was with many users). For the
representation of the urban scenario, we considered an area of Manhattan in which the coverage of the
urban environment comprised four connected 5G cell towers that allowed interconnection among the
MEC devices. Table 5 describes the simulation setup.

Table 5. Simulation setup.

Parameter Value

Maps Manhattan city
Number of users 327, 499, 596, 930 and 1088
Cellular Network Four connected 5G cell towers
User input and output in MEC Pearson Type III distribution
Services Security and entertainment
Security service time 1h
Security service bandwidth consumption 1%
Security service memory consumption 0.5%
Security service processing consumption 1.5%
Entertainment service time 2 h
Entertainment service bandwidth consumption 4%
Entertainment service memory consumption 2.5%
Entertainment service processing consumption 2.5%

We considered two types of services for each MEC device based on the work presented in [48].
Specifically, the security service with the highest priority was prioritized considering the following
characteristics: (i) 1 h of service execution time; (ii) 1% of bandwidth consumption for transfer over the
5G network; (iii) 0.5% of processing consumption; and (iv) 1.5% of memory consumption. On the other
hand, the second service (i.e., entertainment service) had the following characteristics: (i) 2h of service
execution time; (ii) 4% of bandwidth consumption for transfer considering the 5G communication; and
(iii) 2.5% of processing consumption; and (iv) 2.5% of memory consumption.

In this way, we evaluated these services over three scenarios to verify the impact of allocating
resources from different priority levels of services. Scenario 1 represents the case in which only
security services are requested, Scenario 2 shows the case in which only entertainment services are
requested, and Scenario 3 shows the case in which the choice of requesting both services is random,
and the choice of which service will be requested is also random.

We implemented three resource allocation mechanisms to compare the performance of RELIABLE
in the same scenario. Specifically, Greedy runs through the controller until it finds the first MEC device
that has the resources it needs. On the other hand, Best runs through the controller by computing
the available resource numbers, creating a list of these values and sorting them to choose the most
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resource-intensive MEC device. Finally, Worst is similar to the previous; it also runs through the
controller by computing the available resources numbers, creating a list of these values and sorting
them to choose the best MEC device to attempt the service. We can consider that we perform a
comparison with the market standard that makes a greedy allocation of available resources. In addition,
we compare our method with two other paradigms, in which the Best and Worst scenarios are used to
allocate memory. As the existing allocation methods did not consider the prediction of mobility with
the time of each service, this would not represent a fair comparison with other methods.

We consider the following metrics to assess the performance of these resource
allocation mechanisms:

• The number of services served means the number of services that were allocated in an MEC device.
• The number of services blocked means the number of incorrect choices for service allocation due

to the lack of resources available for allocation. Therefore, the service is blocked until RELIABLE
finds an MEC device that can allocate the service.

• The number of services denied means the number of requests that, due to lack of resources, were
not allocated by any MEC, and thus the number of services that were not actually allocated due to
lack of resources by all MEC devices.

4.2. Results for Scenario 1

Figure 2 shows the simulation results for different resource allocation mechanisms in a scenario
with a different number of users requesting the security service. By analyzing the results of Figure 2a,
it is possible to conclude that RELIABLE increased in the number of services served compared to
other methods, especially in cases with a higher user number requesting the service; i.e., from 940 to
1094 users. This is due to RELIABLE allocating resources based on mobility prediction, as well as the
time that the resources would be in execution in each MEC, allowing a better distribution of these
resources and the provision of more services. When we analyze a smaller number of users requesting
resources, everyone reaches their allocation limit because they can meet all demand without spending
a great deal of of time finding an MEC device.

Figure 2b describes the number of times that the service has to wait to be serviced again during a
service relocation. We can observe that Best and RELIABLE obtained no blocking since they already
selected the best MEC devices to carry out the allocation upon receiving the requests, unlike Greedy
and Worst, which had to carry out some reallocations to serve the resources during the service’s
execution. When we consider a higher number of service requests, we see that RELIABLE had a better
number of blockages, as it avoided an unnecessary transfer of the service, thus obtaining a decrease of
3% compared to Best and 5% compared to the others.

This amount of blocking had an impact on the number of denied services, where RELIABLE
obtained a reduction of 2% compared to the other methods, as shown in Figure 2c. When we analyzed
a smaller number of requests, we were able to observe that all services were provided with 329 users
requesting services, and a very similar services denied number was found 499; this was due to the
number of resources available by the set of MEC devices. In this way, when considering the request for
only a single service, we can see that RELIABLE can handle a greater number of requests, with a low
service blocked number and resource use compared to a scenario with a higher number of requests.
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(a) Number of services served (b) Number of services blocked

(c) Number of services denied

Figure 2. Simulation results for Scenario 1.

4.3. Results for Scenario 2

Figure 3 shows the simulation results for different resource allocation mechanisms in a scenario
with a different number of users requesting the entertainment service. Figure 3a shows the number of
services served. We can see that RELIABLE could handle more requests than other methods, with a
20% increase considering a smaller number of users and an increase of 38% for a higher number of
requests. This is because RELIABLE uses the service execution attributes as well as the user mobility
and the resource consumption characteristics of each requested service.

