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Abstract: The existence of clutter, unknown measurement sources, unknown number of targets,
and undetected probability are problems for multi-extended target tracking, to address these
problems; this paper proposes a gamma-Gaussian-inverse Wishart (GGIW) implementation of a
marginal distribution Poisson multi-Bernoulli mixture (MD-PMBM) filter. Unlike existing multiple
extended target tracking filters, the GGIW-MD-PMBM filter computes the marginal distribution
(MD) and the existence probability of each target, which can shorten the computing time while
maintaining good tracking results. The simulation results confirm the validity and reliability of the
GGIW-MD-PMBM filter.
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1. Introduction

Multiple target tracking (MTT) involves estimating the state of an unknown number of targets
in the presence of clutter [1–3]. The traditional MTT algorithm assumes each target is a point as one
target generates at most one measurement in the sensor at each time step [3]. However, the rapid
development of the modern high-resolution sensors makes the “point assumption” impractical because
with such sensors, one target generates at least one measurement per time scan. The MTT problem with
such sensors becomes an extended MTT problem [4,5]. Compared with the point target, the extended
target can not only provide accurate target movement information, but also the target’ shape and size
information, making it useful in the fields of robot recognition and positioning, moving crowd tracking,
and tracking of close cars or large ships using the high-resolution sensors or automotive radars. Due to
its wide application, the research on extended target tracking has received considerable attention from
many scholars, making it a growing research hotspot.

As one of the most used extended target measurement models, The Poisson Point Process (PPP) model
assumes a Poisson distributed random number of measurements are spatially distributed around the target
at each time step [4,5]. To efficiently and correctly represent the spatially distributed measurements, many
shape models have been developed, such as the random matrix model (RMM) [6–15], random hypersurface
model (RHM) [16–21] and Gaussian process model (GPM) [22]. RMM assumes that the shape of the
measurements can be approximated by an ellipse, and the measurements surrounding the centroid of the
target obey a Gaussian distribution. RHM uses a more general star-convex shape to approximate the target
contour. The GPM automatically learns the shape of the target through a Gaussian process and can give an
analytic expression of its contour for an arbitrary shape target. Among the above three measurement models,
the RMM has the smallest amount of calculation and is easy to implement, and can meet the requirements
of many practical situations, so we use the RMM method in this paper.

Both in the point target-tracking filters and the extended target-tracking filters, the number of
targets and the number of measurements are unknown and time-varying; thus, how to represent the
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targets and the measurements is a challenge. The random finite sets (RFS) theory [23], which represents
the targets and the measurements as a finite variable set, is a suitable choice. To solve the point
MTT problem, in the early stage, many RFS-based filters have been proposed, such as the Probability
Hypothesis Density (PHD) filter [24–26], the Cardinalized Probability Hypothesis Density (CPHD)
filter [27–30] and a series of multi-Bernoulli (MB) filters [31–34]. In recent years, scholars have
proposed many RFS-based filters to solve the extended MTT problem, such as PHD for extended
target tracking (ETT-PHD) [9,35–37], ETT-CPHD [38–40], gamma-Gaussian-inverse Wishart-Poisson
multi-Bernoulli mixture (GGIW-PMBM) [40,41], GGIW implementation of the Labelled Multi-Bernoulli
(GGIW-LMB) [42,43], and so on [22,44].

In the above-listed RFS-based filters, many kinds of conjugate priors are widely used, to give a
closed-form solution of the posterior density. The prior conjugate refers to a time series of random
finite set that satisfies the conjugate prior property; if the prediction is a Gaussian (Multi-Bernoulli)
distribution, the update is also a Gaussian (Multi-Bernoulli) distribution. Using the conjugate prior,
given enough parameters, the posterior distribution can be approximated arbitrarily.

In recent years, developing conjugate prior-based MTT filters has been a significant trend; the two
kinds of most used conjugate priors in various MTT filters are the PMBM conjugate prior and the
δ-Generalized Labelled Multi-Bernoulli (δ-GLMB) conjugate prior. In the δ-GLMB conjugate prior,
the state of each target is added with a unique label, which is helpful to find each target’s trajectory.
The PMBM prior conjugate divides the target set into two disjoint subsets, targets that have been
detected and targets that have not yet been detected, and then processes the two subsets separately.
This strategy can greatly reduce the target missed detection rate and improve tracking accuracy.
In reference [40], it has been shown that the point target tracking filter based on PMBM conjugate prior
outperforms the filter based on the GLMB conjugate prior in terms of tracking accuracy and computing
time; thus, in this paper we used the PMBM conjugate prior.

