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Abstract: Air pollution has been a looming issue of the 21st century that has also significantly impacted
the surrounding environment and societal health. Recently, previous studies have conducted extensive
research on air pollution and air quality monitoring. Despite this, the fields of air pollution and air
quality monitoring remain plagued with unsolved problems. In this study, the Pollution Weather
Prediction System (PWP) is proposed to perform air pollution prediction for outdoor sites for various
pollution parameters. In the presented research work, we introduced a PWP system configured
with pollution-sensing units, such as SDS021, MQ07-CO, NO2-B43F, and Aeroqual Ozone (O3).
These sensing units were utilized to collect and measure various pollutant levels, such as PM2.5,
PM10, CO, NO2, and O3, for 90 days at Symbiosis International University, Pune, Maharashtra,
India. The data collection was carried out between the duration of December 2019 to February 2020
during the winter. The investigation results validate the success of the presented PWP system. In the
conducted experiments, linear regression and artificial neural network (ANN)-based AQI (air quality
index) predictions were performed. Furthermore, the presented study also found that the customized
linear regression methodology outperformed other machine-learning methods, such as linear, ridge,
Lasso, Bayes, Huber, Lars, Lasso-lars, stochastic gradient descent (SGD), and ElasticNet regression
methodologies, and the customized ANN regression methodology used in the conducted experiments.
The overall AQI values of the air pollutants were calculated based on the summation of the AQI
values of all the presented air pollutants. In the end, the web and mobile interfaces were developed
to display air pollution prediction values of a variety of air pollutants.

Keywords: healthy living; variability analysis; pollution prediction; linear regression; artificial neural
network; smart outdoor monitoring

1. Introduction and Related Works

The high-paced economy, moving onwards because of construction, agricultural activities,
industrial plants, and many other factors, enables development and poses risks to the human race.
In such scenarios, it is essential to maintain a healthy life quality that includes some necessary activities,
such as having a balanced diet and keeping the body moving. With that, it is also evident to keep
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the body hydrated to let out harmful toxins continuously. A lot of diseases can be prevented by
just changing your style of living, as mentioned above. The Global Burden of Disease (GBD) study
addressed some risk factors, such as smoking, high blood pressure, unsafe sex, alcohol use, air pollution,
etc. In 2017, this report mentioned that 34.1 million deaths and 1.21 million DALYs (disability-adjusted
life years) were attributed to GBD risk factors [1]. Many factors can affect human health and reduce
life expectancy. However, still, one cannot neglect that air pollution is one of the leading causes of
various severe diseases, like lung cancer and heart diseases, and accounts for One-third of these deaths.
Household air pollution is counted as one of the worst, as it has particulate matter and causes stroke,
ischemic heart disease, chronic obstructive pulmonary disease (COPD), and many more. According
to the state of the Global Report (2019), air pollution is the fifth-leading risk factor for mortality
worldwide. It also reduces the life expectancy (on average) by one year and eight months globally.
The report suggests that it is necessary to have a deep understanding of the key sources that provide
air pollution to move forward and air pollution control policies [2]. World Health Organization reports
(WHO Reports, 2020) state that air pollutants can be microscopic and reach the human system with
ease. Air pollutants can vary in size. Some of these particles can be extremely fine. Hence, the particles
with small diameters (PM2.5 or smaller) and ultrafine particles with a diameter of one micron or less
can easily penetrate tissues and organs. Another critical topic is premature deaths, the major leading
cause being household air pollution through smoke from cooking fires, burning dung, wood, coal,
etc. According to World Health Organization reports (WHO Reports, 2019), the countries with low or
middle incomes breathe the highest amounts of polluted air, and more than 80% of urban populations
breathe air that exceeds the WHO guidelines of air quality [3,4]. P. Mamta and Bassin J. K. conducted
a study in the year 2009 that showed that the overall pollution index of three different areas in Delhi City
falls under “poor” and “very poor” due to respirable suspended particles, respectively [5]. Kyrkilis et al.
discussed an approach to measure the aggregated air quality index (AAQI) for 18 different cities.
However, the presented approach did not discuss anything about air pollution prediction [6]. A. Kumar
and P. Goyal examined the AQI (air quality index) and estimated it by examining the concentration of
air pollutants [7]. Zhang et al. analyzed the fine particular matter (PM2.5) characteristics at the city
level in China [8]. Reche et al. discussed an air quality monitoring approach for European cities.
However, they did not discuss any ideas related to air pollution prediction [9]. Anenberg et al. analyzed
the characteristics of pollutants, such as black carbon and methane. However, they did not discuss
any ideas related to air pollution monitoring or prediction [10]. Xu et al. discussed an ensemble
learning model to predict PM2.5. However, the presented approach did not predict pollutants, such as
PM10, CO, NO2, and O3 [11]. Vicente et al. discussed a new quality index for a variety of pollutants.
However, they did not provide any details for air quality monitoring and prediction [12]. Sowlat et al.
examined that many research types are being carried out on the AQI because air pollution is increasing
at an infinite pace [13]. P. Chen discussed real-time monitoring of the urban environment. However,
he did not discuss any concepts related to air pollution prediction [14]. Gurjar et al. brought forward
several ways to determine the air quality index, the first being the traditional method, which includes
finding the air quality by using instruments at fixed monitoring stations scattered all over the city [15].

