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Abstract: In this work, we propose an intuitive and real-time model of the human arm active endpoint
stiffness. In our model, the symmetric and positive-definite stiffness matrix is constructed through
the eigendecomposition Kc = V DV T , where V is an orthonormal matrix whose columns are the
normalized eigenvectors of Kc, and D is a diagonal matrix whose entries are the eigenvalues of Kc.
In this formulation, we propose to construct V and D directly by exploiting the geometric information
from a reduced human arm skeleton structure in 3D and from the assumption that human arm
muscles work synergistically when co-contracted. Through the perturbation experiments across
multiple subjects under different arm configurations and muscle activation states, we identified the
model parameters and examined the modeling accuracy. In comparison to our previous models
for predicting human active arm endpoint stiffness, the new model offers significant advantages
such as fast identification and personalization due to its principled simplicity. The proposed
model is suitable for applications such as teleoperation, human–robot interaction and collaboration,
and human ergonomic assessments, where a personalizable and real-time human kinodynamic model
is a crucial requirement.

Keywords: human factors; physical human–robot collaboration; robot adaptation and learning

1. Introduction

The current generation of robotic manipulators has triggered new application scenarios in
which robots can enter into direct interactions with unknown environments or humans to perform
complex tasks [1]. The theory of impedance control [2] has played an important role in this direction,
to control the dynamic interactions between a manipulator and the external world. In fact, due to
its implementation simplicity and the robustness to the external disturbances, it has found several
significant areas of application [3–5]. Nevertheless, the choice of impedance parameters in this control
framework is not intuitive for a given task, especially for the tasks that require continuously varying
interaction patterns [6–8].

To address the impedance planning problem from a machine learning point of view, previous
works proposed the use of model-free reinforcement learning (RL) algorithms. In [6], a policy
improvement with path integrals (PI2) algorithm was proposed to accomplish variable impedance
control for a given task. In [8], the authors propose exploiting the end-effector space for RL to learn the
reference position and impedance profile for contact-rich tasks. Although these works demonstrated
the potential of the RL approach to fulfill the impedance requirements of a task, they demanded a large
number of trials (hundreds in [6] and even more in [8]) to train the models.
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An alternative approach to the impedance learning through RL is learning from demonstration
(LfD). In [9], a LfD-based algorithm was proposed to collaboratively assemble a wooden table with a
human subject and a robot. The desired trajectory was retrieved through a task-parametrized Gaussian
mixture model (TPGMM). In addition, by taking into account the sensed force information, a weighted
least-squares (WLS) method was employed to estimate the stiffness matrix, which was used in the task
reproduction. In [10], the authors used a similar framework but adopted a sliding window technique to
carry out local stiffness estimation instead of WLS. However, in both methods, a first estimation of the
stiffness matrix does not comply with the symmetric and positive-definite (SPD) constraints. In [11],
benefiting from estimations of both the mean and the variance from kernelized movement primitives
(KMP) [12], the authors consider the variance of the positional demonstrations as the task-related
uncertainty, whose inverse then is used as the stiffness parameters in the controller. Force sensing is
not required in this approach, and the assumption that variability of position and stiffness are directly
related may not always be reasonable [7].

It is well known that human arm endpoint stiffness can be adapted to different task requirements
and instabilities through changing posture [13] and muscle contractions [14]. In fact, human interaction
skills can be defined by the ability to exploit the two mechanisms to match the arm endpoint stiffness
to the task requirements. A preliminary investigation of this concept was carried out by the authors
in [15], where a virtual tennis system was developed to estimate the readiness impedance of the skilled
players. In another work [16], the authors studied the hand impedance measurements comparatively
across professional and novice manual welders when they performed tungsten inert gas (TIG) welding
interactively with the KUKA lightweight robot arm (LWR). The result showed that hand impedance
profiles differed across professional and novice welders, demonstrating the superior capability of the
skilled workers in regulating the arm endpoint impedance.