In this paper, to solve the extended MTT problem and combine the PPP model and PMBM
conjugate prior, we propose a GGIW implementation of a marginal distribution Poisson multi-Bernoulli
mixture (MD-PMBM) filter on the basis of the GGIW-PMBM filter. The main difference between
the GGIW-MD-PMBM filter and the GGIW-PMBM filter is that in the prediction step and the
update step, instead of recursively propagating the joint state distribution of targets (GGIW-PMBM),
the GGIW-MD-PMBM filter recursively propagates the marginal distribution and the existence
probability of each target; such a strategy can effectively reduce the calculation cost while maintaining
good tracking results.

The rest of the paper is organized as follows. Several model assumptions, such as the Bayesian
model, PPP model, MBM model, motion model, measurement model, and PMBM conjugate prior,
are discussed in Section 2. Section 3 presents the prediction step and the update step of the
GGIW-MD-PMBM filter. Section 4 gives the four extended target filters’ experimental simulation
results, which are summarized in Section 5.

2. Background

In this section, we outline various model assumptions, such as the Bayesian model [45–47],
PPP model, Multi-Bernoulli (MB) process model, motion and measurement model, and PMBM conjugate
prior model, which were used in the prediction and update steps of the GGIW-MD-PMBM filter.

2.1. Bayesian Model

We define the state of the i-th extended target at time step k as ξ(i)k , and the state of the target set at
time step k can be written as

Xk =
{
ξ
(i)
k

}Nξ,k

i = 1
, (1)
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where Nξ,k =
∣∣∣Xk

∣∣∣ is the number of the target, which is unknown and time-varying. The measurements
(the union of target generated measurements and clutter) obtained from the sensor at time k are

Zk =
{
z j

k

}Nz,k

j = 1
(2)

where Nz,k =
∣∣∣Zk

∣∣∣ is the number of measurements. Let Zk denote the union of measurements set from
time step 1 to k, that is, Zk = Z1 ∪Z2 ∪ · · · ∪Zk.

In many point target-tracking filters and extended target-tracking filters, the main purpose of
using the Bayesian model is to recursively propagate the multi-target density distribution. In a Bayesian
model, the multi-target set density, multi-target transition density, and the multi-target measurement
likelihood are represented by fk|k(Xk

∣∣∣Zk) , fk|k−1(Xk
∣∣∣Xk−1) , and fk|k(Zk

∣∣∣Xk) , respectively. Using the
Chapman–Kolmogorov equation, the multi-target set density can be defined as

fk|k−1(Xk

∣∣∣∣∣Zk−1) =

∫
fk|k−1(Xk | Xk−1) fk−1|k−1

(
Xk−1 | Zk−1

)
δXk−1, (3)

and the Bayes update as

fk|k
(
Xk | Zk

)
=

fk|k(Zk | Xk) fk|k−1

(
Xk | Zk−1

)∫
fk|k(Zk | Xk) fk|k−1(Xk | Zk−1)δXk

, (4)

2.2. PPP Model and Multi-Bernoulli (MB) Process Model

The PPP model, proposed by Gilholm et al. [4] and Granstrom et al. [5], is widely used in point
target tracking filters and extended target tracking filters. In a PPP model, each target generates a
Poisson distributed number of measurements, and each measurement is independent and identically
distributed (i.i.d.). The Poisson rate µ and the spatial distribution f (·) determine the PPP intensity.

We define the spatial distribution of the target state ξ(i)k as f (ξ(i)k ). The Poisson density distribution
of Xk is

f (Xk) = e−µ
∏
ξ
(i)
k ∈Xk

µ f (ξ(i)k ). (5)

The existence of a single target can be modeled by a Bernoulli RFS [14,31–34,40–42]. The cardinality
of a Bernoulli RFS X(i)

k can either be 1 (with probability r(i)k ) or empty (with probability 1− r(i)k ), and the

Bernoulli density distribution of X(i)
k can be defined as

f (X(i)
k ) =


1− r(i)k , X(i)

k = φ

r(i)k f (ξ(i)k ), X(i)
k =

{
ξ
(i)
k

}
0,

∣∣∣∣X(i)
k

∣∣∣∣≥ 2

. (6)

An MB RFS Xk is the union of a limited number of independent Bernoulli RFS X(i)
k , Xk =

Nξ,k
∪

i = 1
X(i)

k .

The MB density distribution of Xk is

f (Xk) = (

Nξ,k∐
i = 1

(1− r(i)k ))
∑

1≤i1,···,in≤Nξ,k

r(i1)k f (ξ(i1)k )

1− r(i1)k

· · ·

r(in)k f (ξ(in)k )

1− r(in)k

. (7)

In this paper, we divide the targets into the undetected target set and the detected target set.
The PPP represents the distribution of undetected target measurements, and the MB mixture (MBM)
represents the distribution of detected target measurements.
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2.3. The Motion Model and Measurement Model

To simplify the calculation, at each time step, we assume each target evolves independently from
the other targets, and the measurements generated by each target are independent of each other and
independent of those generated by other targets.