RELIABLE also has a shorter blocking time for switching between one MEC device and another,
both for a low and high number of requests, as we can see in Figure 3b. The other methods exhibit
similar behavior as these methods provide a greater mobility of services between the MEC devices.
The lack of adequate resource balance considerably affects the number of services used by the system,
as we can see in Figure 3c. We can observe that the Greedy, Best and Worst methods had the same
behavior since their allocation policies did not carry out load balancing among the different MECs, thus
overloading only a subset of MECs. Therefore, RELIABLE achieved a 20% reduction in the number of
services denied due to an efficient information flow balancing policy.

Based on the results of Scenario 2, we can observe that RELIABLE reduces the number of blocks
and meets a greater number of requests, with a low number of blocks and minimal service resources
considering the request for only entertainment services, which requires greater computational power
and greater bandwidth, as well as a longer service execution time. Comparing Scenario 1 with Scenario
2, we can observe that, with an increase in the resources requested by the service, RELIABLE maintains



Sensors 2020, 20, 5449 13 of 18

an increase in the number of services served, with a low amount of denied services. In other words,
RELIABLE exhibits stable behavior, as it presented better behavior with an increase in requests, both in
terms of meeting service needs with more computational resources and for services that need fewer
resources. This is because RELIABLE considers the mobility of the flow and the time that it will be in
execution, without using the parameters of the MEC device’s computational capacity in the decision
policy. Thus, when we analyze the results obtained in Scenario 1 as well as Scenario 2, both showed
an improvement in the increase in users. In Scenario 1 with fewer users (329, 499, 595), RELIABLE
showed a behavior similar to the other solution due to the amount of available resources and the low
computational quantity required by the service; however, in the transaction and the scenario with a
greater number of users (925, 1109), RELIABLE performed better because it balanced its computational
load by predicting mobility and the impact allocation or the change of flow. The same can be observed
in Scenario 2. Nevertheless, in Scenario 2, it also performed well for a smaller number of users because
the amount of resources made available by these users was also greater, which allowed RELIABLE to
achieve better management of the available resources.

(a) Number of services served (b) Number of services blocked

(c) Number of services denied

Figure 3. Simulation lresults for Scenario 2.
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4.4. Results for Scenario 3

Analyzing the results obtained in Scenario 1 and Scenario 2, the behavior of RELIABLE was seen
to be focused on attending to one type of service at a time. Thus, it is necessary to check whether
this behavior is maintained in a scenario closer to real conditions, in which users could request one
or more services at the same time, which requires more or fewer computational resources. Figure 4
shows the simulation results for different resource allocation mechanisms in a scenario with a different
number of users requesting both security and entertainment services randomly. RELIABLE achieved a
significant increase in the number of services served compared to other methods, as shown in Figure 4a.
This is because network parameters regarding service execution are prioritized. Considering a number
of users above 580, the Best, Worst and Greedy methods increased the number of services served
compared to RELIABLE by 50%. It is possible to see an increase of 5% compared to Random, since it
most often selected the MEC devices with sufficient resources to perform the service.

(a) Number of services served (b) Number of services blocked

(c) Number of services denied

Figure 4. Simulation results for Scenario 3.

5. Conclusions

The service must wait until the resource allocation mechanism finds an MEC device capable of
meeting the requirements that the service demands, as shown in Figure 4b. When Best, Worst and
Greedy methods are compared to RELIABLE, a reduction close to 47% can be observed. In the case of
comparison with Random, the reduction is 7% as the proposed policy selects the first options of MEC
devices with sufficient resources to perform the service.

The number of services denied due to a lack of pool resources and Cloud MEC devices can be
seen in Figure 4c. When the Best, Worst and Greedy methods are compared to RELIABLE, a reduction
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close to 39% can be observed. In the case of comparison with Random, the reduction is 3% as the
proposed policy has a better load balancing behavior between resources within the MEC; i.e., the Best,
Worst and Greedy methods allow the allocation of the available resources in a disorderly manner.

The results show that RELIABLE behaves as expected. RELIABLE remains stable even with
different loads of resource requests, and it can therefore serve a higher number of services and
consequently block and deny a lower percentage of services. Thus, RELIABLE provides better load
balancing in allocations. Analyzing the three scenarios, we can observe that under a mixture of
services—that is, a mixture of demands in the network RELIABLE—there was an 18% increase in
service attendance for the scenario of higher demand in Scenario 2; however, with a reduction of
approximately 1% compared to a scenario with low computational demand. This is because RELIABLE
manages to prioritize which services will be allocated and where resources will be allocated to meet
such services. When we consider the number of blocked and the number of denied services, we could
observe a reduction of approximately 13% of blocked services and 10% of denied services compared to
Scenario 2 and a small increase of approximately 27% of blocked services and 25% compared to Scenario
1. This may lead to a greater demand for services close to Scenario 2. However, RELIABLE performed
better than the other comparison mechanisms—Greedy, Best and Worst.

In this article, we proposed RELIABLE, which addresses the resource allocation problem in 5G
networks using MEC. We consider an MEC network composed of a set of mobile devices which have
available resources to be shared, increasing the number of services offered by the MEC network. To this
end, we designed a multi-criteria decision-making method and AHP that considered not only the
service and network parameters but also the mobility of the flow. Therefore, the decision-making
method offers a balanced input with different degrees of importance, maximizing resource utilization
in the Cloud. The numerical results show that RELIABLE allows a larger amount of services to be
provided, providing a reduction in the number of service blocks due to its assertiveness, as well as a
reduction in the number of services denied due to its load balancing in resource allocation. In future
work, we will consider other parameters, such as energy consumption and mobility, to improve
the mechanism.
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