Inspired by the stiffness regulation capability of the human arm, some studies have made an
attempt to transfer such an ability to robotic manipulators. In that direction, the first problem to address
was the estimation of the human arm endpoint stiffness or joint stiffness, so that either the real-time
stiffness profiles or the underlying impedance-regulation principles can be transferred to robotic
manipulators. In [17], a practical approach to estimating human wrist stiffness during tooling tasks
was proposed, and the joint stiffness information was pre-programmed to allow transferring skills
from expert human operators to an impedance-controlled industrial robot. Instead of only modeling
the wrist stiffness, modeling human arm endpoint stiffness based on a complete arm skeleton model is
more useful in practice. The methods to estimate the human arm endpoint stiffness can be divided into
offline and online categories. Stochastic [18] or deterministic [19] perturbation techniques, for instance,
are among the offline methods to identify discrete human arm endpoint stiffness in certain arm postures.
The alternative offline techniques make use of human upper extremity musculoskeletal models [20],
which can generate appropriate muscle activities to repeat a movement recorded from a human
demonstration. In such models, human arm joint stiffness is calculated according to the generated
muscle activities, and consequently, the endpoint stiffness is formulated through a conservative
congruence transformation [21]. The latter technique is suitable for the continuous stiffness profile
estimation’ however, the process is very complex, which makes it hardly suitable for applications that
require personalized human models.

The online human impedance estimation techniques were first proposed under the concept of
teleimpedance control [22], for real-time transferring of human arm stiffness to teleoperated robots.
To extend this model to a larger arm workspace, the theory of the common mode stiffness (CMS) and
configuration dependent stiffness (CDS) was proposed in [23]. The CMS, which reflected the effect of
muscular co-activation in synchronous modulation of the stiffness ellipsoid’s major axes, and the CDS,
which reflected the geometric contribution of the arm Jacobian, were used for the estimation of the
arm endpoint stiffness projected from joint stiffness in real-time. However, the joint stiffness matrix is
a symmetric and non-diagonal matrix, which means for a 7-DOF human arm, there are 28 unknown
parameters in this matrix (30 in total, two for the muscular co-activation model). Furthermore, to reduce
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the open parameters in the model, the muscle Jacobian was introduced in [24]; it leads to a diagonal
muscle stiffness matrix. The number of unknown parameters in this matrix depends on the number of
selected muscles (11 muscles were selected and 13 unknown parameters in total in [24]). Although this
resulted in an less parameterized and accurate model, calculating the muscle Jacobian can be quite
complex, hindering its widespread use in practice.

As a continuation of our developments in this direction, in this work, we proposed a new,
principally simplified, and intuitive online model of the human arm endpoint stiffness which
significantly reduces the total unknown parameters to 4 and without computation of above Jacobians.
The new model is based on the large dependency of the shape and orientation of the stiffness ellipsoid
on the arm configuration. In fact, previous studies [19,25] indicate that (i) the major principal
axis of the arm endpoint stiffness ellipse passes close to the hand-shoulder vector, and (ii) when
the arm is extended and the hand moves further from the shoulder, the ellipse becomes more
elongated, and conversely, it becomes more isotropic. Inspired by those findings, in this work,
we propose a new model in 3D formed by constructing the ellipsoids’ principal axes and their lengths,
namely, the eigenvectors and eigenvalues, based on the arm configuration. Compared with the
recent model proposed in our previous work [24], we exploit the basic human arm motion data to
retrieve arm geometry information, from which the CDS part is constructed. This is in contrast to
our previous models that exploited human arm and muscle Jacobians, with the latter being quite
complex. This consideration can significantly increase its integration and personalization potential in
various application scenarios, such as teleoperation and human kinodynamics tracking for ergonomic
assessment. The main blocks of this work are illustrated in Figure 1. Under our experimental
setup, through a deterministic perturbation experiment, perturbed force F and displacement ∆x
were recorded and from which the separate human arm endpoint stiffness samples were collected.
The elements V and D in the human arm endpoint stiffness estimation model were constructed based
on inertial measurement unit (IMU) and electromyography (EMG) sensors’ measurements and a few
unknown parameters. Then, the model’s unknown parameters were calibrated by using the collected
stiffness samples for calibration Kcali. Finally, the accuracy of the proposed model Kc was evaluated
by using the collected stiffness samples for evaluation Keval .
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Figure 1. Graphical illustration of the main blocks in this work. F and ∆x represent interaction
force between human and robot and corresponding displacement respectively. V and D represent
the orthonormal matrix consisting of eigenvectors and the diagonal matrix consisting of eigenvalues.
Kc, Kcali and Keva represent the estimated human arm endpoint stiffness from the proposed model and
the collected human arm endpoint stiffness samples used for calibration and evaluation respectively.