Jiang et al. discussed various air quality monitoring approaches using social media. However,
they did not research the area of air pollution prediction [16]. Meng et al. analyzed various
air pollution-related risks and their impacts in Shanghai, China [17]. Xi et al. discussed results
to enhance the AQI precision [18]. Petroleum-Gas University conferred and analyzed various
methodologies, such as artificial neural networks, genetic algorithms, decision trees, k-nearest neighbor,
and logistic regression, which have been successfully used in air quality prediction problems [19].
Suo et al. examined and researched several scenarios concerning variable AQIs to analyze the current
environmental energy system’s impacts. The results indicated that PM2.5 is a pollutant that should
be handled to maintain air quality for a better and safer living situation. These researches can help
the authorities adjust and build strong energy structures, mitigation strategies, etc. [20]. Shen et al.
introduced that the commonly used air quality index (AQI) does not entirely display pollutants’ health
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effects [21]. Al-Ali et al. and Devrakonda et al. designed a GPRS-controlled monitoring system,
but it lacks air pollution monitoring and prediction aspects [22,23]. Marjovi et al. discussed mobile
sensor network-based approaches for urban environments. The proposed methods also made use
of remote sensing and spatial variability analyses. However, the proposed plans did not include air
pollution prediction and monitoring [24]. Abraham et al. discussed an approach to measure indoor
pollutants such as CO, O3, and CO2. However, the proposed method was not tested at outdoor sites [25].
Antonic et al. analyzed a wearable sensing-based system to measure air quality via cloud computing
technology [26]. U. Kumar and V. Jain discussed an approach to forecasting ambient air pollutants
using an auto regression-based exponential analysis. However, the proposed method was not tested
at outdoor sites for accuracy and reliability [27]. Al-Haija et al. examined a microcontroller-based
gas monitoring approach. However, the proposed method was focused on general-purpose gas
sensing [28]. Shi et al. discussed a system that can do a spatial variability analysis of PM2.5 via network
stations. However, the presented method was not applied to other air pollutants, such as CO, PM10,
temperature, humidity, and NO2 [29]. According to an Atlan report, a company called “SocialCops”
designed a system to measure Delhi’s air pollution. The system used a variety of air pollutant sensors
but did not facilitate air pollution prediction [30]. Egondi et al. analyzed the timely variation of PM2.5
concentration levels of Nairobi and Kenya. However, the proposed approach was not applied to
a variety of air pollutant parameters [31]. Shi et al. conducted an extensive survey of Northern China
regions’ pollution processes using a reanalysis meteorology methodology. The proposed approach also
made use of remote sensing and spatial variability analyses. However, the proposed system did not
include air pollution prediction and monitoring [32]. Zhang et al. discussed the PM2.5 concentration
characteristics in five diverse regions of China [33]. Marques et al. developed a system using wired
sensing technology. The proposed method was not focused on any air quality monitoring or prediction
aspects [34]. Kim et al. calculated the benefits of reducing PM10 and its effects on humans’ healthy
living around South Korea [35]. In recent times, fellow researchers [36,37] attempted to use a moving
vehicle to measure air pollutions’ variations using mobile sensor networks. However, the proposed
approach was not tested with multiple air pollutants and did not discuss air pollution prediction.

Hog-di et al. discussed an approach to monitor dust particles present in the surrounding
atmosphere and its basic predictions. However, the proposed method could not facilitate direct
measurements of air pollutants [38]. Richards et al. developed a wired sensing network to provide
real-time updates of air pollutants using GUSTO (Generic Ultraviolet Sensors Technologies and
Observations) sensing. However, the proposed approach did not offer wireless connectivity and lacked
technologies such as the Internet of Things (IoT) and wireless sensing [39]. Reisinger et al. utilized
optical absorption methodology for measuring a variety of air pollutants. However, the undertaken
study did not facilitate air pollution monitoring and prediction for real-time data [40]. Tiwari et al.
presented a microcontroller-based system to monitor methane variations. The proposed method
did not facilitate air quality monitoring or prediction [41]. Dhingra et al. put up a basic design
to monitor air quality parameters and a mobile application using cloud computing technology.
However, the presented system was not tested at outdoor sites and did not perform accuracy and
reliability-related assessments [42]. Li et al. discussed an approach that could do constant monitoring
of Taiwan using 71 fixed air pollution monitoring stations. However, the conducted research did
not present any air quality prediction framework for air pollution monitoring and prediction [43].
Kumar et al., Ferdoush et al., Bacco et al., and Morawska et al. analyzed air pollution monitoring
approaches using widely known Zigbee technology [44–47]. However, the presented system lacked air
pollution prediction and was not suitable for long distances, and its implementation was very costly.
Sharma et al. proposed an MSP430 controller-based approach to measure ammonia using carbon
nanotube (CNT)-based sensors. The presented approach did not discuss any transmission, monitoring,
or prediction approach [48]. Barot et al. examined a QoS (Quality of Service) that enabled an air
pollution framework for monitoring air pollutants. However, the proposed approach did not facilitate
air pollutants’ air pollution prediction using artificial intelligence (A.I.)-based technologies. This work
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was also coauthored by Pandya S., who represents the presented research work [49]. Pandya et al.
discussed a smart sanitizer tunnel to disinfect humans. However, it did not discuss air pollution
monitoring and prediction [50]. Kularatna et al. analyzed an Arduino-based system to measure
LPG (Liquefied Petroleum Gas). However, the proposed approach did not emphasize air quality
monitoring and prediction aspects [51]. According to NAMP reports, India’s government proposed
a program called “National Air Quality Monitoring,” which provided data about various pollutants
via the www.aqi.in the portal via 779 networking stations. However, the NAMP (National Air Quality
Monitoring Programme) did not offer air pollution prediction and failed to reach its developed or
urban parts [52,53]. Therefore, it is essential to consider the issue of pollution prediction based on
real-time data.

Recently, previous studies have conducted extensive research in the areas of air pollution and air
quality monitoring. Despite this, the fields of air pollution monitoring and prediction remain plagued
with unsolved issues concerning incineration, metallurgical process, miscellaneous, and many more.
In this study, a pollution weather prediction (PWP) system is presented that can perform air pollution
predictions for outdoor sites using various pollution parameters for healthy breathing and living.
In the undertaken study, we collected real-time data of air pollutants such as PM2.5, PM10, CO, NO2,
and O3 using a variety of sensing units, such as the SDS021 sensing unit, the MQ07-CO sensing unit,
the NO2-B43F sensing unit, and an Aeroqual Ozone (O3) sensing unit. The data was collected from
an outdoor site situated at Symbiosis International University, Pune, Maharashtra, India. The data
collection was carried out between the duration of December 2019 to February 2020 during the winter.
The detailed description of the data collection process is described in Section 2.2.3. The investigation
results validate the success of the presented PWP system. In the conducted experiments, linear
regression and artificial neural network (ANN)-based AQI predictions were performed for 60,000
air pollution samples. In the end, the overall AQI values of air pollutants were calculated based
on the summation of AQI values of all the presented air pollutants. The proposed approach can
function lifelong and can be retrained using updated pollution data in the future.

The proposed paper is organized as follows: Section 2 presents the pollution weather prediction
system’s necessity and discusses the detailed PWPS workflow. Section 3 depicts a detailed analysis
and discussion of the investigated results of the PWS system and represents a web and mobile interface
representation of the presented PWP system. The concluding remarks and the possibility of future
enhancements are discussed under Section 4. The Appendix A describes the essential concepts such as
air quality monitoring, air quality index (AQI), air monitoring stations, and a list of terminologies used
in the experiments.

