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Abstract: Large-scale laser gyroscopes have found important applications in Earth sciences due to
their self-sufficient property of measurement of the Earth’s rotation without any external references.
In order to extend the relative rotation measurement accuracy to a better level so that it can be
used for the determination of the Earth orientation parameters (EOP), we investigate the limitations
in a passive resonant laser gyroscope (PRG) developed at Huazhong University of Science and
Technology (HUST) to pave the way for future development. We identify the noise sources from the
derived noise transfer function of the PRG. In the frequency range below 10−2 Hz, the contribution of
free-spectral-range (FSR) variation is the dominant limitation, which comes from the drift of the ring
cavity length. In the 10−2 to 103 Hz frequency range, the limitation is due to the noises of the frequency
discrimination system, which mainly comes from the residual amplitude modulation (RAM) in the
frequency range below 2 Hz. In addition, the noise contributed by the Mach–Zehnder-type beam
combiner is also noticeable in the 0.01 to 2 Hz frequency range. Finally, possible schemes for future
improvement are also discussed.
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1. Introduction

Optical interferometers have important applications in the field of precision measurement.
Large-scale interferometers have much better sensitivity and resolution; therefore, many ground-breaking
works benefiting from their high sensitivities have been reported. For example, large-scale Michelson
interferometers, such as LIGO and VIRGO, make it possible to detect extremely weak gravitational
wave signals [1–3]. In the meantime, large-scale Sagnac interferometers play a vital role in measuring
the rotation of the Earth [4].

The Sagnac effect is useful in the detention of rotational signals. Instruments based on the Sagnac
effect have many applications in different fields [4–16]. In particular, large-scale optical gyroscopes
find applications in inertial navigation, geophysical study, seismic isolation, platform stabilization,
etc. [4,6–9]. Optical gyroscopes utilize the non-reciprocal phenomenon inside a ring cavity introduced
by the rotation of the cavity frame based on the Sagnac effect, which means two beams would
experience an unequal round-trip travel time in opposite directions inside an identical light path of a
rotating ring interferometer. The interferometric gyroscopes convert the travel time difference into
the accumulated phase difference of the opposite beams, while the resonant gyroscopes measure the
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frequency difference by utilizing a ring cavity instead. The state-of-the-art interferometric fiber optical
gyroscopes can reach a sensitivity of 10−9 rad/s/

√
Hz [10,11]. Recently, micro-optical gyroscopes

made of whispering gallery mode resonators have attracted much attention and are believed to have
great potential to be applied to both industrial and navigational fields [12,13]. On the other hand,
a branch of resonant laser gyroscopes has evolved from compact aircraft inertial sensors back into
large-scale and complex laboratory setups for applications in the geosciences and fundamental physics
in recent decades, with sensitivity as high as 10−11 rad/s/

√
Hz [4,7,14–16].

The detection signal for a horizontally placed geodetic laser gyroscope at some co-latitude θ on
the Earth is proportional to the rotation rate and can be expressed as [4]:

fs = S ·~n · ~Ω = KsΩ =
4A
λP

Ω cos θ, (1)

where fs is the output frequency of the sensor (Sagnac frequency), S = 4A/λP is the geometrical
scale factor, Ks =

4A
λP cos θ is the orientated scale factor, A is the area enclosed by the light path of the

gyroscope, P is the perimeter of the ring cavity, λ is the laser wavelength, Ω is the Earth rotation rate,
and θ is the north-south angle of projection. The cos θ term indicates that the sensor is only sensitive
to the projection of the vector of rotation to the nominal normal direction of the cavity enclosed
area. The sensitivity and resolution of the sensor are proportional to its dimensions. Large-scale laser
gyroscopes have found important applications in the geosciences due to their extremely high sensitivity.

One challenging application of these large-scale sensors is in the field of fundamental physics
research. For example, detecting the Lense–Thirring effect in a terrestrial laboratory is one of the
ambitious goals [14]. The Lense–Thirring effect induces a very small DC signal to the Earth rotation
vector, with a magnitude of a 10−10 Earth rotation rate (10−10ΩE) [4,17,18]. Therefore, in order to
perform this test, the relative Earth rotation rate measurement accuracy has to reach the level of
10−10. More progress is required even if one can relax the strict requirements by means of a multi-axis
large-scale gyroscope design [17]. The establishment of the absolute accuracy of the sensor should be
given a high priority [19].

Ring laser technology has kick-started the field of rotational seismology, where ultimately a
rotation measurement resolution of 10−14−1 rad/s and a frequency bandwidth of 3 mHz–50 Hz
are demanded [4,20]. Large-scale laser gyroscopes are the only ground rotation sensors that meet
these demands of high resolution, wide dynamic range, and broad bandwidth at the same time.
Because these instruments are only sensitive to rotational motions, additional information on ground
motions can be obtained through this extra-dimensional metrology. They are opening a new
window for rotational seismology by filling the gap of lacking high-performance rotation detection
instruments [21].

Our aim is to apply it to the field of geodesy. The celestial and the terrestrial reference frames
are tied together by the exact knowledge of Earth’s orientation and Earth’s rotation. Inertial sensing
gyroscopes are directly linked to the Earth rotation vector as shown in Equation (1). The large ring
laser “G” located at the Geodetic Observatory Wettzell started to record the polar motion in 2010,
and the results are consistent with the data provided by the International Earth Rotation and Reference
Systems Service (IERS), which is obtained from the space geodetic techniques [4,22,23]. The full Earth
rotation vector is already provided by a ring laser array and it is also getting close to the detection of the
length of day (LoD) fluctuations by using this type of inertial sensing technique [24,25]. Recording the
universal time (UT1) data in hourly temporal resolution would be a major supplement to the space
geodetic observations that are used to determine the Earth orientation parameters (EOP) [26].