We assume each birth target can be described by a PPP model, and its intensity is Db(xk). All the
existing targets either survive with a probability PD(xk) or die with a probability 1− PD(xk) from time
step k to time step k + 1. Each extended target state consists of three variables, the measurement rate γk,

kinematic state xk, and extent state Ek, that is, ξ(i)k =
{
γ
(i)
k , x(i)k , E(i)

k

}
. Given γk, xk and Ek, the Markov

motion model can be defined as
γk+1 = γk, (8)

xk+1 = f (xk) + wk, (9)

Ek+1 = M(xk)EkM(xk)
T, (10)

where wk is Gaussian process noise with zero mean and covariance Q, f (·) and M(·) are the
transformation matrix of kinematic state and extent state, respectively.

The clutter measurements at time step k can be modeled as a PPP model with measurement
rate λ and spatial Poisson distribution c(z) . The clutter PPP density function is k(z) = λ c(z) .
The measurements generated by each target at time step k are a Poisson distribution with a measurement
rate γk. The measurement model is

zk = Hkxk + υk, (11)

where Hk is the known observation model function, and υk is the Gaussian observation noise with zero
mean and covariance Ek.

Assuming the measurements generated by a single target follow a Gaussian distribution, that is

p(zk
∣∣∣xk, υk) = N(zk; Hkxk, Ek). (12)

The distribution of each target state can be expressed as

p(γk, xk, Ek
∣∣∣Zk) = p(γk

∣∣∣Zk)p(xk, Ek
∣∣∣Zk)p(Ek

∣∣∣Zk)

= G(γk;αk|k, βk|k)N(xk; mk|k, Pk|k ⊗ Ek)IWd(Ek; vk|k, Vk|k)

= GGIW(ξk; ζk|k)

(13)

where G(γk;αk|k, βk|k) is the Gamma distribution, αk|k > 0 and βk|k > 0 are its shape parameter and
inverse scale parameter; N(xk; mk|k, Pk|k ⊗Ek) is the Gaussian distribution, mk|k and Pk|k ⊗Ek are its mean
and covariance; IWd(Ek; vk|k, Vk|k) is the inverse Wishart distribution, vk|k and Vk|k are its degrees of
freedom and shape matrix. Note that ζk|k =

{
αk|k, βk|k, mk|k, Pk|k, vk|k, Vk|k

}
is a shorthand for the set of

GGIW density parameters. The detailed implementation of GGIW prediction and update is given
in [21,23–26].

2.4. PMBM Conjugate Prior

Existing studies [40–42] show that developing PMBM conjugate priors-based filters is a significant
trend, due to their excellent tracking performance. In a PMBM model, the extended target set Xk at
time k is divided into two disjoint sets, undetected targets Xu

k and detected targets Xd
k , then the PPP

model is used to describe the distribution of undetected targets Xu
k , and the MBM model to describe

the distribution of targets Xd
k that have been detected at least once.

Xu
k , Xd

k : Xk = Xu
k ∪Xd

k , Xu
k ∩Xd

k = ∅. (14)
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The PMBM set density can be defined as

fk|k(Xk|Zk) =
∑

Xu
k ]Xd

k = Xk

f u
k|k
(Xu

k |Z
k)

∑
j∈J
ω

d, j
k|k f d, j

k|k (X
d
k |Z

k), (15)

f u
k|k
(Xu

k |Z
k) = e

−µu
k|k

∏
ξ∈Xu

k

µu
k|k

f u
k|k
(ξ), (16)

f d, j
k|k (X

d
k |Z

k) =
∑

]

i∈I j
Xi

k = Xd
k

∏
i∈I j

f d, j,i
k|k (Xi

k), (17)

where f d, j,i
k|k (·) is the Bernoulli set density. The MBM has |J| components, and J is the index set

(or MBM component) of the MB in the MBM. I j is the Bernoulli index set of the j-th MB, that is,
the j-th component has

∣∣∣I j
∣∣∣ Bernoulli components. ωd, j is the probability of the j-th MB component.

The conjugacy property determines the intensities of the birth PPP and the initial undetected PPP,
which are expressed by both GGIW mixture density.

Given the PMBM conjugate prior assumption, the extended target tracking is equivalent to
recursively propagate the PMBM density parameters in the prediction step and the update step,
which is shown in Section 3.