2. The Necessity of the PWP System

The presented PWP system’s significant contributions are as follows: (i) An IoT-based framework
is proposed to perform real-time data collection of various air pollutants. (ii) Detailed variability
analysis of air pollutants such as PM2.5, PM10, CO, NO2, and O3 is conducted in the presented
research work. (iii) An AI-based machine learning and an in-depth neural network-based approach
are proposed to perform the air pollutant assessment and prediction of AQI values of air pollutants.
In the conducted experiments, linear regression and ANN-based AQI prediction were performed.
Furthermore, the presented study also found that the customized linear regression methodology
outperformed other machine-learning methods, such as the linear [54], ridge [55], Lasso [56], Bayes [57],
Huber [58], Lars [59], Lasso-lars [60], stochastic gradient descent (SGD) [61], and ElasticNet [62]
regression methodologies, and the customized ANN regression methodology used in the conducted
experiments. (iv) In the end, the web and mobile interface was developed to display the air pollution
prediction values of a variety of air pollutants. The investigation results validated the success of
the presented PWP system.

www.aqi.in
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2.1. Details of the Controller and Sensors

2.1.1. ESP8266 12E/NodeMCU Controller

ESP8266 12E/NodeMCU is a cost-effective controller module equipped with a 32-bit microcontroller
with 4MB memory. According to [58], a NodeMCU controller consists of GPIOs, I2C, UART, ADC,
and PWM pins to interface with various sensor modules. Figure 1a represents a microcontroller unit
used in the conducted experiments. Table 1 represents a comparative analysis of various controllers
available in the market.
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Table 1. A comparative analysis of various controllers [58].

Name CPU Configurations Price
(Rs.) Analog I/O Pins Digital

I/O Pins
Raspberry
Pi 3

Quad Core1.2 GHz Broadcom
BCM2837 64-bit Processor (1 GB, 42 g) 3200 0 14

Node MCU Tensilica XtensaLX106 32-bit controller
Wi-Fi SOC integrated (4 MB, 8 g) 400 1 17

BeagleBone
Black

AM335x,1GHz ARM Cortex A8
Processor (512 MB, 40 g) 6000 6 14

Udoo
(Quad)

Freescale MX6 Quad, 4 x Cortex™ A9 Core@
1GHz processor With Atmel 32-bit cortex
controller (1 GB, 150 g)

9000 14 62 + 14

Intel Galileo Quark™ X1000 32-bit 400 MHz (256 B, 370 g) 7000 6 14

2.1.2. SDS021 Particulate Matter Sensing Unit

The SDS021 sensing unit can detect and measure 2.5-µm and 10-µm dust particles from
the surrounding environment. It is based on the UART protocol and provides a bit rate of 9600
bits/second. The measurement range of the SDS021 sensing unit is 0–100 mg/m3. The SDSO21
sensing unit module contains a fan for keeping a consistent wind stream over the detection chamber.
The presented sensing unit required a 5-V power backup and a 60-mA current. The SDS021 sensing unit
required a 4-mA current in sleep mode. Table 2 shows the technical specification details of the SDS021
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sensing unit. Figure 1b represents the SDSO21 sensing unit used to measure the PM2.5 and PM10
concentration levels.

Table 2. Technical specification details of the SDS021 sensing unit.

Features Technical Specifications

Pollutants Measuring Capability PM2.5 and PM10 levels
Sensitivity 0.001 mg/m3

Measurement range 0–100 mg/m3

Response time N.A.
Zero drift Auto (zero every hour)

Power backup 5 V
Related current 60 mA
Sleep Current <4 mA

Temperature Range −20 to +60 degrees
Threshold (minimum resolution of particles) 0.3 µm

Air Pressure 86 KPa to 110 KPa
Protocol UART

2.1.3. MQ07-CO Carbon Monoxide (CO) Sensing Unit

The MQ07-CO sensing unit is capable of measuring CO levels with the 9600-bit rate. It is also based
on the UART protocol, which facilitates a range between 0–1000 ppm (parts per million). Figure 1c
represents the MQ07-CO sensing unit used to measure the carbon monoxide concentration level.
Table 3 illustrates the technical specification details of the MQ07-CO sensing unit.

Table 3. Technical specification details of a MQ07-CO (carbon monoxide) sensing unit.

Features Technical Specifications

Pollutants Measuring Capability CO levels
Sensitivity −400 to −650 nA/ppm at 2 ppm

Measurement range 0–1000 ppm
Response time <15 s

Zero drift <0.1 ppm/year
Power backup 5 V
Related current 60 mA
Sleep Current <4 mA

Temperature Range −20 to +50 degrees
Relative humidity <95%

Heating Consumption 350 mW
Protocol UART

2.1.4. NO2-B43F Nitrogen Dioxide Sensing Unit

NO2-B43F is a low-cost sensing unit that can sense nitrogen-oxide from the surrounding
environment. It facilitates strong signal levels along with zero current capability. It allows a resolution
up to 50 parts per billion (ppb) and an operating range of 0.001 to 0.02 ppm. Figure 1d represents
the NO2-B43F sensing unit, which is used to measure the NO2 concentration levels. Table 4 describes
the technical specification details of a NO2-B43F sensing unit.
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Table 4. Technical specification details of a NO2-B43F sensing unit.

Features Technical Specifications

Pollutants Measuring Capability NO2 levels
Sensitivity −250 to −600 nA/ppm at 2 ppm

Response time <25 s
Power backup 5 V

Measurement Range 0.001 to 0.02 ppm
Zero drift 0 to 0.02 ppm/year

Weight <13 g
Temperature Range 3 to 20 degrees

Storage Period 6 months
Load resistor 33 to 100 Ω

Noise ±2 standard deviations (ppm equivalent)

2.1.5. Aeroqual Ozone (O3) Sensing Unit

Aeroqual Ozone O3 is a low-cost sensing unit that was designed to provide consistent and accurate
ozone levels. It has a measurement range of 0.002–0.01 ppm. Figure 1e represents an O3 sensing unit
used to measure the ozone (O3) concentration levels for 1-h and 4-h durations. Table 5 illustrates
the technical specification details of an Aeroqual Ozone (O3) sensing unit.

Table 5. Technical specification details an Aeroqual Ozone (O3) sensing unit.