One thing that is common for these applications is the demand for the high sensitivity of the
gyroscopes and long-term stability. The large-scale laser gyroscope has proven to be an effective
solution to push the sensitivity forward by increasing the size of the sensor; however, a larger scale
factor may easily compromise the stability. There are two types of large-scale laser gyroscopes:
ring laser gyroscopes (RLGs) and passive resonant laser gyroscopes (PRGs). Although the techniques
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are slightly different, they both share the same significant potential to be applied to the Earth sciences.
The large-scale RLGs have a long history and have gone through a series of systematic investigations.
Therefore, the technical noise sources and the limitations through the systematic biases of the RLGs are
well understood, such as back-scatter coupling, scale factor fluctuation, orientation fluctuations, etc.
The fundamental noise floor of the RLGs is shot-noise, which comes from the spontaneous emission
of the gain medium and is inversely proportional to the square root of the extracted laser power.
For the large-scale RLGs, the free-spectral-ranges (FSRs) are too small in comparison to the gain
bandwidth of He-Ne, so to avoid mode competitions inside the RLGs and to keep the instruments
running stably, the single longitudinal mode laser output power is usually limited to some nano-watts,
which increases the shot-noise levels [4].

The fundamental noise of the PRGs is similar, but is limited by the injection laser power instead,
which indicates that the PRGs potentially can have a lower fundamental shot-noise floor with higher
laser power [27]. Successful examples have been carried out in gravitational wave detection by using
a passive cavity-enhanced sensing technology [1]. Another advantage of the PRG over the RLG is
that it deals with an empty optical ring cavity, rather than an optical cavity filled with a gain medium,
so in the absence of non-linear laser dynamics, it is easier to estimate the absolute accuracy in EOP
measurements. However, the performance of the PRGs is still below that of the RLGs at this time,
which suggests that there are still other obstacles to be overcome in the development of the PRGs [7,15].
Therefore, it is desirable to take a closer look at these instruments and to search for the limitations.

In this paper, we make a full investigation of the noise sources in a PRG with a size of 1 m× 1 m
developed at Huazhong University of Science and Technology (HUST) [15]. We find that the sensor
noise in a PRG is dominated by the FSR drift and by laser frequency locking noise. Other noise sources,
such as phase noise in the frequency beating measurement and frequency noise induced by the diode
laser and frequency shifters are also taken into consideration. In Section 2, we review the experimental
setup of our PRG. In Section 3, we derive the noise transfer function from a typical feedback control
model and identify the noise sources. We show that the noise may come from the free-running laser,
the frequency shifter, the frequency discrimination system, the cavity length fluctuation, and the servo
amplifier. In Section 4, we introduce the quantitative analysis of noise sources in the PRG, investigating
their contributions and showing that the contributions of the FSR and the frequency discrimination
system are the current dominant limitations. We further show that the scale factor fluctuation is not
a problem because of the self-compensation mechanism. In Section 5, we summarize and point out
directions to further improve the PRG technology.

2. Experimental Setup

The experimental setup is shown in Figure 1 [15]. The central part of our PRG is a 1 m× 1 m
square ring cavity, which is composed out of four super mirrors, which provide a quality factor of
5.3× 1011. The operating wavelength is 1064 nm. To increase the dimensional stability of the cavity,
the four mirrors are held in customized mirror mounts, which are fixed to a base plate that is made
of granite with a size of 1.8 m× 1.8 m× 0.25 m. The whole ring cavity including the light paths is
enclosed in a 10−6 Pa-level vacuum system that is rigidly anchored on the granite to avoid disturbances
from air flow. At each corner of the vacuum system, there are windows to allow laser beams to enter
and exit. The PRG sits on top of six steel legs and is located in a cave laboratory, which has low seismic
noise and small temperature fluctuations.

A 1064 nm diode laser is utilized as the injected light source. The output of the laser is split in
two and is injected into the clockwise (CW) and counter-clockwise (CCW) directions simultaneously.
We used the Pound–Drever–Hall (PDH) method to lock the beams to the cavity [28]. In the two
injection light paths, we used electro-optic modulators to produce phase-modulated laser beams.
The phase-modulated laser beam reflected from the coupling mirror allows the detection of the
frequency detuning between the laser and the cavity resonance after the demodulation process.
In order to obtain a tight locking of the laser to the ring cavity in the CCW direction, we implemented



Sensors 2020, 20, 5369 4 of 16

a two-branch feedback control loop of the diode laser frequency. The fast feedback branch is set by
controlling the driving current of the diode laser, while the slow feedback branch uses a piezo actuator
inside the laser head.

Ring cavity
RAM PD1

RAM PD2

PDH PD2

PDH PD1

LIA
VCO

APD

Servo
LIA

PD

Laser

∫

EOM2AOM2

∫

Ref.
Laser

Servo

EOM1

Figure 1. Experimental scheme of the PRG. AOM, acousto-optic modulator; EOM, electro-optic
modulator; RAM PD, photo-diode for residual amplitude modulation (RAM) detection; PDH PD,
photo-diode for PDH locking; LIA, lock-in amplifier; VCO, voltage controlled oscillator;
APD, avalanche photo-diode; Ref. Laser, an ultra-stable laser as a reference to diagnose the ring
cavity length fluctuation.

