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Abstract: Characterizing the surface deformation during the inter-survey period could assist in
understanding rock mass progressive failure processes. Moreover, 3D reconstruction of rock mass
surface is a crucial step in surface deformation detection. This study presents a method to reconstruct
the rock mass surface at close range in a fast way using the improved structure from motion—multi
view stereo (SfM) algorithm for surface deformation detection. To adapt the unique feature of rock
mass surface, the AKAZE algorithm with the best performance in rock mass feature detection is
introduced to improve SfM. The surface reconstructing procedure mainly consists of image acquisition,
feature point detection, sparse reconstruction, and dense reconstruction. Hereafter, the proposed
method was verified by three experiments. Experiment 1 showed that this method effectively
reconstructed the rock mass model. Experiment 2 proved the advanced accuracy of the improved SfM
compared with the traditional one in reconstructing the rock mass surface. Eventually, in Experiment
3, the surface deformation of rock mass was quantified through reconstructing images before and after
the disturbance. All results have shown that the proposed method could provide reliable information
in rock mass surface reconstruction and deformation detection.

Keywords: rock mass; 3D reconstruction; surface deformation; improved SfM

1. Introduction

Limited to the topographic and environmental conditions, projects in Southwest China that have
been or are under construction are closely related to rock masses, for example, tunnel engineering,
slope engineering, and foundation engineering. Much work has been done to evaluate the properties of
rock engineering by analyzing the mechanics and failure characteristics of rock masses [1,2]. The surface
deformation analysis of the rock masses could also provide useful information to understand the
failure mechanism and stability [3,4]. Rock mass surface deformation detection is of great significance
in the safety management of a construction project, which could even predict an initial danger of rock
engineering to some extent. The surface reconstruction is the basis to quantify the surface deformation
process of rock engineering. This study is going to explore a rapid method of the rock mass surface
three-dimensional (3D) reconstruction for surface deformation detection in a close range.

Biological monitoring is an essential means of surface deformation detection in rock engineering.
In the past decade, remote surveying technology has made significant progress in rapidly acquiring
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3D high-resolution digital images [2]. It is commonplace to characterize rock mass surfaces through
digital photogrammetry [5,6], light detection and ranging (LiDAR) [7], Interferometric Synthetic
Aperture Radar (INSAR) interferometry [8], 3D laser scanning [9,10], and unmanned aerial vehicles
(UAVs) [10,11]. These techniques are suitable to measure variety of processes according to their own
features. Recent developments in 3D photogrammetry could create 3D surface models or triangulated
irregular networks (TINs) using multiple photos [12,13]. Owing to the economy, convenience,
and intelligence, the structure from motion–multi view stereo (SfM-MVS) has attracted continuous
investigations into acquiring digital information within 3D reconstruction [14,15]. The SfM calculates
the object’s position based on the reference point deduced from photos, which is mainly used for
sparse reconstruction. Moreover, MVS generates a broad range of point clouds based on the predicted
object position and reference point, which is used for dense reconstruction. This technology has
been extended to land surface changes [16,17], river erosion [18], and rock failure [19], among others.
Some works even achieve a highly accurate reconstruction model that indicates SfM-MVS could
provide a survey precision comparable to the current measurement methods [20–24].

However, the literature lacks the investigation into the surface reconstruction of rock mass at close
range using SfM-MVS. The quality of 3D reconstruction is one of the most critical issues bothering
rock mass surface deformation detection. First of all, the selection of verification methods would
lead to different assessment results [25–27]. Secondly, the size of the pixel increases as the ranging
increases [28], thus the reconstruction accuracy would reduce linearly with the increase in ranging.
As to the error measurement criterion, root mean squared error (RMSE) is the most common method to
evaluate the difference between model measurements and independent observations [25,29,30]. Last,
but not least, regarding the data acquisition facility, sensors that capture different types of images
may complex the results of the 3D reconstruction. To adapt the unique feature of rock mass surface,
serial factors that affect the quality should be considered in the practical 3D reconstruction of rock
mass surface at close range.