Features Technical Specifications

Pollutants Measuring Capability Ozone levels
Sensitivity 0.002 ppm

Power backup 3.3 V
Response Time 20 s

Measurement range 0.002 to 0.01 ppm
Temperature Range −20 to +60 degrees

Zero drift <0.02 ppm/day

2.2. Layered Architecture of an IoT-Based Air Quality Monitoring System

The layered architecture of the presented PWP system was classified into seven sub-components:
(i) physical sensing layer, (ii) communicating and sensing layer, (iii) cloud service layer, (iv) data
preprocessing layer, (v) data visualization layer, (vi) data prediction layer, and (vii) application layer.
Figure 2 represents the layered design of a PWP system.
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2.2.1. Physical Sensing Layer

The physical layer consists of the sensors, which measure the pollutants present in the atmosphere.
The pollutants measured are Particulate Matter 2.5 (PM2.5), Particulate matter 10 (PM10), ozone (O3),
nitrogen dioxide (NO2), and carbon monoxide (CO). Figure 3 represents the system architecture of
a PWP system. The detailed working of a PWP system is described in the remaining sections.
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2.2.2. Communication and Networking Layer

The communication layer establishes a link between the physical sensing layer and the backend.
It provides the interface due to which the data can be extracted. Figure 4 represents a detailed
communication workflow of a communication layer. As described in the physical layer, pollution
sensors connected with a NodeMCU controller measure the pollutants present in the surrounding
environment. As shown in Figure 3, a PWP system uses the MQTT protocol (MQTT 5.0) and a HIVEMQ
cloud broker to establish an interface between a publisher and a subscriber [63]. In the conducted
experiments, the “paho-MQTT” and “paho.mqtt.Client” packages were used (MQTT 5.0, accessed
on 20 November 2019). MySQL is responsible for storing the data acquired by the data acquisition
module. Finally, the PWP ASP.Net-based web application and a mobile application fetch the pollutant
data of various pollutants such as PM2.5, PM10, CO, NO2, and O3 from the MySQL repository and
represent in the form of pollution reports.
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2.2.3. Data Analysis Layer

The data analysis layer is responsible for handling the data collection, data preprocessing, and data
visualization. The dataset used in the conducted experiments is mainly divided into three categories:
(i) Pollutants: the PWP system dataset contains various pollutants such as CO, NO2, PM2.5, PM10,
and O3, concerning their AQI values. (ii) Locations: GPS location coordinates such as latitude and
longitude. (iii) Timestamp: timestamp parameters such as date and time. The researchers and
governments use an air quality index (AQI) metric to identify the current pollution conditions at
a particular location. The air quality index (AQI) is a useful color-coded unitless index that effectively
communicates air pollution concentrations to the general public [64,65]. The AQI metric is already
used in certain countries such as Malaysia, Canada, and Europe as a primary pollution classification
metric. The computation of the AQI of a particular pollutant can be done based on metrics such as
the average period obtained from the PM sensing units. The classification risk metric is employed
in the conducted experiments based on the AQI values of various pollutants such as PM2.5, PM10,
CO, NO2, and O3. As shown in Table 6, the classification of the risk metrics is described in various
categories: good, moderate, unhealthy, very unhealthy, and hazardous. The AQI coefficient can be
given by [64],

AQI coefficient of a particular pollutant =

 (Pobs − Pmin) (AQImax −AQImin)

Pmax − Pmin

 (1)

where Pobs = average measured concentration in 24 h in mg/m3, Pmax = the maximum concentration of
an AQI of a particular pollutant calculated based on the risk classification metric, Pmin = the minimum
concentration of an AQI of a particular pollutant calculated based on the risk classification metric,
AQImin = minimum AQI values of a specific pollutant calculated based on the risk classification metric.
The molecular conversion coefficient (CMC) to convert a pollutant from ppb to µg/m3 can be given
by [64]

CMC
(
µg/m3

)
=

[(ppb) ×mw]

mv
(2)

where mw = molecular weight and mv = molecular volume. The molecular volume (mv) can be given
by [64]

mv(in litres) =
[22.41 × T × 1013]

(273 × p )
(3)

where T = temperature (K) and P = atmospheric pressure (hPa (hectopascal)).

Table 6. A representation of the classification of the air quality index (AQI) risk metrics [64].

AQI Values Classification of Risk

0–50 Good
51–100 Moderate
101–150 Unhealthy for sensitive groups
151–200 Unhealthy
201–300 Very unhealthy

300 and above Hazardous

Data Preprocessing

As shown in Figure 3, in the presented research work, we introduced a PWP system that is
configured with pollution sensing units such as SDS021, MQ07-CO, NO2-B43F, and Aeroqual Ozone
(O3). These sensing units were utilized to collect and measure various pollutant levels, such as
PM2.5, PM10, CO, NO2, and O3. The data was collected from an outdoor site situated at Symbiosis
International University, Pune, Maharashtra, India. The data collection was carried out between
the duration of December 2019 to February 2020 during the winter. After collecting the pollutant data,
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an AQI was calculated based on the acquired pollutant data, as shown in equation (1) for various
pollutants such as PM2.5, PM10, CO, NO2, and O3. In the experiments, the quantities of pollutants
are independent, and the AQI of a particular pollutant is a dependent variable. In the undertaken
study, the PWP dataset consists of 189,648 training samples and 18 features. The missing values are
majorly present in the pollutants section. If we eliminate a training sample with at least one missing
value, then a 50% data loss is expected. Due to many instances, we kept the training samples with
missing values for further use. The proposed PWP system was trained with 60 k examples divided
into training and testing phases. The rest of the data was used for validation testing. The feature
selection dimensionality reduction data preprocessing technique was applied to the PWP dataset
to select the presented system’s required features. In the PWP dataset, the dependent features are
the AQI of the pollutants such as PM2.5, PM10, NO2, CO, and O3, whereas the independent features
are the quantities of PM2.5, PM10, NO2, CO, and O3. Therefore, it is tough to apply feature extraction
here; hence, the feature selection technique was used on the PWP dataset to reduce the data dimensions.
In total, 12 features were selected (six dependent variables and six independent variables). During
data preprocessing, the standard-scaler scaling technique was applied in the presented research work.

a. Data Visualization

In the undertaken study, a histogram-based analysis was conducted to check the variability of
various pollutants. The variability of the pollutants was set between 0 to 100 µm, approximately.
Figure 5a,b represents the linear relationship representation of PM2.5, PM10, CO, NO2, O3 (1 h),
and O3(4 h) concerning their AQI values. It can be observed that the AQI values of the pollutants are
directly proportional to the number of air pollutants. The AQI of a particular pollutant (α) can be
given by

α ∝ the quantity of a particular air pollutant (4)