For the CW direction, we utilized an acousto-optic modulator (AOM) as a frequency shifter to
compensate the frequency detuning between the injected beam and the cavity resonance. The two
locking loops in the CCW and CW directions are named as the primary and the secondary loop,
respectively. There are two beams oscillating in the ring cavity after the two locking-loops are closed,
with each beam containing a small fraction of the amplitude of the other beam from the back-scatter
coupling, resulting in beating signals that can be observed on each of the output beams. In our case,
the driving frequency of the AOM is approximately 75 MHz to match one FSR of the square ring cavity.
In this way, the observed beating signals caused by back-scattered light can be shifted to 75 MHz,
which can be easily separated from the desired PDH signal in the frequency domain. Thus, the locking
perturbations caused by the back-scattered light can be significantly reduced. Behind the ring cavity,
the two leak-out beams are superimposed by a Mach–Zehnder-type beam combiner. The frequency
difference of these two beams is the sum of the Sagnac frequency and the FSR and is detected by an
avalanche photo-diode (APD).

3. Control Model

We used the PDH locking method to realize the frequency locking of the two injected laser beams
to the resonant peaks of the ring cavity in the PRG. Since the PDH system is a closed-loop locking
system, it is necessary to model the entire set of feedback loops and use the noise transfer function to
identify the noise sources to investigate their contributions. With that, we can understand the major
limitations of our PRG and find the indications for further improvement.

From the perspective of control theory, a typical block diagram of the feedback control loop
in a laser frequency stabilization system was given by T. Day et al. and shown in Figure 2 [29,30].
We denote the noise contribution of the laser source as Sν,laser, the noise contribution of the frequency
discrimination system as Sν,disc, and the noise contribution of the servo feedback system as Sν,servo.
It should be noted that the noise contribution of the actuator is indistinguishable from the noise of the
laser itself. Therefore, it is not listed separately here.
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Σ
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Sν,laser

νl
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Figure 2. Block diagram of a laser frequency stabilization system. Sν,laser, frequency noise of the
free-running laser; νl , laser output frequency; Sν,disc, noise introduced by the frequency discrimination
system; Sν,servo, noise introduced by the servo amplifier [29,30].

The error signal is obtained through the frequency discrimination system, where a conversion
coefficient called the frequency discrimination slope is denoted as D in units of V/Hz. The conversion
gain of the servo amplifier is denoted as G in units of V/V. The output of the servo amplifier acts
on the actuator of the laser to correct the frequency detuning between the laser and the ring cavity
resonance. The conversion factor of the actuator is denoted as K in units of Hz/V. In the closed-loop
condition, the total closed-loop frequency noise power spectral density can be expressed as [29,30]:

S2
ν,cl =

S2
ν,laser + K2S2

ν,servo + K2G2S2
ν,disc

|1 + KGD|2
, (2)

where the units of S2
ν,cl are Hz2/Hz. It can be seen from Equation (2) that the closed-loop frequency

noise depends on the open-loop gain of the system. For a reliable locking, the condition of KGD � 1
should be met. Thus, Equation (2) can be simplified to:

Sν,cl ≈
Sν,disc

D
. (3)

Equation (3) shows that the closed-loop frequency noise is dominated by the noise of the frequency
discrimination system, which includes laser shot-noise, the electronic noise of the photo-detector,
the frequency noise of the modulation signal source, the 1/ f noise of the electronic amplifier, and the
noise from residual amplitude modulation (RAM). Obviously, the larger the frequency discrimination
slope D is, the smaller the closed-loop frequency noise is.

For our PRG, there are two locking loops to lock the injection laser frequencies to the same cavity
in the CCW and CW directions, respectively; thus, the two laser beams see the same fluctuation of
the cavity. In addition, the two laser beams are from the same source, and most of the laser frequency
noise cancels out as well. Therefore, in an ideal case, the contribution of the laser frequency noise
and the cavity length fluctuation noise to the gyroscope output would be significantly reduced due to
the common-mode rejection mechanism. In reality, we should take these noise sources into account
because of the finite common-mode rejection ratio. The block diagram of the control model in our
PRG is depicted in Figure 3, where a second loop is introduced. It consists of two PDH control loops,
where the CCW loop (primary loop) locks the laser frequency to the ring cavity at a frequency of νout,1.
Suppose the free-running laser frequency is ν f r, then the closed-loop laser frequency of the primary
loop is given by:

νout,1 = ν f r − K1
{

G1 [D1(νout,1 − νccw) + edisc,1] + eservo,1
}
+ fAOM1, (4)

where K1 and D1 are the conversion coefficient of the actuator and the discriminator slope in the
primary loop, νccw is the resonant eigen-frequency of the ring cavity in the CCW direction, fAOM1 is
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the driving frequency of AOM1, and edisc,1 and eservo,1 are the electronic noises in the discriminator
and the servo amplifier of the primary loop. Equation (4) can be expressed as:

νout,1 − νccw =
(ν f r + fAOM1 − νccw)− K1G1edisc,1 − K1eservo,1

1 + K1G1D1
. (5)

Similarly, we derive the closed-loop laser frequency of the secondary loop as:

νout,2 − νcw =
(νout,1 − fAOM1 + fAOM2 − νcw)− K2G2edisc,2 − K2eservo,2

1 + K2G2D2
, (6)

where νout,2 is the laser frequency locked to the cavity in the CW direction, K2 and D2 the conversion
coefficient of the actuator and the discriminator slope in the secondary loop, νcw the resonant
eigen-frequency of the ring cavity in the CW direction, fAOM2 the driving frequency of AOM2,
and edisc,2 and eservo,2 the electronic noises in the discriminator and the servo amplifier of the secondary
loop. We subtract Equation (5) from Equation (6) to obtain the expression of the frequency difference
between the two laser beams:

νout,2 − νout,1 = νcw − νccw +
(νout,1 − fAOM1 + fAOM2 − νcw)− K2G2edisc,2 − K2eservo,2

1 + K2G2D2

−
(ν f r + fAOM1 − νccw)− K1G1edisc,1 − K1eservo,1

1 + K1G1D1
.

(7)

Note that νout,2− νout,1 represents the beat note of the two laser beams after locking, and νcw− νccw

is the resonant eigen-frequency difference in the CW and CCW directions and is equal to the Sagnac
frequency. Using Equation (7), we can obtain the noise in the beat note:

S2
ν2−ν1

≈
K2

2G2
2 D2

2S2
ν,sagnac

|1 + K2G2D2|2
+

S2
ν,AOM1 + S2

ν,AOM2

|K2G2D2|2
+

S2
ν,AOM1 + S2

laser,1 + S2
ν,cavity

|K1G1D1|2

+
S2

disc,2

D2
2

+
S2

disc,1

D2
1

+
S2

servo,2

G2
2 D2

2
+

S2
servo,1

G2
1 D2

1
,

(8)

where S2
ν2−ν1

is the power spectral density of the beat note in units of Hz2/Hz. The first term S2
ν,sagnac

stands for the noise power spectral density of the Sagnac frequency. The noise of a free-running laser
is S2

laser,1; the noise introduced by the AOM(i) is S2
ν,AOM(i); the noise of the frequency discrimination

system is S2
disc,(i); the equivalent frequency noise caused by cavity fluctuation is S2

ν,cavity; and the

noise of the servo amplifier is S2
servo,(i). We also use the approximation of 1 + KiGiDi ≈ KiGiDi

except for the first term, which is essential to clarify the importance of high loop gain for real Sagnac
frequency measurement.

It is worth noting that Equation (8) is only suitable for a common-mode operation of a PRG,
which means that the two beams are locked to the same longitudinal mode. In our setup, the PRG is
running on two different longitudinal mode indices. When an optical cavity is excited by an external
laser source, the cavity houses an integer number m of wavelengths, such that P = mλ, where m is
the longitudinal mode index and satisfies m = νlaser/FSR. Then, the noise in the beat note of the two
oscillating beams can be modified as:

S2
ν2−ν1

≈
K2

2G2
2 D2

2S2
ν,sagnac

|1 + K2G2D2|2
+

S2
ν,AOM2

|K2G2D2|2
+

S2
laser,1 + S2

ν,cavity

|K1G1D1|2
+

S2
ν,cavity

m2

+
S2

disc,2

D2
2

+
S2

disc,1

D2
1

+
S2

servo,2

G2
2 D2

2
+

S2
servo,1

G2
1 D2

1
.

(9)



Sensors 2020, 20, 5369 7 of 16

Actuator

K1 (Hz/V)
Laser

Servo

G1 (V/V)

Discriminator

D1 (V/Hz)

Σ

Σ

Σ

Discriminator

D2 (V/Hz)

Servo

G2 (V/V)

Actuator

K2 (Hz/V)

Σ

Σ
Frequency

Shifter 2

Sservo,2

Frequency

Shifter 1

Σ

Σ

Sdisc,2

Sν,AOM2

Sservo,1 Sν,AOM1

Slaser,1
Sdisc,1

νout,2

νout,1

Figure 3. Block diagram of a PRG system.

4. Noise Analysis

Using the model in control theory, we derive the noise transfer function in a PRG, as shown in
Equations (8) and (9). We identify the noise sources from the noise transfer function as: discriminator
noise, cavity length fluctuation noise, laser frequency noise, and the servo amplifier noise.
However, there are other noise sources in the first term S2

ν,sagnac that are not clear from Equations (8)
and (9). We summarize the noise sources in S2

ν,sagnac as: beam combiner noise and the scale factor
fluctuation noise, which are partly evident in Equation (1). In the following, we discuss the quantitative
analysis of noise sources in the PRG.