The remainder of this paper is structured as follows: Section 2 elaborates on the theory of the new
model. Section 3 starts with the identification of human arm endpoint stiffness, which is then followed
by the optimization of the model parameters. In Section 4, the accuracy of the model across several
subjects is evaluated. Finally, the discussions and conclusions are presented in Section 5.
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2. Formulation

As shown in Figure 2, in this work, we use a two-segment human arm skeleton structure in 3D
space. The hand–forearm and upper arm segments in this model permit us to form an arm triangle [26]
at any non-singular configuration. Relying on the dominant contribution of the arm configuration to
the endpoint stiffness geometry, we propose to use the vector from the center of shoulder joint to the
position of the hand (~l ∈ R3), to identify the major principal direction of the human arm endpoint
stiffness ellipsoid. The minor principal axis direction (~n ∈ R3), instead, is defined to be perpendicular
to the arm triangle plane

~n =~r×~l, (1)

where~r ∈ R3 represents the vector from the center of shoulder to the center of elbow.

  

  

  

   

  

  
 

Figure 2. The geometric relationship between the human arm configuration and the principal axes of
the endpoint stiffness ellipsoid. ~n is perpendicular to the plane formed by~l and~r.~l and~n are parallel
to the major and minor principal axes of the endpoint stiffness ellipsoid, respectively.

The remaining principal axis of the stiffness ellipsoid (~m ∈ R3), which lies on the arm triangle
plane, is calculated based on the orthogonality of the three principal axes

~m = ~n×~l = (~r×~l)×~l. (2)

Hence, the orthonormal matrix V ∈ R3×3 can be constructed as

V =

[
~l

‖~l ‖
,

(~r×~l)×~l
‖ (~r×~l)×~l ‖

,
~r×~l
‖~r×~l ‖

]
. (3)

From the equation above, when the arm is extended and the hand moves further from the shoulder,
the ellipse becomes more elongated, and conversely, it becomes more isotropic. Hence, we assume that
the ratio of the length of median principal axis to the major principal axis of the stiffness ellipsoid is
inversely proportional to the distance d1 from the hand position to the center of shoulder.

λ2

λ1
=

α1

d1
, (4)

where λ1 and λ2 represent the eigenvalues corresponding to the major and median principal axes,
respectively. α1 is the scale factor and

d1 =‖~l ‖ . (5)

The ratio of the length of the minor principal axis to the major principal axis is assumed to be
proportional to the distance d2 from the center of the elbow to the major principal axis.

λ3

λ1
= α2 · d2, (6)
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where λ3 represents the eigenvalue corresponding to the minor principal axis, α2 is the scale factor, and

d2 =~r · ~m
‖~m‖ =~r · (~r×~l)×~l

‖ (~r×~l)×~l ‖
. (7)

Previous works indicate that human arm muscles contribute to the endpoint stiffness in a
synergistic way. The findings in [19] show the magnitude of the stiffness is coordinately increased but
only minor changes occur in shape and orientation when a disturbance occurred to the arm. A force
regulation task was introduced in [27] to examine the human arm’s abilities (especially the muscles)
regarding voluntary control of static endpoint stiffness with a fixed arm configuration; it turned out
that individuals can voluntarily change stiffness orientation but that the magnitude of these changes
is small. Therefore, in this work, we built the model based on the assumption of the synergistic
contribution of the arm muscle co-contractions to the endpoint ellipsoid’s volume. This contribution is
represented by the active component Acc.

Acc(p) = c1 · p + c2, (8)

which is in a linear relation with the muscle activation level p. c1 and c2 are two coefficients to
be identified.

The diagonal matrix D ∈ R3×3 is formed by the length of the principal axes, i.e., the eigenvalues,

D = Acc(p) · Ds = Acc(p) ·

1
α1/d1

α2d2

 , (9)

where λ1 is set to Acc, and Ds ∈ R3×3 represents the shape of the stiffness ellipsoid. Finally,
the estimated endpoint stiffness matrix K̂c ∈ R3×3 is formulated by

K̂c = V DV T = V Acc(p)DsV T . (10)

In this formulation, only four parameters (c1, c2, α1 and α2) must be personalized to match
an individual’s physical interaction characteristics. Note that this formulation guarantees the
symmetry and positive definiteness of the endpoint stiffness matrix, as long as the eigenvalues are
positive. The number of dimensions of the input space of this model is six, which are composed of (1) a
one-dimensional vector for the EMG signal, and (2) a three-dimensional vector~l and three-dimensional
vector~r; we use with the elbow-hand vector length constraints which reduce the number of dimensions
to five. The output space, which includes the translational Cartesian stiffness components of the
endpoint stiffness matrix, has six dimensions as well. The following chapter explains the procedure
for the identification and personalization of the model parameters.