AQI of a particular pollutant = σ × quantity of air pollutants + c (5)

where σ = X-intercept/slope and c = constant; c can be a nonzero value if the x-axis starts with a nonzero
term. Here, equation (4) and (5) will formulate a hypothetical line of air pollutants such as PM2.5,
PM10, CO, NO2, O3 (1 h), and O3 (4 h). Since time is a categorical value and fed to the PWP system,
it may be considered a relative value that can affect the PWP system’s overall accuracy.
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Figure 6a,b represents the variability analysis of various air pollutants such as PM2.5, PM10, CO,
NO2, O3 (1 h), and O3 (4 h). Here, the x-axis represents time, and the y-axis represents the contamination
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values of the air pollutants. The air pollutants’ variability analysis is described using various graphical
representations such as line graphs, scatter graphs, and histograms. The visual representation of
line graphs and scatter charts indicates the linear relation of the pollutants concerning time, whereas
the histogram depicts the pollutants’ variability. Figure 6a shows slight variability when the scale
is reduced to 0–25 µm. Furthermore, PM10 ranges from 2 to 12-+ µm. PM2.5 ranges from 2 to 8
µm. The rest of the pollutants like CO, NO2, O3 (1 h), and O3 (4 h) have values from 0 to 1 µm.
Figure 6b represents the variability of different gases such as PM2.5, PM10, and CO. It indicates
that the variability of CO exceeds the frequency of 140 marks; it was also recorded that CO-based
air contamination remained zero for the maximum time of the day, with less variability recorded
throughout the day. Furthermore, it could be observed that PM2.5-based air contamination remained
around 35 µm, with high variability recorded throughout the day. PM10-based air contamination
remained about 105 µm for the day’s maximum time, with high variability recorded throughout the day.
Figure 6b also represents a variety of air pollutants’ values concerning time. It can be observed that
the PM2.5, PM10, and CO average contamination values were recorded around 0 to 35 µm, 0–7 µm,
and 0–115 µm, respectively.
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2.2.4. Data Prediction Layer

The data prediction layer is responsible for predicting AQI values of various air pollutants using
linear regression methodology. The PWP dataset labeled data such as the AQI values and quantities
of a particular pollutant. The samples used in the conducted experiments were continuous and
predictable. Table 7 represents the details of the data collection for the conducted experiments.

Table 7. Details of the data collection for the conducted experiments.

Data Type Number of Rows Number of Columns Status
Raw data 189,648 18 Raw data

Processed data 600,00 13 Feature selection
(dimensionality reduction)

Missing data
(1 value/row) 129,648 13 Removing Missing values

Training data 400,00 13 Data extraction for Training the model
Testing data 200,00 13 Data extraction for Testing the model

(a) Linear Regression based prediction:

In the first phase of the presented system, linear regression methodology was applied to achieve
a hypothetical line of air pollutants, as shown in Figure 9. The predicted AQI coefficient (Ypredicted) of
a single pollutant can be given by

Predicted AQI Coefficient (Ypredicted) = (σ × x) + c (6)

where σ = slope parameter, x = quantity of a particular pollutant, and c = predicted AQI coefficient
constant; c can be a nonzero value if the x-axis starts with a nonzero term.

Predicted AQI = y-predicted quantity if a particular pollutant

Now, to calculate the error between the Ypredicted and Yactual values, the cost function j (σ ) can be
given by

j (σ ) =

(
Ypredicted − Yactual

)
2 ×m

(7)

where m = the number of training examples. To achieve the value of the minimum cost function j (σ )
and to calculate the slope parameter σ, a gradient descent methodology-based optimization function
can be represented by a gradient descendant graph of j (σ ), as shown in Figure 7.

Sensors 2020, 20, x 12 of 26 

 

2.2.4. Data Prediction Layer 

The data prediction layer is responsible for predicting AQI values of various air pollutants using 
linear regression methodology. The PWP dataset labeled data such as the AQI values and quantities 
of a particular pollutant. The samples used in the conducted experiments were continuous and 
predictable. Table 7 represents the details of the data collection for the conducted experiments. 

(a) Linear Regression based prediction:  

In the first phase of the presented system, linear regression methodology was applied to achieve 
a hypothetical line of air pollutants, as shown in Figure 9. The predicted AQI coefficient (𝑌 ) 
of a single pollutant can be given by  

Predicted AQI Coefficient (𝑌 ) = ( 𝜎 × 𝑥 ) + 𝑐 (6) 

where 𝜎 =  slope parameter, 𝑥  = quantity of a particular pollutant, and 𝑐  = predicted AQI 
coefficient constant; 𝑐 can be a nonzero value if the x-axis starts with a nonzero term. 

Predicted AQI = y-predicted quantity if a particular pollutant  

Now, to calculate the error between the 𝑌  and 𝑌  values, the cost function 𝑗 (𝜎 ) 
can be given by  𝑗 (𝜎 ) = 

(  ) ×  (7) 

where 𝑚 = the number of training examples. To achieve the value of the minimum cost function 𝑗 (𝜎 ) and to calculate the slope parameter 𝜎, a gradient descent methodology-based optimization 
function can be represented by a gradient descendant graph of 𝑗 (𝜎 ), as shown in Figure 7. 

 
Figure 7. Descendant graph of 𝑗 (𝜎 ). 

To obtain the optimum global value of a cost function 𝑗 (𝜎 ) , we applied the repeated 
convergence of a gradient descent technique as below: 𝑅𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

{ 

 𝑡𝑒𝑚𝑝 +=  𝜎 −  𝛼 (  (  )) 
 𝜎 = 𝑡𝑒𝑚𝑝  

 } 

 

Figure 7. Descendant graph of j (σ ).