3. The GGIW-MD-PMBM Filter

In this section, the GGIW-MD-PMBM filter is presented. Instead of recursively propagating
the joint state distribution of targets (GGIW-PMBM filter), the proposed GGIW-MD-PMBM filter
recursively propagates the marginal distributions and the existence probabilities of each extended
target. The GGIW-MD-PMBM filter can be modeled by the following assumptions:

(1) Clutter is uniformly distributed in the surveillance area with a given Poisson rate λ and is
independent of targets’ distribution;

(2) Each extended target generates at least one measurement per time scan and evolves
independently of the other targets;

(3) The birth PPP intensity is a GGIW mixture with a given Poisson rate µb, weight ωb, and various
density parameters ςbof GGIW;

Db
k+1 = µb

k+1

Nb
k+1∑

j = 1

ω
(b, j)
k+1 GGIW(ξk+1; ς(b, j)

k+1 ). (18)

(4) The initial undetected PPP intensity is also a GGIW mixture with a known Poisson rate µu
0 ,

weight ωu
0 , and various density parameters ςu

0 of GGIW.

Du
0 = µu

0

Nu
0∑

j = 1

ω
(u, j)
0 GGIW(ξ0; ς(u, j)

0 ). (19)

(5) The initial PMBM parameter is empty.

µu
0|0 = 0 and J0|0 = 0. (20)

We assume the birth PPP and the initial undetected targets are all GGIW mixture intensities;
according to the PMBM conjugate property, each target density in the PMBM filter is also a GGIW density.
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3.1. Prediction

3.1.1. Detected Targets

According to the Chapman–Kolmogorov prediction (3) and the posterior PMBM density (15–16),
the predicted distribution f d, j

k|k−1(ξk), j = 1, · · · , Jd,k|k−1 and the existence probability rd, j
k|k−1 of each

detected target at time step k are

f d, j
k|k−1(ξk) = GGIW(ξk; ζd, j

k|k−1), j = 1, · · · , Jd,k|k−1, (21)

rd, j
k|k−1 = pSrd, j

k−1|k−1 , j = 1, · · · , Jd,k|k−1, (22)

where pS is the survival probability, and ζd, j
k|k−1 are the predicted parameters. The weights and number

of predicted MBM components are ω j
d,k|k−1 = ω

j
d,k−1|k−1

andJd,k|k−1 = Jd,k−1|k−1 , respectively.

3.1.2. Undetected Targets

To avoid missed detection, we regard previously undetected targets and current birth targets as
the undetected target set, that is, the undetected targets at time step k include the undetected targets at
time step k− 1 and the birth targets at time step k (this paper does not consider the spawning targets).
The predicted PPP for each undetected target at time step k is as follows:

f ub, j
k (ξk) = GGIW(ξk; ζub, j

k ), j = 1, · · · , Nub
k

, (23)

f uu, j
k|k−1 (ξk) = GGIW(ξk; ζuu, j

k|k−1), j = 1, · · · , Nuu
k|k−1

. (24)

The existence probability is ωub, j
k or ωuu, j

k|k−1 .

ω
ub, j
k , j = 1, · · · , Nub

k
, (25)

ω
uu, j
k|k−1 = ω

uu, j
k−1|k−1pS, j = 1, · · · , Nuu

k|k−1
, (26)

where Nub
k

is the number of birth targets at time step k, and Nuu
k|k−1

is the number of undetected targets at

time step k− 1. ζu, j
k|k−1 are the parameters (ζub, j

k or ζuu, j
k|k−1 ) of undetected targets at time step k. The predicted

PPP for the undetected targets has a Poisson rate

µu
k|k−1

= µub
k
+ Puu

S µ
uu
k−1|k−1

, (27)

where

Puu
S =

Nuu
k−1|k−1∑
j = 1

ω
uu, j
k−1|k−1pS. (28)

The existence probability of undetected targets ω
ub, j
k and ω

uu, j
k|k−1 can be normalized, as

ω
ub, j
k =

µub
k

µu
k|k−1

ω
ub, j
k , ωuu, j

k|k−1 =
µuu

k−1|k−1
µu

k|k−1
ω

uu, j
k|k−1 , and

Nub
k∑

j = 1
ω

ub, j
k +

Nuu
k∑

j = 1
ω

uu, j
k|k−1 = 1. For simplicity, the existence

probability of each undetected target at time k can be represented as ωu, j
k|k−1 , which includes ωub, j

k and

ω
uu, j
k|k−1 .

Through the above analysis, in the prediction step, all extended target distributions and existence
probabilities can be described as

f j
k|k−1(ξk) , j = 1, · · · , Nk|k−1, (29)
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ω
j
k|k−1 , j = 1, · · · , Nk|k−1, (30)

where Nk|k−1 = Jd,k|k−1 + Nuu
k|k−1

+ Nub
k

. f j
k|k−1(ξk) = f d,j

k|k−1(ξk) and ω
j
k|k−1 = rd,j

k|k−1

for 1 ≤ j ≤ Jd,k|k−1, f
j−Jd,k|k−1

k|k−1 (ξk) = f uu,j
k|k−1 (ξk) and ω

j−Jd,k|k−1
k|k−1 = ω

uu,j
k|k−1 for Jd,k|k−1 < j ≤ Jd,k|k−1 + Nuu

k|k−1
,

f
j−Jd,k|k−1−Nuu

k
k|k−1 (ξk) = f ub,j

k|k−1(ξk) and ω
j−Jd,k|k−1−Nuu

k
k|k−1 = ω

ub,j
k for j > Jd,k|k−1 +Nuu

k|k−1
.