3. Identification of Model Parameters

The personalization of the arm endpoint stiffness model was achieved by identifying the four
previously mentioned model parameters. To achieve this and evaluate the accuracy of the proposed
model, first, the endpoint stiffness matrices of the arm in six arm configurations (evenly distributed
in the main workspace of human arm) and seven muscle co-contraction levels were estimated
through perturbation experiments [19]. (In theory, only four trials are needed to personalize the model
parameters. In this work, far more than enough data were collected to identify model parameters
and evaluate the accuracy of the proposed model in different arm states.) The identified stiffness
matrices were then used for the identification of the model parameters and the validation of the
model’s accuracy (using new test data). Six dominant arm muscles, i.e., the anterior and posterior
portions of the deltoid, the biceps brachii, the triceps brachii, the brachioradialis and the flexor carpi
ulnaris, were grouped in three antagonistic configurations and the subjects were asked to voluntarily
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keep each muscle group’s co-contraction levels in three states: relaxed, 10% and 20% of the maximum
voluntary contraction (MVC). This resulted in a total number of 84 trials per subject.

Four healthy subjects (3 males and 1 female, 20 to 37 years of age (subjects had no neurological or
orthopedic impairment of the upper limbs and gave informed consent to all procedures and were free
to withdraw from the study at any time)), participated in the model validation experiments.

3.1. Human Arm Endpoint Stiffness Identification

3.1.1. Experiment Setup

The experimental setup is illustrated in Figure 3a, and the local reference frames of the model
are defined in here as well: the world frame ΣW , the shoulder frame ΣSH , the KUKA base frame ΣB
and the F/T frame ΣF/T . During the experiment, the subjects stood in front of a KUKA LWR robot
with their right hand grasping an aluminum handle, mounted to a force/torque sensor—which was
used to measure the perturbed force and had a sampling rate of up to 3 kHz (ATI, mini45, EtherCAT
interface)—and attached to the end effector of the robot. The robot was kept rigidly fixed through
an anti-vibration table. A wearable MVN Biomech suit (Xsens Technoloies BV), which is based on
11 inertial measurement unit (IMU) sensors (only for the upper body, 3 axes for measurement and
update frequency of 60~80 Hz), was used to measure the motion of the two arms of the subject.
It was employed to calculate the vectors~l and~r. We assume the human model to correspond to
ΣW , which was fixed at the heel of subject’s right foot. ΣSH was used to record the orientation of the
shoulder with respected to ΣW , and the human’s right arm motion was represented in ΣSH .

EMG Sensor

KUKA LWR

F/T Sensor

Handle

IMU Sensor

x

z

x

z

x

z

x

z

W

/F T

SH

Monitor

EMG Sensors IMU Sensors

Front View

IMU Sensors

Back View

IMU Sensors

Side View

（a） （b）

B

Figure 3. (a) The experiment setup for human arm endpoint stiffness identification. A fixed-base
KUKA light-weight robot, equipped with a six-axis force/torque sensor at the end-effector, was used
to apply perturbations to the human hand (note that arm endpoint movements were measured by high
resolution encoders of the KUKA robot, which was active in position control mode). (b) EMG and IMU
sensor setup. Sux EMG sensors were attached to the corresponding muscles’ places on the right arm
and 11 IMU sensors were placed for upper body movement recording according to MVN Biomech
suit protocol.

Six electromyography (EMG) sensors whose sampling rate was up to 1 kHz (Delsys, Trigno
Wireless Biofeedback System) were attached to the right arm’s selected muscles to record their activities.
They were divided into three groups, i.e., the shoulder muscle group (with the anterior and posterior
portions of the deltoid), the upper arm muscle group (with the biceps brachii and the triceps brachii)
and the forearm muscle group (with the brachioradialis and the flexor carpi ulnaris). The EMG and
IMU sensor setup is displayed in Figure 3b. During the experiments, the left half of the back of
the subjects were fixed against the wall, to stabilize the trunk and shoulder joints of the right arm.
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A monitor provided the real-time visual feedback about EMG information to the subjects during
the experiments.