Characterizing the surface deformation during the inter-survey period could assist in
understanding the rock mass progressive failure processes. The quality of the surface deformation
detection is subject to the quality of surface reconstruction using the SfM algorithm. This study
proposed an improved A-SfM 3D reconstruction algorithm to realize a more accurate rock mass
surface reconstruction by obtaining a higher accuracy 3D reconstruction point cloud of rock surface.
The surface deformation of rock mass was detected by 3D reconstruction at different times using
an open source software, CloudCompare. This study aims at providing more accurate monitoring
information in predicting the further disaster of rock engineering and helps to understand the gradual
failure process of rock mass surface to some extent.

2. Proposed Method

The SfM, an algorithm of 3D reconstruction based on various unordered images, is introduced to
reconstruct the surface of rock mass with multiple images acquired at close range. The accuracy and
cost of 3D reconstruction depend on the number of feature points extracted and matched, calculation
time, central processing unit (CPU) utility, and mismatched accuracy of feature points. Regarding the
feature extraction part of SfM, the SIFT algorithm with scale and rotation invariance is the mainstream.
However, the edge information is still probably lost because the Gaussian blur would smooth all scales
of the target image to the same degree of detail and noise. To build a 3D reconstruction model that
is more suitable for rock mass image characteristics, this study emphasized improving the feature
extraction of the SfM algorithm.

The image data sets of rock mass were taken in Aba Tibetan, Sichuan, China. A total of 41 images
were classified into four groups according to the transform of intensity, rotation, scale, and fuzzy,
respectively. Tables 1 and 2 list the parameters of five feature extraction algorithms (AKAZE, ORB,
SURF, SIFT, and BRISK), including the number of feature points, number of interior points, number of
matching points, execution time, CPU utility, efficiency of feature points, and matching accuracy.
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Table 1. Average time cost and average calculation cost of five types of operators.

Algorithm Type SIFT SURF ORB AKAZE BRISK

Average time cost (ms) 6877.32 1205.54 571.90 9189.28 199,348.45
Average calculated cost (%) 75.20 74.48 65.78 66.49 77.01

Table 2. Average number of effective feature points and accuracy of five types of operators.

Algorithm
Type

Number of
Feature Points

Number of
Interior Points

Number of
Matching

Points

Efficiency of
Feature Points

(%)

Matching
Accuracy (%)

SIFT 107,326 44,211 48,756 45.43 90.68
SURF 30,259 9370 11,032 36.46 84.93
ORB 15,075 4224 5022 33.31 84.10

AKAZE 31,685 14,553 15,971 50.40 91.12
BRISK 131,602 55,573 61,584 46.80 90.24

Test results were analyzed comprehensively with the Entropy Weight—TOPSIS.
The comprehensive evaluation index C∗i is calculated as follows:

Ci
∗ = [0.1234, 0.1325, 0.3304, 0.3656, 0.0481]

where SIFT is 0.1234, SURF is 0.1325, ORB is 0.3304, AKAZE is 0.3656, and BRISK is 0.0481. According
to the comprehensive evaluation index, the five algorithms are ranked as follows: AWAKE, ORB, SURF,
SIFT, and BRISK. Therefore, AKAZE was used to improve the traditional SfM-MVS.

The framework for 3D reconstruction of rock mass surface mainly includes image acquisition,
feature point detection, sparse reconstruction, and dense reconstruction, as shown in Figure 1.
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3. Basic Theory and Methods

3.1. Image Acquisition

Reconstruction using SfM has less requirements for image acquisition sensors. Table 3 shows
the related technical specifications of sensors for image acquisition. The primary purpose of image
acquisition sensor design is to select the most appropriate sensor to acquire the image with sufficient
resolution. A high-performance single-lens reflex camera is used for image acquisition, in order to
mostly adapt to the actual situation of the rock engineering site and reduce time and efficient costs.
Most of these cameras enable acquiring ground resolution in centimeters and have strong robustness.

Table 3. The related technical specifications of sensors for image acquisition.