3.2. Update

If each target predicted density is a PMBM at time k, according to the conjugate prior property,
the updated density is also a PMBM. The updated MBM is given by the formulas (31) and (32),
which contain the MB components predicted by each target in the previous processing step and their
related data associations.

f i
k|k(ξ

(i)
k |Z

k) =
∑
Y⊆Z

∑
P∠Y

∑
CC∩I j,∅

ωi,P
k|k f d, j

k|k (ξ
(i)
k |Z

k), j = 1, · · · , Jd,k|k−1 + Nu
k|k−1

, (31)

ωi,P
k|k =

ω
j
k|k−1LPLw∑

Y⊆Z

∑
P∠Y

∑
CC∩I j,∅

ωi,P
k|kLPLw

, j = 1, · · · , Jd,k|k−1 + Nu
k|k−1

. (32)

Here, the predicted likelihood LP of partition and the predicted likelihood Lw of each MB are as follows:

LP =
∏

CC ∩ I j = ∅
|CC| > 1

lC
∏

CC ∩ I j = ∅
|CC| = 1

(κCC + lC), (33)

Lw =
∏

j

LC. (34)

In formulas (33) and (34), for each MB component in each partition cell, the data association can
be divided into the following three types:

(1) The measurement set Z can be divided into the union of two disjoint sets, Z = Y∪ (Z\Y), where
Y corresponds to the clutter and the previously undetected targets’ measurements, and Z\Ycorresponds
to the previously detected targets’ measurements.

(2) For set Y, form a partition of P of non-empty cells C; each cell contains clutter or
target-generated measurements.

(3) For set Z\Y, the union of a set of index subsets
{
I j
}

can be used to represent the measurements
related to the j-th MB component of the detected targets.

In the update step, the Bernoulli parameters of each detected target and the PPP parameters of
each undetected target are determined, as given below.

3.2.1. Detected Targets

In this paper, there are two types of detected targets at time k: The targets detected for the first time
in the measurement set Y, and the previously detected targets are detected again in the measurement
set Z\Y. The first detected targets are processed by the PPP model, and the second detected target is
estimated with the existing MB. According to Equations (9) and (10), the spatial distribution f d, j

k|k (ξk)

and existence probability rd, j
k|k of each GGIW component of the detected target at time k are updated

as follows:
f d, j
k|k (ξ

( j)
k ) =

∑
]

i∈I j
ξi

k = Xd
k

∏
iC∩I j

f d, j,i
k|k (ξ

( j)
k ), j = 1, · · · , Jd,k|k−1, (35)
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rd, j
k|k =

ω
j
k|k−1

∏
CC∩I j

r j,C

∑
j∈J
ω

j
k|k−1

∏
iC∩I j

r j,C
, j = 1, · · · , Jd,k|k−1. (36)

For each partition cell, its predicted likelihood LC is related to the predicted likelihood of each
GGIW component in the spatial density, such as

LC =



κCC + lC, i f C∩ I j = ∅ ,
∣∣∣CC

∣∣∣ = 1
lC, i f C∩ I j = ∅ ,

∣∣∣CC
∣∣∣> 1

1− rd, j
k|k−1pD + rd, j

k|k−1pD(
β

d, j,C
k|k−1

β
d, j,C
k|k−1+1

)

α
d, j,C
k|k−1

, i f C∩ I j , ∅ , CC = ∅

rd, j
k|k−1Lu, j,C

k , i f C∩ I j , ∅ , CC , ∅

(37)

The predicted likelihood LC is determined by C∩ I j and the measurement cell CC, as follows:
(1) When C∩ I j = ∅ ,

∣∣∣CC
∣∣∣ = 1 , the predicted likelihood LC is an approximation of the predicted

likelihood of the cell composed of the undetected target-generated measurements and the clutter
measurements in the first detection process. Since this cell contains the clutter and undetected targets’
measurements, LC is related to κCC and lC, where κCC is the predicted likelihood of clutter, and lC is the
predicted likelihood of undetected target-generated measurements.

(2) When C∩ I j = ∅ ,
∣∣∣CC

∣∣∣> 1 , it means the targets detected for the first time are divided into
multiple cells. If there are undetected targets, they must be contained in the above cells, thus LC is only
related to lC.