The KUKA robot was controlled in the position mode by an external PC through the fast research
interface (FRI), in which a set of perturbation trajectories (36 in total, see Figure 4a for a typical
perturbation trial) was stored. Six types of perturbation movements in different directions were
included in each trajectory, with a randomized order of directions (x, y, z, x− y, y− z, x− z) to avoid
voluntary responses before each perturbation. The profile was generated under a snap (second time
derivative of acceleration) control law to make sure it was smooth enough. All perturbation trials had
similar durations of about 350 ms, and the maximum displacement was set to 10 mm.

P1

P2P3

P4 P5

P6

(a) (b)

Figure 4. Experimental protocols. (a) A typical perturbation trajectory profile with the desired
displacement of 10 mm in the target directions (x, y, z, x− y, y− z, x− z). (b) Predefined equilibrium
positions for the perturbation experiments. These positions were selected in two planes, from P1 to P6.
In each plane, there were three positions that formed a triangle.

The EMG data, the F/T data and the human motion data were collected and streamed to the
external PC through User Datagram Protocol (UDP). The end effector position of the KUKA LWR was
also stored in the external PC, where all the data were synchronized and saved.

3.1.2. Experiment Protocols

After wearing MVN Biomech suit and the EMG sensors, the subjects were required to contract each
muscle separately to retrieve the MVC values. In the experiments, the processed (fully rectified and
filtered) EMG signals were divided by the corresponding MVC values and the resulting percentages
were shown visually to the subjects. Before starting the experiment for each trial, the MVN Biomech
suit was calibrated with N-pose (i.e., two arms straight down, palms facing to their body, feet parallel
to each other and apart) to initialize the skeleton mode.

To take into account the effect of muscular co-contractions on the arm endpoint stiffness, as noted
before, three muscle groups were selected. In each arm configuration, for the first trial, the subjects
were asked to keep the muscles as relaxed as possible. Instead, from the second to the seventh trial,
they were asked to co-contract one muscle group at a time, and keep it at a specific level (i.e., shoulder
10% MVC, shoulder 20% MVC, upper arm 10% MVC, upper arm 20% MVC, forearm 10% MVC,
forearm 20% MVC) by following the real-time feedback guidance, while relaxing the other two groups
as much as possible.

To make the experiment friendly to the subjects and guarantee that the samples covered most
workspace of the human arm, we made a compromise for the number of positions. Here six equilibrium
positions (subjects were asked to keep the same arm posture among different muscle activation states
when at one position.) were predefined in the common workspace of the robot and the subject’s right
arm, as shown in Figure 4b. All the positions avoided singular positions for human and the robot.

Each trial was repeated at least two times—the first one for the model training and the other one
for the evaluation. For each subject, at least 84 (= 6× (3× 2 + 1)× 2) trials were recorded (note that
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a very small portion of this data were necessary for the personalization of the model, which will be
described later; the rest of this data were meant for the model validation.). Trials from which the
estimated stiffness matrix did not satisfy positive definite and symmetric conditions were discarded
and repeated. The whole experimental procedure was conducted in accordance with the Declaration
of Helsinki and the protocol was approved by the ethics committee Azienda Sanitaria Locale Genovese
(ASL) N.3 (Protocol IIT_HRII_001).

3.1.3. Data Processing

Raw data collection of IMU and EMG sensors was through wireless network and it was filtered
online by a (finite impulse response) FIR filter and an internal filter respectively. The filtered data was
used as the input of the proposed model in the following.

The estimation of the human arm endpoint stiffness, which was used for model calibration and
evaluation, was achieved by applying a displacement profile and the measurement of the restoring
forces. Figure 5 illustrates typical examples of the displacement and force data. The arm endpoint
displacements were recorded through the high resolution encoders of the KUKA LWR robot and
a forward kinematics calculation. The response forces were measured by an external 6-axis F/T
sensor and the raw data were streamed through an Ethernet cable by using the EtherCAT interface.
A Butterworth filter was used to remove the noise of F/T data offline. The offset force for each
perturbation was removed by using an average of the data during 0.5 s before the perturbation started.

Figure 5. Typical results of a perturbation experiment to identify the arm endpoint stiffness matrix.
The displacement profile (blue) and the measured reaction forces (red) are illustrated for one selected
trial. Subplots in the first row from left to right represent perturbation in z, y and x directions,
respectively. Subplots in the columns of the remaining two rows from left to right represent
perturbations in x− y, y− z and x− z directions, respectively.