To establish the contribution from every part in the noise expression, we have to firstly measure
the frequency discrimination slope Di, the conversion gain of the servo amplifier Gi, and the conversion
factor of the actuator Ki. The frequency discrimination slope Di is the coefficient that converts the
frequency detuning between the laser and the cavity resonant peak into voltage. Actually, Di has a
dependence on frequency ω and can be given by [30]:

D(ω) =
D0

1 + 2jω/(2πνc)
, (10)

where νc is the linewidth of the ring cavity and D0 is the flat response coefficient within the cavity
linewidth. We can obtain the cavity linewidth through a cavity ring-down time measurement.
To measure D0, we use a modulation scheme. As shown in Figure 4a, we add a modulation signal to
the error signal in the secondary loop, while the two feedback loops maintain locking. Thus, there is a
corresponding signal in response to the laser frequency of the secondary loop. We can use an APD
behind the cavity to observe it by the beating signal of the two beams, where the beam of the primary
loop is set as the reference. If the amplitude of the modulation signal Vm is small, then the laser
frequency is completely within the cavity linewidth during the entire process, which can be considered
as a linear response. We use different amplitudes of square wave modulation signals and record the
corresponding responses as shown in Figure 4b. The coefficient D0 then can be obtained by a linear
fitting, as shown in Figure 4c. To measure the coefficient D0 in the primary loop, we only need to
switch over the CCW and CW loop. Here, the value of D0 = 1.28± 0.02 mV/Hz is identical for both
loops within experimental uncertainty.

We obtain the gain of the servo amplifier Gi with the help of a network analyzer. In order
to measure the conversion factor of the actuator K, a modulation method similar as the one
used in the measurement of Di is implemented. When a modulation signal is fed to the
laser driver, we record the frequency response of the laser by beating the diode laser with an
ultra-stable reference laser [31,32]. Since there are two actuators inside the laser head, we measure



Sensors 2020, 20, 5369 8 of 16

the coefficients independently for the current and PZT. The measured conversion factor of the
laser current is Kc = (1.510± 0.001) × 108 Hz/V, and the conversion coefficient of the PZT is
Kp = (3.997± 0.001)× 109 Hz/V. The actuator in the secondary loop is an AOM driving signal
generator, and the measured conversion coefficient is K2 = (1.955± 0.001)× 104 Hz/V. The total
loop gain of the primary and secondary loop is summarized in Figure 5, where the predicted curves
are calculated by the poles-zeros settings of the proportional-integral-derivative (PID) regulators.
The servo regulator behaves as a limited integrator when the current feedback is activated in the
primary loop only and behaves as an unlimited integrator when the PZT feedback loop is added as
well. The loop gain is about 118 dB and 169 dB at 1 Hz before and after the double-branch feedback
loop is switched on. As for the secondary loop, it has only one branch and behaves as a limited
integrator with a gain of 55 dB in the frequency band below 1 Hz. The predicted gain values are used
to calculate the suppression ratios of the cavity length fluctuation and the laser frequency noise.

Ring cavity
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Figure 4. Modulation measurement of the discriminator slope. (a) The experimental setup;
a modulation signal is fed into the PDH error signal of the secondary loop, and a corresponding
signal appears in the output laser frequency. (b) Responses under different modulation amplitudes.
(c) The measured data and a linear fitting of the slope.

We obtain the rotation detection performance of the PRG by analyzing the beat note detected
by the APD behind the ring cavity, which is depicted in Figure 6, colored in blue. In the following,
we describe the noise contributions in the system in detail, such as the discriminator noise, the cavity
length fluctuation, the laser frequency noise, the beam combiner noise, and the scale factor fluctuation,
which are mentioned in Section 3.
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10-3 10-2 10-1 100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Orientation fluctuation

FS MZI

Discriminator noise

AOM-introduced noise
Laser frequency noise

FSR contribution

Fr
eq

ue
nc

y 
no

is
e 

(H
z/

Hz
1/

2 )

Frequency (Hz)

Gyro performance

Cavity length fluctuation

Shot noise

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Eq
ui

va
le

nt
 ro

ta
tio

na
l n

oi
se

 (
ra

d/
s/

Hz
1/

2 )

Figure 6. The measured performance of the PRG and the evaluated noise contributions. Blue line,
the performance of the PRG; red solid line, the noise contribution of the discrimination system;
dark yellow line, frequency noise of the free-space MZ interferometer (FS MZI); pink line,
noise contribution of the FSR; green line, frequency noise introduced by AOM; orange line, frequency
noise of the free-running laser; dark cyan, noise contribution of the orientation; black line, contribution
of the residual cavity length fluctuation; red dashed line, shot-noise limit of the PRG.

4.1. Discriminator Noise

The discriminator noise S2
disc,(i) is dominated by the shot-noise, the electronic noise of the

photo-detector, and the noise from the RAM. We can measure S2
disc,(i) in an off-line mode at the

demodulation terminal, where the status of the instrument remains the same as it is in the closed-loop,
except for the case when the locking loops are open. As already mentioned, the contribution of the
discriminator noise has a frequency dependent discrimination slope Di, which is mainly determined
by the Q-factor of the cavity itself. The parameter Di is already measured; therefore, we can obtain the
total contribution of the discriminator noise, which is depicted in Figure 6, colored in red.

In the PDH locking systems, the modulation frequencies are set to 22 MHz and 28 MHz.
The amplitude noise of the laser in this frequency band can be ignored, and we should take the
shot-noise into account first. In the experiment, the incident light power P0 is 110.0 µW, and the
calculated shot-noise contribution κR

√
2hνP0 is about 3.4× 10−7 V/

√
Hz, taking into account the

conversion loss of the frequency mixer κ and the PD responsivity R [30]. Using the discrimination
slope parameter, the shot-noise contribution to the rotation sensitivity is 6.0× 10−10 rad/s/

√
Hz,
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which is the shot-noise limit of our PRG and is shown with the red dashed line in Figure 6.
However, the detection power of the laser beams is not high enough. For this reason, the electronic
noise of the frequency discrimination system cannot be neglected. We can directly measure
the total noise in the discrimination system contribution at the demodulation terminal, which is
(8.0 ± 0.4) × 10−7 V/

√
Hz. This indicates that the electronic noise is dominant in the frequency

discrimination system at a frequency range above 1 Hz. The noise introduced by the RAM is quite
common in a PDH system [33]. The RAM effect will ruin the stability of the locking zero-baseline,
thus affecting the stability of the Sagnac frequency and ultimately the performance of our PRG. The red
solid curve in Figure 6 shows that the noise caused by the RAM effect acts like a 1/ f noise between 0.01
and 1 Hz. It is clear that these noise sources in the discrimination system are the dominant limitations
in the PRG. This also suggests that in order to push the PRG to a better performance, the attendance to
the noise sources in the discrimination system has the highest priority.