(3) When C ∩ I j , ∅ , CC = ∅, it means LC is the predicted likelihood when the j-th MB
component of the previously detected target is an empty set.

(4) When C∩ I j , ∅ , CC , ∅, the predicted likelihood LC is the approximation when the j-th MB
component of the previously detected target is not empty. The calculation Lu, j,C

k is presented in [39],
Table 2.

The predicted likelihood lC of undetected targets can be defined as

lC = µu
k|k−1

Nu
k|k−1∑

j = 1

ω
u, j
k|k−1Lu, j,C

k . (38)

According to the different values of C∩ I j and CC, the likelihood probability r j,C can be defined as

r j,C =



lC
κCC+lC

, i f C∩ I j = ∅ ,
∣∣∣CC

∣∣∣ = 1

1, i f C∩ I j = ∅ ,
∣∣∣CC

∣∣∣> 1
rd, j
k|k−1 qd, j,C

D

1−rd, j
k|k−1+rd, j

k|k−1 q j,C
D

, i f C∩ I j , ∅ , CC = ∅

1, i f C∩ I j , ∅ , CC , ∅

. (39)

The effective probability of the missed detection can be defined as

qd, j,C
D = 1− pD + pD(

β
d, j,C
k|k−1

β
d, j,C
k|k−1 + 1

)

α
d, j,C
k|k−1

. (40)
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The spatial distribution f d, j,i
k|k (ξk) of each measurement cell at time step k is as follows:

f d, j,C
k|k (ξk) =



ω
u, j
k|k−1 Lu, j,C

k
Nu

k|k−1∑
j = 1

ω
u, j
k|k−1 Lu, j,C

k

GGIW(ξk; ζd, j,C
k|k ), i f CC ∩ I j = ∅

1−pD

qd, j,C
D

GGIW(ξk; ζd, j,C
k|k−1 ) +

pD(
β

d, j,C
k|k−1

β
d, j,C
k|k−1

+1
)

α
d, j,C
k|k−1

qd, j,C
D

G(γk;αu, j,C
k|k−1 , βu, j,C

k|k−1 + 1)

×N(xk; mu, j,C
k|k−1 , Pu, j,C

k|k−1 )IWd(Xk; vu, j,C
k|k−1 , Vu, j,C

k|k−1 ), i f C∩ I j , ∅, CC = ∅
GGIW(ξk; ζd, j,C

k|k ), i f C∩ I j , ∅, CC , ∅

. (41)

The second equation in (41) uses a gamma-mixture reduction to reduce its bi-modal GGIW
distribution to a uni-modal GGIW distribution [44]. Detailed calculations of parameter ζd, j,C

k|k and

prediction likelihood Lu, j,C
k in the GGIW update are provided in [41].

3.2.2. Undetected Targets

The detection probability pD is always less than 1, and the Poisson parameter γk may be zero;
these two cases may cause missed detection of targets. Therefore, we need to consider the above two
situations, and the updated spatial density is

f u, j
k|k (ξk) =

(1−pD)ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

GGIW(ξk; ζu, j
k|k−1) +

pD(
β

u, j
k|k−1

β
u, j
k|k−1

+1
)

α
u, j
k|k−1

ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

G(γk;αu, j
k|k−1 , βu, j

k|k−1 + 1),

×N(xk; mu, j
k|k−1 , Pu, j

k|k−1)IWd(Xk; vu, j
k|k−1 , Vu, j

k|k−1), j = 1, · · · , Nu
k|k−1

(42)

where qu, j
D is the effective probability of the undetected target, and µu

k|k
is the PPP Poisson rate of the

undetected targets,

qu, j
D = 1− pD + pD(

β
u, j
k|k−1

β
u, j
k|k−1 + 1

)

α
u, j
k|k−1

, (43)

µu
k|k

= µu
k|k−1

Nu
k|k−1∑

j = 1

qu, j
D , (44)

The existence probability is

ω
u, j
k|k =

(1− pD)ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

+

pD(
β

u, j
k|k−1

β
u, j
k|k−1+1

)

α
u, j
k|k−1

ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

, j = 1, · · · , Nu
k|k−1

. (45)

Note: Most of the mathematical details of formulas (42) and (45) are given in the Appendix A.
The Gaussian and inverse Wishart parameters in formula (42) are the same in both cases, but the
gamma parameters are different. Therefore, formula (42) can be reduced by gamma mixing [44] to a
single-peak GGIW distribution and the number of GGIW components remains unchanged.

The main contribution of the GGIW-MD-PMBM proposed in this paper is to recursively propagate
the marginal distribution and existence probability of each target through formulas (21), (22), (29), (34),
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(35), (42), and (45), which is different from the GGIW-PMBM in [40] that it recursively propagates the
joint target state distribution and existence probability.