The three diagonal terms of the translational Cartesian stiffness matrix were calculated by the x, y
and z perturbation profiles. Next, the off-diagonal elements were calculated by using the data from
x− y, x− z and y− z directional displacements.

The human arm endpoint stiffness matrices estimated from the displacements and forces are
represented in ΣB. Since the human arm motion data were represented in ΣSH , we transformed the
translational stiffness matrices from ΣB to ΣSH as follows

KSH = (RSH
W RW

B )KB(RSH
W RW

B )T , (11)

where KSH ∈ R3×3 and KB ∈ R3×3 represent human arm endpoint stiffness in ΣSH and ΣB respectively;
RW

B ∈ R3×3 and RSH
W ∈ R3×3 represent the rotation matrices from ΣB to ΣW and from ΣW to

ΣSH , respectively.
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Figure 6 shows typical results across subjects of the estimated human arm endpoint stiffness KSH
projected on X–Y and X–Z planes for subjects A and B in different arm configurations (from P1 to P6)
and muscle co-contraction states (i.e., all relaxed and shoulder 10% MVC, shoulder 20% MVC, upper
arm 10% MVC, upper arm 20% MVC, forearm 10% MVC and forearm 20% MVC, while relaxing the
other two groups as much as possible).

P1 P2 P3 P4 P5 P6

Sh 10% Sh 20% Upp 10% Upp 20% Fore 10% Fore 20%Relax

Subject A

Subject B

Y

Z

Y

Z

X

Figure 6. The estimated Cartesian stiffness ellipsoids of subjects A and B (typical results across subjects)
in different arm configurations and muscle co-contraction states. P# represents an individual arm pose,
and the different colors in the subplot represent different muscle co-contraction states, as shown in the
bottom legend.

3.2. Identification of Model Parameters

As already mentioned in Section 2, there are four parameters (c1, c2, α1 and α2) in the proposed
model that must be identified. c1 and c2 are the two coefficients in the linear model of the active
component Acc. α1 and α2 are the body dimension-related (d1 and d2 respectively) coefficients.

The identification of these parameters was achieved by minimizing the objective function with
the training data set (N = 42):

min
N

∑
i=1
‖log(V i AcciDsiV T

i )− log(KSHi)‖F. (12)

In this process, instead of the Frobenius norm, the log-Frobenius norm was adopted due to the SPD
property of the stiffness matrix. The space for the stiffness matrix is nonlinear, which in fact belongs
to the SPD Riemannian manifold SD

++ [28]. The minimum length curves between two points on
a Riemannian manifold are called geodesics, which is similar to straight lines in Euclidean space.
Both affine-invariant and log-frobenius distance are geodesics for SD

++ [29]. To guarantee positive
definiteness of the modeling stiffness matrix and the correspondence of eigenvectors and eigenvalues,
we considered lower and upper bounds for α1 and α2 in the optimization.

To prepare the required data for the optimization, the measured human arm endpoint stiffness
KSH was first computed. Through the motion data of the centers of shoulder and elbow and the hand
position, the vectors~l and~r were computed and then the orthonormal matrix V was constructed by (3).
The distances d1 and d2 were calculated based on (5) and (7) respectively, to construct the diagonal
matrix Ds.
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The input of the active component Acc, was computed by filtering the selected EMG signals,
from the data segment which corresponded to the same period of perturbation experiments. In Figure 7,
each subplot illustrates the %MVC values of each muscle group for different trials in one selected
arm configuration. It is evident that the activity of the muscle groups mainly followed the indicated
experimental protocols that ranged from a relaxed state to 10% and 20% MVC. Three muscle groups,
i.e., the forearm, the upper arm and the shoulder, were the candidates to model Acc. Considering
that the forearm and the shoulder muscle groups are distributed far from each other in the arm, their
activity may be less correlated, which means that the upper arm muscle group could be a good choice
for tracking the co-activation pattern of the arm muscles. In fact, as observable in Figure 7, the activity
of the upper arm muscle group demonstrates a closer relationship to the other two muscle groups.
Thus, we chose the activity of the upper arm muscle group as the EMG signal input for the model.
Finally, we built the terms in Equation (12) with four unknown parameters from the collected data.
The optimisation was performed by the fmincon function (MATLAB, The MathWorks Inc.).