4.2. Cavity Length Fluctuation

During the operation on different longitudinal mode indices, the cavity length fluctuations appear
in two types of noise contributions. The first one is the residual cavity length fluctuation noise due
to the finite primary loop gain. Assuming the loop gain is infinite over the entire frequency range,
then the laser frequency would perfectly follow the cavity fluctuations, once the primary servo loop is
closed. The secondary loop is only required to compensate the detuning between the laser frequency
and the cavity resonance in the CW direction introduced by the rotation of the Earth. Since the laser
beams used for the two servo loops are from one single diode laser, the cavity length fluctuation
is a common-mode noise and can be suppressed by the primary loop gain. In reality, the primary
loop gain cannot be infinite. Therefore, we express the the residual cavity length fluctuation noise
as S2

ν,cavity/(|K1G1D1|2) in units of Hz2/Hz, where S2
ν,cavity represents the equivalent frequency noise

introduced by the cavity length fluctuation.
The second contribution is caused by the change of the FSR [15], which depends on the

longitudinal mode index m and can be expressed as S2
ν,cavity/m2. We obtain the cavity length fluctuation

noise by beating the gyro laser with the ultra-stable laser as a reference when the primary servo loop is
closed [31]. Since the noise of the ultra-stable laser is negligible, the beat signal fluctuations represent
the variation in cavity length. We measure the primary loop gain K1G1D1, and the longitudinal mode
index m can be calculated as m = (3.7528± 0.0002)× 106, then the contributions of these two types
are both obtained, which are colored in pink and black in Figure 6, respectively. It can be seen that
the noise contributions of these two items in the frequency band above 10−2 Hz are not the main
limitations. However, in the low-frequency range below 10−2 Hz, the contribution of the FSR change
is in good agreement with the noise in the detected beat frequency. This is because the actual detected
beat frequency contains the composition of one FSR. Therefore, it is very important to remove the
contribution of the FSR. The residual cavity length fluctuation noise is not a limitation at this moment,
which benefits from the sufficient primary loop gain shown in Figure 5a. If we implement an active
stabilization scheme, like in [16,32,34], both of them can be suppressed significantly.

4.3. Laser Frequency Noise

There are two sources of laser frequency noise in our PRG: the first one is the free-running laser
frequency noise, and the other is the additional frequency noise introduced by the frequency-shifting
device. The free-running laser frequency noise is similar to the noise introduced by the cavity length
fluctuations and has a dependence on the primary loop gain K1G1D1. The residual frequency noise of
the free-running laser after the common-mode rejection can be given by S2

laser,1/(|K1G1D1|2). In the
secondary loop, there is a frequency shifter AOM2, which introduces frequency noise through the
driving signal source. The noise from AOM2 is suppressed by the ratio of the loop gain K2G2D2 of
the CW loop, which can be expressed as S2

ν,AOM2/(|K2G2D2|2). We can obtain the free-running laser
frequency noise by measuring the beat frequency of the free-running laser and the ultra-stable reference
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laser. The frequency noise above 2 Hz is measured with a phase noise analyzer, and the frequency noise
below 2 Hz is obtained from a frequency counter. The frequency noise of the driving signal source of
AOM2 can be directly measured by the phase noise analyzer and the frequency counter. The obtained
results are converted to the equivalent rotational noise as shown in Figure 6. The orange curve is the
contribution of the residual frequency noise of the laser, and the green curve is the contribution of the
additional laser frequency noise introduced by AOM2. It can be found that they are not the limitations
affecting the performance of the PRG, though they are above the shot-noise limit in some parts of
the frequency band. Since the loop gain of the secondary loop is only 55 dB in the frequency band
below 1 Hz, as shown in Figure 5b, a broader bandwidth of the locking loop and higher loop gains
are required to suppress the noise contributions further, which is essential to reach the shot-noise of
this instrument.

4.4. Beam Combiner Noise

The Sagnac frequency is obtained at one of the corners of the ring cavity, where a Mach–Zehnder
type beam combiner is used to make the two leak-out beams superimposed and an APD is used to
detect the beat signal. The noise sources here include shot-noise from the APD and environmental
disturbances in the beam path. The phase fluctuation caused by the shot-noise on the APD is given by:

Sφ =

√
hν0

Ptr
, (11)

then the frequency noise is:

S ftr = f Sφ = f

√
hν0

Ptr
, (12)

where S ftr is given in units of Hz/
√

Hz, f is the Fourier frequency, h is the Planck constant, ν0 is
the laser frequency, and Ptr is the transmitted laser power. In the experiment, the transmitted laser
power is 1.3 ± 0.1 µW, and the calculated contribution of the shot-noise to the rotation measurement
is about 8.1× 10−13 f rad/s/

√
Hz. The noise-equivalent-power of the APD is about 2.75 pW/

√
Hz,

and the sum of the two contributions is then 4.6× 10−12 f rad/s/
√

Hz. This is a kind of white phase
noise, which increases with the Fourier frequency. In the frequency band below 1 Hz, these two noise
contributions are negligible when compared to the other noise sources.