3.3. Complexity Reduction and Data Association

In the tracking process, as the number of targets increases, the number of unknown data
associations, the number of components in the MBM, and the number of parameters in the PMBM
greatly increase, which brings the problem of “combination explosion”. It is necessary to approximate
the target density through reduction methods. Possible reduction methods include gating, clustering,
pruning, merging, and recycling. In this paper, we focused on developing the approximate method
to recursively propagate the marginal distribution of targets in the prediction and update steps.
The complexity reduction and the data association process used in this paper follow the same methods
used in [40], Section V; hence the complexity reduction and the data association are briefly discussed.

4. Simulation

In this simulation, we compared the proposed GGIW-MD-PMBM filter with the GGIW-PMBM,
GGIW-LMB, and GGIW-PHD filters for multi-target trajectories in the four classic scenarios, which
are provided in the excellent sample MATLAB code [40–43]. Each extended target can be defined as
xk = [pk, vk]

T
∈ R4, where pk ∈ R2 is each target’s position and vk ∈ R2 is the velocity. The motion

model’s parameters used in Formulas (8)–(10) are

f (xk) =

[
I2 TsI2

0 I2

]
xk, Q = Gσ2

aI2GT, G =

 T2
s

2 I2

TsI2

, Hk = [I2 02], (46)

where σa is the acceleration standard deviation and Ts = 1s is the sampling time.
To evaluate the four algorithms’ performance, we used the computing time and the generalized

optimal sub-pattern assignment (GOSPA) metric [47], the cutoff parameter c = 10, and the ordered
parameter p = 1, among which, for the distance measurement, we use the Gaussian Wasserstein
Distance metric [48]. We divided the GOSPA metric into three categories: localization error, false
detection error, and miss detection error. For GGIW-LMB filter and GGIW-PHD filter, we extracted
the target states by taking the mean vector of all Bernoullis whose existence probability is larger than
0.5. For the GGIW-PMBM filter and GGIW-MD-PMBM filter, target state extraction was performed
similarly, but only from the MB component with the highest weight.

In the four scenarios, the target detection probabilitypD, target survival probability pS, the clutter
Poisson rate λ, and the measurement Poisson rate γ used in different scenarios are given in Table 1.
In the first scenario, there are 100 time steps, and 27 highly time-varying targets are randomly generated
in four positions; this scenario aims to compare the four algorithms’ tracking performances with a
high clutter density and high target number scenario. In the second scenario, there are 100 time steps,
and two targets are born well separated, move close to each other, and then split; this scenario aims
to compare the four algorithms’ tracking performance when highly close to each other. In the third
scenario, there are 10 time steps, and five targets are born closely at the same time; this scenario aims
to compare the four algorithms’ tracking performances of handling dense birth. In the fourth scenario,
there are 300 time steps, and two targets first get close and then they maneuver closely before splitting;
this scenario aims to compare the four algorithms’ tracking performance of seriously handling the data
association problem. The target trajectories of different scenarios are given in Figure 1.
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Table 1. The parameters used in the four scenarios.

Scenario pD pS λ γ

Scenario 1 0.90 0.99 60 {7,8,9}
Scenario 2 0.98 0.99 10 {10,20}
Scenario 3 0.90 0.99 20 10
Scenario 4 0.98 0.99 10 {10,20}
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Figure 1. True target trajectories of four scenarios. (a) Twenty-seven targets, (b) separate/close/split, 

(c) dense birth, (d) nonlinear maneuver. 

Figure 2 gives the average GOSPA error of the four algorithms over 100 Monte Carlo (MC) 

trials. Table 2 shows the estimation errors and cycling time of the four algorithms in the four 

Figure 1. True target trajectories of four scenarios. (a) Twenty-seven targets, (b) separate/close/split,
(c) dense birth, (d) nonlinear maneuver.

Figure 2 gives the average GOSPA error of the four algorithms over 100 Monte Carlo (MC) trials.
Table 2 shows the estimation errors and cycling time of the four algorithms in the four scenarios.
From the simulation results in Figure 2 and Table 2, we can see that the proposed GGIW-MD-PMBM
obtains the general minimum average GOSPA error, which outperforms the other three algorithms;
GGIW-PMBM is the second, and GGIW-PHD obtains the highest average GOSPA error. As for the time
consumption of each MC run, the GGIW-PHD has the lowest computational cost, GGIW-LMB is the
second, and GGIW-MD-PMBM is the third. Compared with other results of normalized location error,
the number of missed targets, and the number of false detection, the proposed GGIW-MD-PMBM
algorithm is generally better than the other three algorithms. In the third scenario, the GGIW-PMBM
filter outperformed the GGIW-MD-PMBM filter in terms of the location error and the number of false
detections; this is because the targets in this scenario are intensively generated at the same location and
at the same time. Compared with the joint state distribution (GGIW-PMBM), the marginal distribution
(GGIW-MD-PMBM) has a larger deviation, but as time increases, the targets gradually move away,
and the average GOSPA error of the GGIW-MD-PMBM filter is still lower than the GGIW-PMBM
filter. The tracking performance of each algorithm in the fourth scenario is worse than in the other
three scenarios; this is because the data association in the fourth scenario is worse than in the other
three scenarios.
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Table 2. Simulation results: the sum of estimation errors and cycling time; GO-GOSPA; LE-normalized
location error; NM-number of missed targets; NF-number of false detection; CT-cycling time.