Sensors Effective
Pixels (MP)

Resolution
(Pixels)

Focal Length
(mm)

Types of
Sensors Weight

iPhone 6 Plus 7.99 2449 × 3264 29

Complementary
Metal Oxide

Semiconductor
(CMOS)

172 g

iPhone 6s - 2449 × 3265 29 CMOS 143 g
iPhone XR - 4032 × 3024 26 194 g
Panasonic
Lumix LX5 9.52 2520 × 3776 24~90 charge coupled

device (CCD) 271 g

Panasonic
Lumix ZX20 14.1 3240 × 4230 24~480 CMOS 204 g

Camon EOS 7D 17.92 2345 × 5184 29~216 CMOS 820 g
Acom Trailcam 5310 5.0~12.0 4000 × 3000 6 CMOS 245 g

Nikon 750 24.3 6016 × 4016 24~120 CMOS 750 g
Nikon D3100 14.2 4608 × 3072 18~200 CMOS 455 g

3.2. Feature Point Detection

Feature extraction. The AKAZE algorithm is used to improve the SfM in surface reconstruction
owing to the optimization in rock mass image characteristics. AKAZE is a feature extraction algorithm
with good robustness due to the introduced modified-local difference binary (M-LDB). The main
principle is as follows.

A nonlinear diffusion filter describes the variation of image brightness L in different scales using
the divergence of flow function, Formula (1):

∂L/∂t = div(c(x, y, t)·∇L) (1)

where L is the brightness matrix of the image; div and ∇ represent the divergence and the gradient of
the image, respectively; c(x, y, t) is the conduction function; and t is evolutionary time.

The conduction function allows the diffusion equation to adapt to the local structure characteristics
of the image. The conduction function is defined as Formula (2).

c(x, y, t) = g
(∣∣∣∇Lσ(x, y, t)

∣∣∣) (2)

where ∇Lσ is the image smoothed by Gaussian. The conduction kernel function is selected as
Formula (3) for optimal diffusion smoothing.

g2 =
1

(1+
∣∣∣∇Lσ

∣∣∣2/λ2)
(3)

where λ is the deciding factor, which is used to control the degree of diffusion and to determine the
edge region that should be enhanced and flat filtered.
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The evolutionary time ti is derived by converting the scale parameter in pixels σi.

ti =
1

2σ2
i

, i = 0 . . .M (4)

A nonlinear scale-space equation could be acquired using the fast explicit diffusion (FED)
algorithm [31] to solve the partial differential equation of Formula (1).

Li = (I + τA
(
Li

)
)Li

∣∣∣∣i = 0, 1, . . . , n− 1 (5)

where A
(
Li

)
is the conductance matrix to the image encoding and is constructed by the histogram

of the Gaussian filtered scale image; I is the identity matrix; and τ is step-size, which comes from
the factorization of the filter [32]. The matrix A

(
Li

)
remains unchanged throughout the FED cycle.

When the FED loop ends, the algorithm recalculates the value of the matrix A
(
Li

)
.

After the nonlinear scale space is constructed, the Hessian matrix is used to extract the feature
points. Meanwhile, SIFT is used to compare whether 26 points of the same position two layers above
and below (include the current layer) are still extreme points. With this method, local feature points are
extracted. To verify the feature extraction effect of the AKAZE algorithm, a slop image taken in Aba
Tibetan, Sichuan, China was used to display the extraction results of feature points, shown in Figure 2.
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Figure 2. The feature extraction using the AKAZE algorithm.

Feature matching. After the feature extraction, the neighborhood matching is established to find
all matching points. Euclidean distance is adopted to screen the feature point pairs. If the result does
not meet the threshold, it would be removed.

In this step, the FLANN feature point matching algorithm is adopted through the K-Dimensional
Tree (KD-Tree) in achieving the feature point search first, then the matching degree is determined
according to the Euclidean distance formula. This method could segment the feature points of different
spaces and obtained the matching point pairs in different spatial domains effectively.