The two leak-out beams pass through different optical paths in the Mach–Zehnder beam
combiner. Therefore, the environmental disturbances cause different phase variations of the two beams,
thereby generating extra noise in the beat note. The length of the non-common beam path is about
75 cm. In order to measure the additional noise of this part, we built a similar Mach–Zehnder-type
demonstration optical apparatus in order to simulate the perturbation effect on the beat note. In this
experiment, a laser beam is divided in two, and an AOM is inserted in one of the beams as a frequency
shifter with a modulation frequency of 75 MHz. After the beams are combined, the beat note is
detected by an APD that is of the same type as the one used in the Sagnac frequency detection.
The result is shown in Figure 6, where the dark yellow curve shows the beat frequency noise of the
MZ interferometer. We find that in the higher frequency band of 5 Hz to 1 kHz, the performance is
mainly affected by vibration and acoustic noise in the laboratory, while in the lower frequency band
below 5 Hz, it is mainly affected by the air flow and the temperature fluctuation. The additional
noise of the beam combiner has a non-negligible impact on the PRG in the region of 0.01 to 2 Hz.
However, it is necessary for us to conduct further research and make some improvements, for example
by the implementation of a monolithic beam combiner and better environmental isolation.
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4.5. Scale Factor Fluctuation

The noise contribution of the scale factor fluctuation is contained in S2
ν,sagnac in Equations (8)

and (9). The laser gyroscope converts the measurement of rotation rates into a measurement of
frequency, where Ks =

4A
λP cos θ is the oriented scale factor in units of Hz/rad · s. It depends on the

laser wavelength λ, the enclosed area A, the perimeter P of the ring cavity, and the angle between the
gyroscope area normal vector and the Earth rotation axis θ. Taking the derivative on both sides of
Equation (1), we obtain:

δ fs

fs
=

δKs

Ks
+

δΩE
ΩE

. (13)

Equation (13) indicates that the relative stability of the Sagnac frequency depends on the stability
of the scale factor and the stability of the Earth rotation rate itself. In order to obtain EOPs from the
PRG, the measurement resolution should reach δΩE/ΩE = 10−10. Therefore, the required stability of
the scale factor should even exceed 10−10. Since the orientated scale factor Ks is a function of A, P, λ,
and θ, we assume that the perturbation of Ks is δKs and is given by:

δKs =
∂Ks

∂A
· δA +

∂Ks

∂λ
· δλ +

∂Ks

∂P
· δP +

∂Ks

∂θ
· δθ. (14)

Taking both sides of Equation (14) divided by Ks, we obtain:

δKs

Ks
=

δA
A
− δλ

λ
− δP

P
− δθ · tan θ. (15)

The last term is related to the angle θ, which was clearly described in previous articles [4,35].
To measure the contribution from the tilt, we use a tiltmeter with a nano-radian resolution to monitor
the orientation change of the gyroscope platform. The calculated noise contribution is shown in
Figure 6, colored in dark cyan as orientation fluctuation, and indicates that it is well below the
shot-noise limit. Next, we consider the geometrical scale factor S = 4A/(λP). It is clear that:

δS
S

=
δA
A
− δλ

λ
− δP

P
. (16)

Assuming an ideal case that the cavity is a perfect square cavity, then the area can be expressed as
A = P2/16. It is always true that the perimeter of the ring cavity is an integer multiple of the laser
wavelength when the laser satisfies the resonant conditions, which is P = mλ. Therefore, Equation (16)
is rewritten as:

δS
S

=
PδP/8
P2/16

− δP/m
P/m

− δP
P

= 0. (17)

Equation (17) shows that under ideal conditions, the perturbations of the area, perimeter, and laser
wavelength are canceled out. This requires the resonance to be maintained and the longitudinal mode
index m to remain the same. This assumption holds if the cavity is a perfect square and the laser
always resonates with the cavity, then S = 4A/(λP) = m/4, and the changes on the cavity length
and area are completely compensated by the accompanying change of the laser wavelength. That is,
as long as the longitudinal mode index m does not change, the geometrical scale factor S would always
remain the same in an ideal case, which is known as the self-compensation mechanism [20,35].

For a realistic situation, Reference [36] gave an excellent discussion about the geometrical stability
for a non-rigid body cavity, where they decomposed the cavity deformations into six degrees of
freedom (DOF): one diagonal common-mode stretching, one differential mode stretching, two shear
planar deformations, one diagonal tilt, and one out-of-plane tilt. The conclusion is that the geometrical
stability is affected by the diagonal common-mode stretching to the first order, while the other
five DOFs only affect to the second order. However, if we take the self-compensation mechanism
into account, the perturbations of the scale factor would depend on the diagonal common-mode
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stretching to the second order because the laser wavelength λ always changes with the perimeter P.
Therefore, the perturbations of the scale factor rely on all six DOF deformations to the second or higher
orders. Based on the measurement of the cavity length fluctuation in Section 4.2, we find that the
scale factor fluctuation is currently well below the shot-noise limit of our PRG, which is too low to be
depicted in Figure 6.