Sensors 2020, 20, 5448 13 of 25

To obtain the optimum global value of a cost function j (σ ), we applied the repeated convergence
of a gradient descent technique as below:

Repeat until convergence
{

temp + = σ − α
∂( j (σ ))
∂σ

σ = temp
}

where α = learning rate and temp = a temporary variable. If a slope parameter σ is ahead of a derivative

(∂( j (σ ))
∂σ ) value, then the derivative of a negative slope will be –ve; otherwise, the value of a slope

parameter σwill be gradually incremented and shift towards the optimum global value. If an optimum

global value is behind, then the derivative (∂( j (σ ))
∂σ ) the value will be +ve. Therefore, the value of

a slope parameter σ will gradually decrease and shift towards the optimum global value. The applied
learning rate α will be in the range of 0.001. If a learning rate α is high, then it may skip the optimum
global value. If a learning rate α is low, it will require additional time to reach the optimum global
value. After applying the gradient descent methodology, a slope parameter σ can be calculated,
and the predicted AQI coefficient (Ypredicted) of a particular air pollutant can be given by

Predicted AQI Coefficient
(
Ypredicted

)
= AQI of PM2.5 + AQI of PM10+

AQI of CO + AQI of NO2 + AQI of O3
(8)

Predicted AQI Coefficient
(
Ypredicted

)
= (σ ∗ NO2) + (λ ∗CO) + ( µ ∗ PM2.5) +

(φ ∗ PM10) + (ξ ∗ O3) . . .
(9)

Similarly, all the remaining pollutants were calculated. After the completion of the training
process, the PWP prediction system provided the following parameter values:

σ = 734.33, λ = 11.08, µ = 4.00, φ = 2.00, ξ = 943.78,

Therefore, the final predicted AQI coefficient (Ypredicted) can be given by

Predicted AQI Coefficient
(
Ypredicted

)
= (734.33 ∗ NO2) + (11.08 ∗ CO) +

(4.00 ∗ PM2.5) + (2.00 ∗ PM10) + (943.78 ∗ O3) + 0
(10)

Similarly, in general, the predicted AQI coefficient (Ypredicted) can also be represented by

Predicted AQI Coefficient
(
Ypredicted

)
=

∑6

n=1
W (n) × x(n) (11)

where W = weight values of the parameters of air pollutants, n = number of air
pollutants, x = quantities of pollutants of N, and N represents a set of air pollutants
= {PM 2.5, PM 10, CO, NO2, O3} (12).

(b) Artificial Neural Network-based Prediction:

In the second phase of the presented system, artificial neural network methodology is applied
to predict various air pollutants’ hypothetical line. The mathematical model was used to build
the new equation to estimate the PWP system for air pollutants such as NO2, PM2.5, PM10, CO,
and O3. An ANN is a machine-learning model that follows some of the observed genetic nervous
classification properties and draws on adaptive genetic erudition. In short, to solve a problem using
ANN, the following steps must be taken:
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1. Select the type of machine-learning network for the kind of regression problem to be resolved,
such as identifying a PWP system for an air pollutant gas estimator. One of the best solutions for
that purpose is to use a multilayered machine-learning perceptron network.

2. Data preprocessing: The data gathered for this study consists of a set of 189,648 training sample
instances; each instance being composed of six variables. All variables were initially expressed
in ppm, such as NO2, PM2.5, PM10, CO, O2, and O3. The sample data was later normalized into
[0.1, 0.9] the interval, which streamlined the ANN model’s learning.

3. ANN Model design: There are numbers of machine-learning architectures to select from, each
having its particular parameters and compensations for its specific problem. One of the most
widespread machine-learning models is the feed-forward multilayered perceptron. In this
network, the ANN model consists of 7 layers: an input layer, five hidden layers, and an output
layer. The hidden layers contain 512, 512, 256, 128, and 64 neurons, respectively. The final layer
includes a single output neuron. The hidden layers consist of all the probable networks between
the input to the output layer and allow for a combined impact of multiple independent variables
on the output layer. The first input layer relates to the independent variables (NO2, PM2.5,
PM10, CO, O2, and O3), while the final output layer corresponds to the dependent variable score
of the PWP system for air pollutant gases. To achieve the final architecture mixture, such as
setting the size and number of the hidden layers, we were accompanied by a cross-validation
method. The architecture used in the undertaken study is a customized multilayered ANN model,
as shown in Figure 8. To build a customized ANN model to predict the AQI values of various
pollutants, various parameters such as the activation function, error functions, and optimizers
must be configured. In the undertaken study, the rectilinear unit (ReLU) was used as an activation
function; a mean absolute and mean squared error was chosen as the error function. Furthermore,
adam was chosen as an optimizer. In the end, the number of neurons and hidden layers were
selected based on the size and features of the dataset, as represented in Table 7. To set the weights
for all the nodes in the ANN, a backpropagation technique was employed. The learning rate was
set to 0.2, and the momentum term was 0.3. The ANN training was stopped when the mean
squared errors (MSE) reached below 0.001.
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3. Results and Discussion

In the undertaken study, we presented two approaches to predict a variety of air pollutants, such
as PM2.5, PM10, CO, NO2, and O3: (i) the linear regression-based approach (ii) ANN-based approach.

3.1. Air Pollution Prediction Using a Linear Regression Methodology

In a PWP linear regression-based air pollution prediction methodology, the gradient descent is
used as an optimization algorithm, as discussed in Section 2.2.4. Figure 9a–f represents a predicted
AQI value of the PM2.5, PM10, CO, NO2, O3 (1 h), and O3 (4 h) air pollutants. The X-axis represents
the air pollutants’ quantities, and the Y-axis represents the air pollutants’ AQI values. The presented
results consist of three features: (i) a hypothetical line, (ii) raw data, and (iii) test data. The hypothetical
line is generated by the presented customized linear regression-based air pollution prediction system.
The raw data are represented with red color; the test data are the data used for the predictions depicted
by a cross-blue shade structure. The overall AQI is generated after the summation of all the AQI
values of the air pollutants. The parameters of NO2, CO, O3 (1 h), O3 (4 h), PM2.5, and PM10 are
734.33, 11.08, 943.78, 1176.2, 4, and 2, respectively. The lowest value of the x-intercept is two, which
is of PM10 pollutants. It indicates that a high increment in PM10 may cause only a slight change
in the AQI. The PM2.5 x-intercept is 4, which means that a high increment in a pollutant may cause
less increment in an AQI value than PM10. The x-intercept of CO is 11.08, which means that a high
increment in pollutants may cause less increment in an AQI but more as compared to PM2.5 and PM10.
The x-intercept of NO2 is 734, which means that a low increment of NO2 may cause a high increment
of an AQI value. The x-intercepts of O3 (1 h) and O3 (4 h) have the maximum readings, i.e., 943.78 and
1176.20, which means a slight increment in O3 cause a considerable increment in an AQI as compared to
NO2. Each value depicts a different conclusion. PM10 has the lowest value of x-intercept, i.e., 2, which
indicates that even an enormous increment in PM10 cannot cause a significant change in the overall
AQI. The x-intercept of PM2.5 pollutants is 4, meaning that a high increment in this pollutant value
can cause a little increment in the AQI value compared to PM10. The x-intercept of CO is 11.08, which
indicates that a high increment in the pollutant value may cause a slight increment in the overall
AQI; in comparison to PM2.5 and PM10, this increment caused by CO is considered more significant.
The x-intercept of NO2 is 734, indicating that even a low increment in NO2 may cause a high increment
in the overall AQI value. The x-intercepts of O3 (1 h) and O3 (4 h) have the maximum readings, i.e.,
943.78 and 1176.20, which means that even a slight increment in O3 may cause a considerable increment
in the overall AQI as compared to NO2 and others.