Mismatched elimination. Exact matching is conducted with the Random Sampling Consistency
(RANSAC) algorithm. This step allows to obtain the transformation relationship between images [33].

The idea of the RANSAC algorithm is as follows: (1) the data consist of inliers; (2) outliers are
prohibited to fit the model; (3) other data are noise points. RANSAC enables to estimate high-precision
parameters from a data set containing a large number of outliers, which is an excellent mismatched
elimination method.

3.3. Sparse Reconstruction

Figure 3 shows the schematic of sparse reconstruction for two images.
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After the interior orientation parameters obtained by camera self-calibration, the exterior
parameters of the structure need to be solved. Set the world coordinate system to coincide with the
camera coordinate system in the first image, so that the first image could be expressed as R = I. T is
the translation vector, T = (0, 0, 0)T, and R is the rotation matrix. The projection matrix P1 of the first
image is shown as Formula (6):

P1 = K[I|0 ] = [K|0 ] (6)

where I is the unit matrix and K is the intrinsic parameter matrix.
Similarly, the projection matrix P2 of the second image could be represented as Formula (7):

P2 = K[R|T] (7)

As the eigenmatrix contains the rotation and translation matrices, it could be obtained according
to Formula (8):

E = K
′TFK (8)

where F is the fundamental matrix, which could be obtained according to the matching points in the
initial image pair.

The camera poses between the two cameras could be obtained by the singular value decomposition
(SVD) of the eigenmatrix, Formula (9):

E = UDVT (9)

Generally, U and V are orthogonal matrices of order 3, and D is the diagonal matrix.
There are four possible solutions to the projection matrix restored by the eigenmatrix (see in

Figure 4 and Formula (10)):

P2 =
[
UWVT

∣∣∣u3
]
;
[
UWVT

∣∣∣−u3
]
;
[
UWTVT

∣∣∣u3
]
;
[
UWTVT

∣∣∣−u3
]

(10)

where u3 is the last column of the matrix W =


0 −1 0
1 0 0
0 0 1

.
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Three-dimensional points could be calculated through the position information of the points from
the projection matrices of P1 and P2. This process is called triangulation.

Suppose P1k and P2k are row vectors of P1 and P2, respectively. Mw = (Xw, Yw, Zw, 1)T is the
space coordinates of point M. (u1, v1, 1)T and (u2, v2, 2)T are the image coordinates of image 1 and
image 2, respectively. The linear equations are obtained as Formula (11) using the coordinate system
transforming relations. 

P13u1 − P11

P13v1 − P12

P23u2 − P21

P23v2 − P22

Mw =
→

0 (11)

As the number of equations in Formula (11) is more than the unknowns, the least square is
introduced to solve the space coordinates of point M. Errors may exist in the obtained coordinates as a
result of the error in feature matching. Therefore, the beam adjustment (BA) is introduced to further
improve the precision of coordinates because it enables to optimize the camera parameters and 3D
coordinates by minimizing the error of reprojection.

The BA needs to be initialized with a good image pair. Firstly, the first BA is performed for the
two initialized images. Then, add new images cyclically for a new BA. The BA is an iterative process
in which all valid images are computed continuously until the end of the iteration. Finally, camera
parameters and scene geometry information are obtained. Reprojection errors are the distances between
projection points and real points in images. For m images and n trajectory points, the reprojection error
is shown as Formula (12):

min
∑m

k=1

∑n

i=1
‖xki − PkXi‖

2 (12)

where Pk is the projection matrix and xki is the image position of pint i in image k. The purpose of the
BA is to minimize this function.

Multiple images reconstructing is consistent with the reconstruction of two images. After the
initial projection matrix P is solved, use Formula (11) to recover the 3D coordinates of the other image
matching points in the nth images. However, as the number of images increases, the difference between
the newly added images and the previous images becomes larger. Moreover, the fewer the image
matching pairs, the more difficult it is to calculate the fundamental matrix.