Subject A Subject B

Subject C Subject D

Figure 7. Percentage of MVC value of each muscle group for every subject at one selected position.
The colors red, green and blue respectively represent the activation level of the shoulder muscle group,
upper arm muscle group and forearm muscle group.

4. Results

The identified model parameters for the four subjects are listed in Table 1. The average (AVG),
standard deviation (SD) and coefficient of variation (CV) of the parameters were calculated across
subjects. From the CV values of different parameters, it can been seen c1 and c2 exhibit large difference
while α1 and α2 are similar within subjects. The reason behind is that α1 and α2 are closely related
to the arm skeleton dimensions and which do not have much difference within the subjects in our
experiment. c1 and c2 are closely related to the strength of the muscles, which may have large difference
across the subjects.

To evaluate the accuracy of the proposed model, the following function (13), where I3 represents
the 3 × 3 identity matrix, was calculated:

EK =
1
N

N

∑
i=1

‖log(V i AcciDsiV T
i )− log(KSHi)‖F

‖log(KSHi)− log(I3)‖F
. (13)

By utilising the test data set (N = 42) from different subjects, the model error was within 13% ∼ 31%,
and the average error was around 20%.
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Figure 8 demonstrates the typical results across subjects of the measured (solid line) and the
predicted (dashed line) endpoint stiffness ellipses on X–Y and X–Z planes for the subjects A and B in
10% MVC of the shoulder, upper arm and forearm muscles. As illustrated, the principal axis directions
of the reconstructed (from model) ellipses largely match the estimated (from experiments) ones.

Table 1. Model parameters’ identification results.

Subjects c1 c2 α1 α2 Error Error (avg α1 and α2)

A 1539.478 238.313 0.245 2.712 13.25% 13.34%
B 1015.907 99.567 0.296 3.231 21.67% 21.69%
C 3942.261 152.281 0.252 1.892 17.00% 17.74%
D 1635.365 72.262 0.230 3.428 30.83% 31.12%

AVG 2033.325 140.606 0.255 2.815 20.69% 20.97%
SD 1301.465 73.116 0.028 0.6859 - -
CV 64.01% 52.00% 11.09% 24.36% - -
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Figure 8. A comparison between the measured endpoint stiffness (solid line), which was calculated
from the displacement profile and the reaction forces in the perturbation experiment, and the predicted
one (dashed line), which was estimated by our model for subjects A and B (typical results across
subjects) at different arm configurations and muscle activation states. P# represents different positions;
the different colors in the subplot represent different muscle activation states, as shown in the
bottom legend.

To provide a quantified comparison, the angle between the major principal axes of the measured
and the predicted endpoint stiffness ellipsoids is used to evaluate the directional mismatch between
the two. In addition, the relative error of the volume of the measured and the predicted endpoint
stiffness ellipsoids is used to evaluate the size difference. To keep in line with the data depicted in
Figure 8, the above two indexes were separately analyzed on X–Y and X–Z planes. For the principal
axes difference, the average angle errors on X–Y plane across test data set for subjects A, B, C and D
were 0.2870± 0.2058 rad (the data are reported as: mean ± standard deviation), 0.4540± 0.2973 rad,
0.3155± 0.1926 rad, and 0.6389± 0.3613 rad, respectively, resulting in a total average angle error of
0.4238± 0.1609 rad across all subjects. On X–Z plane, the average angle errors for subjects A, B, C and D
were 0.6324± 0.5074 rad, 0.6347± 0.4858 rad, 0.7183± 0.4834 rad, and 0.6736± 0.4192 rad, respectively,
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resulting in a total average angle error of 0.6648± 0.0404 rad across all subjects. Compared with
the error on X–Y plane, the error on X–Z plane is a bit higher due to more uncertainty existing in
Z direction caused by the neglected gravitational effect of the human arm. This confirms and gives
credibility to our geometric approach in constructing the eigenvectors of the stiffness model.