X− intercept [increment] ∝ LR−AQI [increment] (12)

where order (causing minor changes to significant changes) = O3, NO2, CO, PM2.5, and PM10. Table 8
represents the accuracy metrics of a linear regression methodology for a variety of air pollutants.
It indicates that the maximum accuracy is achieved in the case of PM2.5 and PM10; the recorded accuracy
is around 99.01 and 98.12, respectively. The CO pollutant recorded the third-highest accuracy, which
is approximately 98%. Similarly, the NO2 pollutant recorded 91% accuracy. Lastly, the O3 pollutant
recorded an almost similar accuracy for O3 (1 h) and O3 (4 h), which were around 96.21% and 96.59%.
Based on the conducted experiments, we also found that the customized linear regression methodology
outperformed the other machine-learning methodologies, such as the linear [1], ridge [2], Lasso [3],
Bayes [4], Huber [5], Lars [6], Lasso-Lars [7], SGD [8], and ElasticNet [9] regression methodologies,
as shown in Table 10.
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Table 8. Accuracy metrics of the linear regression methodology.

Pollutants Weight
Parameter(W) Prediction Accuracy (%)

PM2.5 734.33 99.01
PM10 11.08 98.12

CO 943.78 97.79
NO2 1176.20 91

O3 (1 h) 4.00 96.21
O3 (4 h) 2.00 96.59

3.2. Air Pollution Prediction Using Artificial Neural Networks

In a PWP ANN-based air pollution prediction methodology, ReLU was used as an activation
function, and adam was used as an optimization function with an RMSE loss function, as described
in Section 2.2.4. Figure 9a–f also represents an ANN predicted AQI value of PM2.5, PM10, CO, NO2,
O3 (1 h), and O3 (4 h) air pollutants. The X-axis represents quantities of air pollutants, and the Y-axis
represents the AQI values of air pollutants. Color coding was used to describe three features:
(i) hypothetical line, (ii) raw data, and (iii) test data. As shown in Figure 9a, a gradual incline was
noticed in the AQI value of a PM2.5 pollutant based on the conducted experiments. Similarly, in the case
of a PM10 pollutant, a minor incline was observed compared to the PM2.5 pollutants. Figure 9c depicts
a concentration level of CO pollutants and indicates a lesser scale as compared to the PM2.5 and
PM10 pollutants. Furthermore, in the case of a CO pollutant, a greater inclination was recorded than
the particular matter pollutants. As shown in Figure 9d, the dispersion rate of the NO2 pollutants
was very high compared to the other pollutants. In the case of NO2, a huge inclination was noticed
according to the graphical representation scale. As shown in Figure 9e,f, the highest inclination was
recorded in the O3 pollutant (1 h) and O3 pollutant (4-h) graphs.

X− intercept [increment] ∝ ANN−AQI [increment] (13)

where order (causing minor changes to significant changes) = O3, NO2, CO, PM2.5, and PM10.
A deep neural network generates a hypothetical line. Furthermore, the raw data is represented

with a red color, and the test data is represented using a cross-shade blue color structure. In the end,
the overall AQI values were calculated based on the summation of the AQI values of all the presented
air pollutants. Table 9 represents the accuracy metrics of an ANN algorithm for PM2.5, PM10, CO,
NO2, O3 (1 h), and O3 (4 h). It indicates that the PM2.5 pollutant recorded the maximum accuracy as
compared to all the other pollutants. Furthermore, for the rest of the pollutants, such as the PM10, CO,
NO2, O3 (1 h), and O3 (4 h) pollutants, a recorded accuracy below the rudimentary level was recorded
less than 85%. It also concludes that the customized linear regression methodology outperformed
the ANN algorithm’s customized version in the conducted experiments. However, the NO2 and CO
pollutants recorded around 84% and 83% accuracy, respectively. In the cases of PM2.5 and PM10,
the documented accuracy was around 90% and 84%, respectively. Nevertheless, pollutants such as O3

(1 h) and CO recorded the lowest accuracy, which was approximately 79% and 77%.

Table 9. Accuracy metrics of the artificial neural network (ANN) algorithm.

Pollutants Prediction Accuracy (%)

PM2.5 90
PM10 84

CO 83
NO2 84.79

O3 (1 h) 79
O3 (4 h) 77
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Table 10 represents the accuracy metrics comparison of the linear [1], ridge [2], Lasso [3], Bayes [4],
Huber [5], Lars [6], Lasso-Lars [7], SGD [8], ElasticNet [9], and ANN regression methodologies. It also
indicates that linear regression methodology recorded the maximum accuracy, which was around
99% among all the other methods. Furthermore, it can also be observed that the customized version
of the ANN regression methodology used in the conducted experiments recorded the minimum
accuracy for a variety of air pollutants, as compared to the remaining machine-learning methodologies.
It recorded 90%, 84%, 83%, 84.79%, 79% and, 77% accuracy for the air pollutants such as PM2.5,
PM10, CO, NO2, O3 (1 h), and O3 (4 h), respectively. Furthermore, Table 11 represents the error
metrics comparison of the linear [1], ridge [2], Lasso [3], Bayes [4], Huber [5], Lars [6], Lasso-Lars [7],
SGD [8], ElasticNet [9], and ANN regression methodologies. It can be observed from the obtained error
calculations that the linear regression methodology recorded the very minimal mean absolute and
mean squared errors, which were around 1.12% and 3.22%, respectively. Furthermore, it also indicates
that the customized ANN methodology used in the conducted experiments recorded the minimum
accuracy for a variety of air pollutants, such as PM2.5, PM10, CO, NO2, O3 (1 h), and O3 (4 h),
as compared to the remaining machine-learning methodologies. It recorded the maximum mean
absolute and squared errors around 11.23% and 21.63%, respectively.

Table 10. A comparative analysis of the accuracy evaluation metrics for the linear, ridge, Lasso, Bayes,
Huber, Lars, Lasso-Lars, stochastic gradient descent (SGD), ElasticNet, and ANN regression methodologies.