4.6. Torsional Signal Detection

We note that there are three distinct peaks near 20 Hz in the noise curve of our PRG colored
in blue in Figure 6. In order to determine whether the peaks come from the torsional swing of
the granite support platform of the gyroscope, we place two seismometers on and underneath the
granite table and take the recordings simultaneously, as shown in Figure 7a. The results are depicted
in Figure 7b, where the solid lines colored in red, green, and pink are the acceleration records on
the granite table in the north-south (NS), east-west (EW), and vertical directions (Z), respectively.
The dashed lines colored in orange, black, and dark cyan are the acceleration records on the lab floor
in the NS, EW, and Z directions, respectively. It can be found from the collocated observations of the
two seismometers that the resonant peak near 15.8 Hz is caused by a swing of the platform in the NS
direction, and the resonant peak at 18.8 Hz results from a swing in the EW direction. The resonant
peak near 24.5 Hz is excited by torsional motion. It can be proven by the comparison of the data
between the seismometers and the PRG in Figure 7b, where the rotational noise curve of the PRG is
colored in blue and indicated with the right axis. Since the torsional motion represents a rotation and
the seismometer is primarily sensitive to translations, the amplitude of the torsional peak is about
one order of magnitude weaker than the translational motion in the observations of the seismometer,
as shown in Figure 7b. While the PRG is only sensitive to rotation, the amplitude of the torsional
peaks around 24.5 Hz is larger compared to the other two peaks at 15.8 Hz and 18.8 Hz. The two
translational peaks remain observable in our PRG because they contain rotational components in their
signals. We find that the amplitude of the rotational components detectable by our laser gyroscope is
less than 10 nrad after integration, as shown in Figure 6 [15].
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Figure 7. The torsional components’ measurement setup and results. (a) The differential acceleration
measurement setup. (b) The recordings’ comparison. The solid lines colored in red, green, and pink
are the acceleration records on the granite table in the north-south (NS), east-west (EW), and vertical
directions (Z), respectively. The dashed lines colored in orange, black, and dark cyan are the acceleration
records on the lab floor in the NS, EW, and Z directions, respectively. The blue curve is the rotational
noise of the PRG for comparison, indicated with different vertical axes and arrows. It should be noted
that there is no absolute linkage between the left axis and the right one.

5. Conclusions

With the increasing demand for highly performing rotational sensors for applications in the
geosciences and fundamental physics, the development of highly accurate large-scale laser gyroscopes
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is urgently needed, in which the PRGs will have an important role due to their unique features.
The configuration of an empty cavity excited by two external laser sources not only has the advantage
of higher storage power, but can also be helpful in the understanding of the systematics from the
laser dynamics of their ring laser counterparts. The establishment of the absolute scale factor and
all systematic errors are essential for the measurement of the EOPs, Lense–Thirring frame dragging
detection, and moreover, the search for the Lorentz violation by such high-resolution gyroscopes [37].

We characterized the noise processes in a passive laser gyroscope and identified them from the
derived noise transfer function of the PRG. We found that in different frequency ranges, the most
prominent noise sources of the gyroscope are different. In the frequency range below 10−2 Hz,
the contribution of the FSR is the dominant limitation, which is caused by the drift of the ring cavity
length. In the band between 10−2 and 103 Hz, the main limitation is the noise of the frequency
discrimination system, which strongly depends on the frequency discrimination slope. Since the
frequency discrimination slope acts as a low-pass filter, in the frequency bands above the bandwidth
of the cavity, the noise contribution of the frequency discrimination system increases with the Fourier
frequency. In the frequency region below 2 Hz, the RAM effect becomes the main factor. Furthermore,
the additional noise introduced by the Mach–Zehnder-type beam combiner is a significant contributor
in the 0.01–2 Hz frequency band. These three noise sources are currently the main limiting factors of
our passive laser gyroscope.

The shot-noise limit of our gyroscope at present is 6× 10−10 rad/s/
√

Hz. In order to further
improve the performance of the PRG, the noise of the frequency discrimination system needs to be
well controlled, especially the noise caused by the RAM effect. We hope to suppress it to the shot-noise
level in the frequency region of 10−3 to 1 Hz. For the FSR jitter, an active control scheme of the cavity
length is required with a goal for the cavity length fluctuation to drop below 10−11 m/

√
Hz [31].

The additional noise contribution from the beam combiner must be reduced by a more compact design
and better environmental isolation. Apart from that, the back-scattering noise, caused by the imperfect
mirror surface and the noise introduced by the injected laser beam pointing jitter in the PRG, also need
a quantitative analysis, which was not within the scope of this paper.
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Abbreviations

The following abbreviations are used in this manuscript:

AOM Acousto-optic modulator
APD Avalanche photo-diode
CW Clockwise
CCW Counter-clockwise
DOF Degree of freedom
EOM Electro-optic modulator
EOP Earth orientation parameter
EW East-West
FSR Free-spectral-range
IERS International Earth Rotation and Reference Systems Service
LoD Length of day
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MZ Mach–Zehnder
NS North-South
PD Photo-diode
PDH Pound–Drever–Hall
PZT Piezo transducer
PID Proportional-integral-derivative
PRG Passive resonant laser gyroscope
RLG Ring laser gyroscope
RAM Residual amplitude modulation
UT1 Universal Time 1
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