Therefore, the projection matrix P is calculated on the position of the newly added images through
the reconstructed 3D point coordinates. Suppose (u1, v1, 1) is the image coordinates of space point
Mi = (Xi, Yi, Zi, 1)T in newly added images, the equation could be derived in Formula (13):

[
0T

−MT
i viMT

i
MT

i 0T
−uiMT

i

]
Pi1
Pi2
Pi3

 = →

0 (13)

The projection matrix has 11 degrees of freedom (DOF). The projection matrix of the nth images
could be obtained using the projections of six reconstructed 3D points on the new image. When more
than six points satisfy this requirement, RANSAC could be helpful for a more accurate projection matrix.
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3.4. Dense Reconstruction

The sparse point cloud is only useful for regular objects with obvious features, but fails to present
the surface information of the object well. Therefore, the complex scenarios need a denser point cloud,
for example, rock engineering. The patched-based multi-view stereo (PMVS) algorithm [34] could
reconstruct high-precision models with rich surface details for scenes with unclear texture, limited
point view, large curvature, and so on.

Patch is a rectangle of a local tangent plane that approximates the object’s surface. V(p) is
defined as the image set of containing all visible patches. R(p) is the patches set of reference images,
R(p) ∈ V(p). The discrepancy function could be defined as Formula (14):

g(p) =
1∣∣∣V(p) −R(p)

∣∣∣ ∑
I∈(V(p)−R(p))

h(p, I, R(p)) (14)

where, V(p)−R(p) means patches of V(p) that remove R(p), and h(p, I1, I2) is the grayscale consistency
function of I and R(p). The steps of the solution are as follows [35,36]:

(1) Divide patch p into smaller squares, u× u.
(2) Calculate the difference value of patch p on the image Ii to obtain the pixel gray q(p, Ii), through

bilinear interpolation.
(3) Subtract the normalized cross correlation (NCC) value of q(p,I1) and q(p,I1) from 1.
(4) Initialize and optimize the relevant parameters.

The continuity of the patches is a major disadvantage. To solve this problem, the image Ii is
divided into many β1 ×β1 pixel pieces Ci(x, y), where i is the ith image and (x, y) is the subscript of
an image piece. For a patch p and the corresponding set V(p), project p onto the image of V(p) to
obtain the image piece corresponding to patch p. Set Qi(x, y) records all the patches projected onto the
image pieces.

4. Experiment Preparation

A series of experiments for 3D reconstruction based on images from different angles and directions
using the A-SfM algorithm were performed.

Three experiments were designed. Experiment 1 was used to evaluate the results of 3D
reconstruction with proposed A-SfM. The second one was employed to test the accuracy of A-SfM.
Experiment 3 was conducted to detect the deformation of rock mass surface.

Experiment 1. Two groups of images were acquired: (1) the rock in the indoor environment without interference;
(2) the surface of the soil outdoors. The number of the images in the two groups was 32 and 16, respectively.
The iPhone XR camera is selected to acquire images in a counterclockwise direction around the objects, with the
distance between the object and camera of 2 m. The examples of image samples are shown in Figure 5.

Experiment 2. A slope model was built in a laboratory environment to explore the accuracy of the A-SfM
algorithm, as shown in Figure 6. The dimension of the model is 35 cm in length, 35.5 cm in width, 12 cm in
height, and 50 in gradient. The component mainly consists of the sand, low-grade gravel, and a small amount of
mudstone. Mark points were used for binocular vision monitoring to serve as reference data for A-SfM analysis.
Three groups of tests were designed to distinguish different mark points and different photograph distances:

Group 1: The photograph distance was 2 m, and the mark points were common.
Group 2: The photograph distance was 1 m, and the mark points were common.
Group 3: The photograph distance was 1 m, and the mark points were concentric circles.
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Experiment 3. The surface deformation of rock mass was quantified based on the 3D reconstruction results of
the surface before and after the disturbance. Geodetic control points were applied to compare the two results in
the same coordinate system (Figure 7). The procedure was as follows:

(1) The geodetic control points were measured and recorded with the total station electronic tachometer.
(2) The distance between the wall and each image capture station was measured using a laser range finder,

and the locations were marked.
(3) Eight images before the disturbance were captured sequentially.
(4) Four sandstone samples of 50 mm in diameter and 50 mm in height were used to simulate the uplift

and deformation. The samples were placed lightly on the model to avoid disturbing the rock mass at
other locations.