Methodologies PM2.5
(%)

PM10
(%)

CO
(%)

NO2
(%)

O3
(1 h (%))

O3
(1 h (%))

Linear Regression 99.01 98.12 97.79 91 96.21 96.59
Ridge Regression 98.11 97.68 97.45 89 94.34 93.21
Lasso Regression 97.23 97.11 97.33 87.78 93.98 93.12
Bayes Regression 97.32 96.59 97.08 86.78 92.79 93.02
Huber Regression 96.88 96.45 96.67 85.04 90.12 91.11
Lars Regression 96.67 96.55 96.01 84.49 89.98 90.34

Lasso-Lars Regression 95.56 95.54 94.99 80.76 88.77 90.11
SGD Regression 94.86 94.33 93.79 80.03 87.79 90.01

ElasticNet 94.78 94.13 93.54 79.76 87.16 89.78
ANN Regression 90 84 83 84.79 79 77

Table 11. A comparative analysis of the error metrics for the linear, ridge, Lasso, Bayes, Huber, Lars,
Lasso-Lars, SGD, ElasticNet, and ANN regression methodologies.

Methodologies Mean Absolute Error (%) Mean Squared Error (%)
Linear Regression 1.12 3.22
Ridge Regression 1.23 3.23
Lasso Regression 1.40 4.20
Bayes Regression 1.77 4.23
Huber Regression 2.67 4.67
Lars Regression 3.33 5.23

Lasso-Lars Regression 4.06 6.63
SGD Regression 5.12 9.23

ElasticNet 6.02 10.20
ANN Regression 11.23 21.63

3.3. PWPS Web and Mobile Interface

We designed a web and mobile interface for the presented pollution weather prediction system
based on the conducted experiments. Figure 10a,b represents a web and mobile interface of a PWP
system. The proposed study was carried out to provide the pollution predictions of various air
pollutants, such as PM2.5, PM10, CO, NO2, and O3. The application layer of the conducted study
consists of a web application called “PollutionWeatherPredictionSystem.” This application presents
the data collected, such as the concentration levels of various air pollutants. The application works
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pretty simply yet efficiently; the user interacts with the website through a calendar control that takes
a specific date as the input, fetches the corresponding data from the database on MySQL, and displays
it to the user, as shown below. Figure 10c represents a date-wise pollution prediction of 13 June 2020 to
24 June 2020.
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4. Conclusions and Future Work Discussion

In the presented research work, we proposed an economic pollution weather system to predict
various air pollutants for outdoor sites. The proposed PWP system consists of five layers. The physical
sensing layer consists of different sensing units of air pollutants connected to a connection layer via
a HIVEMQ (MQTT-based) broker. The data analysis layer performs a variability analysis of various
air pollutants and discusses the variability analysis results. In the presented research work, we used
machine learning and deep neural network-based approaches to predict the AQI values of various
air pollutants, such as PM2.5, PM10, CO, NO2, and O3. In the future, the presented method can
function lifelong and can be retrained according to the updated dataset. Based on the conducted
experiments, we also found that the customized linear regression methodology outperformed other
machine-learning methods, such as the linear, ridge, Lasso, Bayes, Huber, Lars, Lasso-Lars, SGD,
and ElasticNet regression methodologies, and the customized ANN regression methodology used
in the conducted experiments. In the case of linear regression methodology, it was observed that,
whenever there were slight increases in the pollutants such as PM2.5, PM10, and CO, the overall AQI
was not affected too much. However, the overall AQI value was significantly impacted whenever
there was some increase in the NO2 and O3 pollutants. The overall AQI value was calculated based
on the summation of all the presented air pollutants’ AQI values. In the end, the web and mobile
interface was developed to display the air pollution prediction values of a variety of air pollutants.
In the future, fellow researchers can research places with high altitudes, geographical variations,
and spatiotemporal variations.
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Appendix A

Appendix A.1 Air Quality Monitoring

Air quality monitoring is an important topic to be taken into consideration, as an unhealthy and
polluted environment can cost many lives, along with worsening the conditions of the ecosystem.
It justifies the importance of awareness about the air quality and the measures to make it better and
healthy and use techniques such as data preprocessing to standardize data and remove the unrequired,
along with data visualization for identifying trends and evaluating modeling outputs. In addition to
this, it also includes a web application called “PollutionWeather” to provide real-time daily, weekly,
and monthly pollution-related updates. The latest technologies, such as the Internet of Things,
embedded systems, wireless sensor networks, and artificial intelligence, can provide updates related
to the recorded variations in the surrounding environment. Due to this, fellow researchers have made
enormous efforts to develop complete air quality monitoring and prediction frameworks. The extensive
research in air pollution has brought in various positive outcomes to decrease the factors that affect
human health.

Appendix A.2 Air Quality Index

Concerning the issues present because of air pollution, measures like the air quality index become
of utmost importance. The AQI helps to know the quality of air that we humans breathe. Hence, it can
help determine the risk factors that come into the picture and the necessary steps to have better air
quality and a better living environment. The AQI metric is used in certain countries such as Malaysia,
Canada, and Europe as a primary pollution classification metric [64,65].
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Appendix A.3 Air Monitoring Stations

Technically, the monitoring stations can successfully predict the air pollutants present, but they
come with pitfalls like all other models. Firstly, the data generated by distanced stations are very
sparse, leading to predictions with low granularity and severe difficulty in predicting air pollutions
caused by unusual events. Additionally, the devices and the maintenance of the system demands
a high cost. Today, most of the methods ruling out the traditional way include the use of IoT (the
Internet of Things)-based systems or the concept of participatory sensing, which is significant, low-cost,
and comes with the help of smart technology

Table A1. A list of the terminologies used in the conducted experiment.

Terminologies Description

K In Kelvin degrees
Ppb Parts per billion
AQI Air Quality Index

mg/m3 one milligram per cubic meter
ug/m3 one microgram per cubic meter
SGD Stochastic Gradient Descent

MQTT Message Queuing Telemetry Transport
ANN Artificial Neural Network
PM Particulate Matter

PWP Pollution Weather Prediction System
AQHI Air Quality Health Index
hPA Atmospheric Pressure
LR Linear Regression
RR Ridge Regression

Lasso Lasso Regression
Bayes Bayesian Linear Regression
Huber Huber Regression
Lars Least-Angle Regression

Lasso-lars Lasso and Least-Angle Regression
SGD Stochastic Gradient Descent

ElasticNet Elastic Net Regression
QoS Quality of Service
IoT Internet of Things

GUSTO Generic Ultraviolet Sensors Technologies and Observations
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