Scenarios GGIW-PMBM GGIW-LMB GGIW-PHD GGIW-MD-PMBM

Scenario 1

GO 732.8 1246.7 2873.2 729
LE 56.5 76.6 60.7 56.3

NM 61.3 481.0 2311.6 60.7
NF 141.4 96.2 108.5 137
CT 62.5 8.0 4.2 46.2

Scenario 2

GO 550.7 1818.2 4699.5 550.5
LE 268.0 133.9 562.3 265.1

NM 5.6 1479.5 997.5 5.0
NF 16.9 193.8 3083.2 10.8
CT 18.6 7.0 0.3 11.4

Scenario 3

GO 59.2 134.8 280.4 58.3
LE 9.3 11.5 23.1 9.5

NM 11.2 73.8 174.7 10.6
NF 2.1 12.1 31.8 2.5
CT 1.2 0.4 0.1 1.1

Scenario 4

GO 2835.6 6266.3 6257.8 2236.7
LE 1011.2 869.3 176.8 1002.8

NM 253.6 3770.6 5601.2 139.4
NF 175.0 1445.2 470.8 106.2
CT 49.7 6.5 2.2 40.6

5. Conclusions

In this paper, we propose an efficient filter to solve the extended target tracking problem.
Unlike the existing GGIW-PMBM filter that recursively propagates the joint state distribution of
targets, the proposed GGIW-MD-PMBM filter recursively propagates the marginal distributions and
the existence probabilities of each extended target. Comparing the other three extended target filters in
four classic scenarios, the experimental results show that the proposed filter in this paper improves
tracking accuracy and reduces computing time.
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Appendix A

Let pe
k,D be the effective probability of target detection [35] (the set of target detections is nonempty

with probability 1− e−γ( j)), then the updated PPP intensity corresponding to previously existing targets
that are not detected is

Du
k|k
(ξk)=

Nu
k|k−1∑

j = 1

(1− pe
k,D)ω

u, j
k|k GGIW(ξk; ζu, j

k|k−1)

=

Nu
k|k−1∑

j = 1

p( j)(γk)N(xk; mu, j
k|k−1 , Pu, j

k|k−1)IWd(Xk; vu, j
k|k−1 , Vu, j

k|k−1)

(A1)
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where p( j)(γk) is

p( j)(γk) = (1− pD)ω
u, j
k|k−1G(γk;αu, j

k|k−1 , βu, j
k|k−1) + pD(

β
u, j
k|k−1

β
u, j
k|k−1 + 1

)

α
u, j
k|k−1

ω
u, j
k|k−1 G(γk;αu, j

k|k−1 , βu, j
k|k−1 + 1). (A2)

At this time, all existence probabilities of the undetected targets can be normalized, and the
existence probability and spatial density of each target can be as follows:

ω
u, j
k|k =

(1− pD)ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

+

pD(
β

u, j
k|k−1

β
u, j
k|k−1+1

)

α
u, j
k|k−1

ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

, j = 1, · · · , Nu
k|k−1

(A3)

f u, j
k|k (ξk) = f u, j

1,k|k(ξk) + f u, j
2,k|k(ξk), j = 1, · · · , Nu

k|k−1
(A4)

where f u, j
1,k|k(ξk) represents the spatial density in the case of a missed detection caused by pD < 1, and

f u, j
2,k|k(ξk) represents the spatial density in the case of a missed detection caused by γk = 0.

f u, j
1,k|k(ξk) =

(1− pD)ω
u, j
k|k−1

Nu
k|k−1∑

j = 1
qu, j

D ω
u, j
k|k−1

GGIW(ξk; ζu, j
k|k−1) (A5)

f u, j
2,k|k(ξk) =

pD(
β

u, j
k|k−1

β
u, j
k|k−1+1

)

α
u, j
k|k−1

ω
u, j
k|k−1

Nu
k|k−1∑
j=1

qu, j
D ω

u, j
k|k−1

G(γk;αu, j
k|k−1 , βu, j

k|k−1 + 1)N(xk; mu, j
k|k−1 , Pu, j

k|k−1)IWd(Xk; vu, j
k|k−1 , Vu, j

k|k−1) (A6)
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