(5) Eight images after the disturbance were captured sequentially.
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Figure 8. The 3D reconstruction results using the A-SfM (structure from motion) algorithm in
Experiment 1.

5.1.2. Results for Experiment 2

The results of binocular vision measurement were served as reference data for accurate analysis
of the reconstructions. Studies related to binocular vision measurements have been completed and
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published [5,37]. The measurement results, as shown in Tables 4–6, were obtained through camera
calibration, pixel coordinate positioning, and space coordinate calculation.

Table 4. Binocular vision measurements from group 1.

Frames
Image Coordinates
for the Left Camera

Image Coordinates
for the Right Camera Space Coordinates Physical

Length
(mm)u v u v x y z

1 319.264 194.168 253.782 183.666 72.4124 −28.508 2129.84 92.69611
2 389.689 194.786 323.589 181.813 165.042 −28.4272 2126.33 101.072
3 455.172 208.376 387.218 194.786 244.194 −9.80191 2066.3 98.59255
4 387.836 231.234 319.882 217.643 155.528 18.482 2033.76 99.2226
5 319.882 242.353 251.311 230.616 68.3561 32.1841 1988.39 153.9743

Table 5. Binocular vision measurements from group 2.

Frames
Image Coordinates
for the Left Camera

Image Coordinates
for the Right Camera Space Coordinates Physical

Length
(mm)u v u v x y z

1 382.276 223.82 296.407 213.936 36.4941 39.9201 1470.81 117.3779
2 304.438 259.651 215.481 249.149 33.6499 88.4536 1377.29 105.402
3 303.82 320.191 210.539 307.836 178.935 87.0295 1392.37 146.0726
4 471.851 317.102 377.952 302.276 175.729 41.2305 1482.06 100.7577
5 455.79 260.268 366.214 247.913 113.495 8.54642 1553.66 100.3388

Table 6. Binocular vision measurements from group 3.

Frames
Image Coordinates
for the Left Camera

Image Coordinates
for the Right Camera Space Coordinates Physical

Legth
(mm)u v u v x y z

1 272.315 270.77 174.708 260.886 6.48721 44.9195 1320.11 160.9808
2 455.172 245.442 358.183 231.851 160.852 24.7255 1361.08 110.4423
3 458.261 311.542 355.712 297.952 151.693 74.9193 1263.13 152.3925
4 285.905 356.639 180.886 344.902 113.495 8.54642 1553.66 134.0647

Two methods, SfM and A-SfM, were used to establish the 3-D reconstruction, and the results of
A-SfM are shown in Figure 9.
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Figure 9. Results of A-SfM reconstruction in Experiment 2: (a) the photograph distance was 2 m,
and the mark points were common; (b) the photograph distance was 1 m, and the mark points were
common; (c) the photograph distance was 1 m, and the mark points were concentric.
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5.1.3. Results for Experiment 3

The aforementioned images captured before and after the disturbance were then computerized
and reconstructions using A-SfM before and after the disturbance were established, as shown in
Figure 10.
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5.2. Reconstruction Results Analysis

The results of Experiment 1 showed that two groups of images were reconstructed well, and the
reconstructed models were almost identical to the real objects. However, there were still some
disturbance point clouds that affect the modeling. The disturbance point clouds were predominated
by the environmental features of shadows and interferers, which were apparent in multiple images.
This affected the eigenmatrix of the object and reconstruction of the contour. Besides, the first image
took about 80 times longer than others in feature extraction because it needed more time in selecting
the initial relative features. It could be inferred that the results of reconstruction using the A-SfM
performed well in an environment with prominent characteristics and strong contrast, for example,
the rock engineer environment studied in this paper. This gives rise to the application value of
rock mass surface detection. Even so, the model accuracy needed further discussion, which is why
Experiment 2 was designed.

In Experiment 2, to evaluate the accuracy of the A-SfM algorithm, the results of reconstructions
should be compared with those of binocular vision measurements. However, the distance calculated
by the reconstructing results is the relative distance instead of the actual measured distance in the
space coordinate system. The scaling factor is introduced to map the relative distances into physical
distances with Formula (15) [38]:

S =
dknown
Iknown

(15)

where S is the scaling factor, dknown is the physical length of an object, and Iknown is the pixel length of
the object on the imaging plane. Table 7 lists the calculated scaling factor.

Table 7. The scaling factor for each group. Sfm, structure from motion.

Groups Physical
Length (mm)

Pixel Length
(pixels) Scaling Factor

SFM A-SFM SFM A-SFM

Experiment 1 40 0.203489 0.202819 196.5708 197.2201
Experiment 2 40 0.16536 0.165183 241.8965 242.1563
Experiment 3 50 1.04286 1.039834 47.94507 48.0846

According to the scaling factor and the pixel length, the physical length between the mark
points in the two reconstructions, one for SfM and the other for A-SfM, was calculated, as shown in
Tables 8 and 9.
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Table 8. Pixel length and physical length between the mark points in reconstruction using SfM.

No.

Group 1 Group 2 Group 3

Pixel
Length
(pixels)

Physical
Length
(mm)

Pixel
Length
(pixels)

Physical
Length
(mm)

Pixel
Length
(pixels)

Physical
Length
(mm)

1 0.394639 77.5745126 0.435196 105.2724 3.15192 151.119
2 0.444712 87.4174034 0.391893 94.79753 2.1669 103.8922
3 0.43411 85.3333595 0.552053 133.5397 3.04844 146.1577
4 0.428673 84.264604 0.36491 88.27044 2.60767 125.0249
5 0.709373 139.442034 0.367464 88.88824 - -

Table 9. Pixel length and physical length between the mark points in reconstruction using A-SfM.

No.

Group 1 Group 2 Group 3

Pixel
Length
(pixels)

Physical
Length
(mm)

Pixel
Length
(pixels)

Pixel
Length
(pixels)

Physical
Length
(mm)

Pixel
Length
(pixels)

1 0.410428 80.94468 0.43693 105.8052 3.18461 153.1307
2 0.460962 90.91099 0.39595 95.8819 2.175576 104.6117
3 0.446506 88.05996 0.565952 137.0488 3.057618 147.0243
4 0.450515 88.85052 0.374568 90.70391 2.605403 125.2798
5 0.720824 142.161 0.373274 90.39073 - -

Table 10 shows the results of comparing the two reconstructions, using SfM and A-SfM, with the
binocular vision measurements. Comparing with the results of reconstructions (both SfM and A-SfM)
with those of binocular vision measurement, the 3D reconstruction performance of SfM before and
after the improvement was verified. Moreover, the improved SfM algorithm significantly promoted
the measurement accuracy, which effectively reflects the real situation (Figure 11). The measurement
accuracy was improved from 2.7 mm to 4.58 mm in group 1; from 0.53 mm to 3.51 mm in group 2;
and from 0.25 mm to 2.01 mm in group 3.

Table 10. Results of comparing the two reconstructions with the binocular vision measurements.

Groups Binocular
Vision SFM A-SFM Error 1 Error 2 Accuracy

Improvement

Experiment 1

92.69611 77.57451 80.94468 15.1216 11.75143 3.370167
101.072 87.4174 90.91099 13.65456 10.16098 3.493582

98.59255 85.33336 88.05996 13.25919 10.53259 2.726596
99.2226 84.2646 88.85052 14.958 10.37208 4.585919

153.9743 139.442 142.161 14.53227 11.81327 2.719006

Experiment 2

117.3779 105.2724 105.8052 12.10551 11.57264 0.532871
105.402 94.79753 95.8819 10.60446 9.520093 1.084369

146.0726 133.5397 137.0488 12.5329 9.023786 3.50911
100.7577 88.27044 90.70391 12.4873 10.05383 2.433472
100.3388 88.88824 90.39073 11.45058 9.94809 1.502491

Experiment 3

160.9808 151.119 153.1307 9.86179 7.85013 2.01166
110.4423 103.8922 104.6117 6.550145 5.830614 0.719531
152.3925 146.1577 147.0243 6.234797 5.368136 0.866661
134.0647 125.0249 125.2798 9.039812 8.784983 0.254829
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5.3. Rock Mass Surface Deformation Analysis

Different from most of the traditional measuring methods of single point deformation detection,
the 3D point cloud could qualify the variation of the whole monitoring region. The surface deformation
of rock mass could be quantified with the deformation detection by the 3D reconstruction results of
the surface before and after the disturbance. This proposed procedure included point cloud data
cleaning, geodetic control point registration, iterative closest point (ICP) registration, Euclidean distance
calculation between registration, and reference point clouds.

Point cloud data cleaning. As discussed in Experiment 1, numerous invalid points and
outliers would be generated when 3D point cloud data reconstructed by A-SfM were imported
into CloudCompare. Because only the detected deformation area should be preserved, the point cloud
data could first be preprocessed through the Bounding Box algorithm. Then, outlier data could be
eliminated using the statistical analysis filter. Finally, the invalid points could be cut and divided
manually. Figure 12 shows the results before and after the point cloud data cleaning, shown here for
the reconstruction before the disturbed data 1 and after the disturbed data 2.

Geodetic control point registration. To make the 3D point clouds before and after the disturbance
in the same world coordinates system, the geodetic control point in the reconstructions was registered
after the point cloud data cleaning. This proposed procedure took the cloud data before the disturbance
as the reference point and the cloud data after the disturbance as the matching point. Figure 13 shows
the results of geodetic control point registration, where (a) represents the position and distribution
of data before the geodetic control point registration, and (b) is the data after the geodetic control
point registration.

Iterative closest point (ICP) registration. There were some errors because the control points were
manually selected during the geodetic control point registration. Therefore, it was necessary to use
ICP for precise registration. The cloud data before the disturbance were defined as the reference point,
and the cloud data after the disturbance were defined as the matching point. Figure 14 presents the
results after ICP registration.
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Rock mass surface deformation detection. The Euclidean distance between points and neighbor
points was calculated using the precise registration data. The deformation ranged from 8.97 × 10−5 m
to 0.61 × 10−1 m, and the color scale is shown in Figure 15.
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Figure 15. Rock mass surface deformation detection.

Results analysis. The uplift to simulate the deformation was rock samples with a diameter of
50 mm. However, the lower part of the rock was slightly inserted into the rock mass model and the
upper part was placed on the surface of the model. It can be seen in Figure 15 that the smallest surface
deformation in the undisturbed zones is 0.094 mm, whereas the maximum deformation in disturbed
zones is 48.43 mm. The results presented were generally with the actual situation.

6. Conclusions

Three-dimensional reconstruction of rock mass surface is a crucial step in surface deformation
detection, which could assist in understanding rock mass progressive failure processes. On the basis of
the SfM method, an A-SfM method was proposed for rock engineering applications so as to acquire the
3D reconstruction that is suitable for the characteristics of rock mass surface. The AKAZE algorithm is
used to improve the structure flow of SfM so as to extract the features of the rock mass more easily
at close range. Three experiments verified the ability of the proposed A-SfM method. The specific
conclusions can be drawn as follows:

(1) The results of 3D reconstruction in Experiment 1 using the proposed A-SfM showed the
reconstructed models were almost identical to the real objects.

(2) In Experiment 2, the measurement accuracy of the A-SfM improves compared with the
measurement accuracy of the SfM.

(3) Experiment 3 shows that the results detected were generally consistent with the actual situation.
The deformation detection by the 3D reconstruction results of the surface before and after the
disturbance confirmed that the proposed method effectively quantified the surface deformation
of the rock mass.
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