On the other hand, for the size difference, the average relative error of ellipses area δ is defined
by (14) for each subject. It resulted in δ equal to 0.4093 ± 0.2517, 0.5200 ± 0.1997, 0.4180 ± 0.2477
and 0.5576± 0.2955 for subjects A, B, C and D on X–Y plane, respectively, and therefore a total average
error is 0.4763± 0.0740 across all subjects. On X–Z plane, the average relative error δ was equal
to 0.3003± 0.1944, 0.5916± 0.2952, 0.5081± 0.2369 and 0.6410± 0.3143 for subjects A, B, C and D,
respectively; the total average error therefore, was 0.5102± 0.1503 across all subjects. Regarding the
shape/volume, the reconstructed ellipses were more circular than the measured ones and because of
this, the volumes cannot match each other very well after the optimization. Most of the reconstructed
ellipses were smaller than the measured ones mainly in x direction. One potential limitation is that the
shape/volume mismatch may cause the reducing of modeling accuracy because of the movement of
subject’s trunk was rigidly constrained only in x direction, where is in the experimental setup. In fact,
in [30] , the effects of unconstrained trunk and shoulder movements on arm endpoint stiffness were
examined, it showed that the compliance associated with unrestrained trunk and shoulder decreased
the static endpoint stiffness of the arm. Thus, the true human arm endpoint stiffness values in y and z
directions should be larger than the measured ones. It means that the true stiffness ellipses could be
more circular and the shape/volume mismatch problem could be relieved.

δ =
1
N

N

∑
i=1
|
Spi − Smi

Smi
|, (14)

where δ is the average relative error of the measured and the predicted ellipses area across the test
data set for each subject, Spi and Smi are respectively the i-th predicted and measured ellipses area on
X–Y or X–Z plane.

5. Discussion and Conclusions

In this paper, we proposed a new human arm endpoint stiffness model, in which the stiffness
matrix Kc was decomposed as Kc = V DV T through eigendecomposition. The unitary basis V and the
singular values of D were extracted directly from a reduced human arm skeleton structure in 3D and a
muscular co-contraction index, respectively.

The proposed model offers several advantages. Firstly, the calibration and personalization
of the model to an individual can be achieved through the identification of only four parameters.
This implies that a small-scale experiment’s data would be sufficient to calibrate this model to match
an individual’s physical characteristics. As it was shown in the last column of Table 1, the average
values of α1 and α2 were used to re-evaluate the model accuracy. It turns out that minor error is
increased compared with the personalized α1 and α2 which means in some specific applications
where only CDS is considered, the average value could be used even without parameter identification
process for a new individual who shares a similar arm skeleton dimensions with the subjects in our
experiment. Secondly, the SPD properties of the calculated arm endpoint stiffness are guaranteed,
which is due to the underlying eigendecomposition. Thirdly, and relying on the above two advantages,
the log-frobenius, which is the geodesic length between two elements in SD

++, can be used in the
optimization procedure to speed up the convergence rate. Lastly, due to the above advantages,
the implementation of this model requires less programming work compared with previous models.
The main difference appears in the CDS part. In [23,24], the input for CDS is the joint angles which
means an inverse kinematics process has to be preprogrammed based on the raw data from the IMU,
and a 3 by 7 matrix of arm Jacobian has to be constructed in [23] and besides that, a 7 by 11 matrix of
muscle Jacobian is also needed in [24] which requires the forward kinematics of the length of relative
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muscles respect to the joint angles and it is hard to develop from scratch for most researchers. However,
in the proposed model, the input for CDS is the raw data from IMU without any inverse kinematic
process. Meanwhile, the construction the eigenvectors and eigenvalues is much easier compared with
the Jacobians, especially the muscle Jacobian. This advantage makes our model more suitable for
human–robot interaction and collaboration, and teleoperation (teleimpedance) applications. In robot
learning from demonstration scenarios, by employing this model, one can enrich the demonstrated
data by adding human stiffness profile to the kinodynamic data that can be measured by external
sensory systems.

The price paid for the above substantial advantages is the average model error of around 20%
evaluated by (13) which mainly catches the nonlinear structure of SPD stiffness matrix, although the
average size difference evaluated by (14) is around 50% which is closely related to the linear part of
the stiffness matrix. This error is mainly introduced by neglecting the effect of external forces [14] and
probably by our assumption on muscle synergies [31]. Therefore, the error is imposed by the trade-off
between simplicity and accuracy of the model. Noteworthy is that the influence of the external forces
on human arm stiffness is also ignored in [24].

The model error is still acceptable for most applications mentioned before. In particular, for what
concerns the stiffness ellipsoid’s geometry, according to the quantitative comparison in principal axes
difference between the measured and predicted stiffness in last section, the constructed principal axes
coincide with the experimentally measured ones with a limited error. In most applications, the stiffness
geometry plays a dominant role compared to its volume. In fact, some tasks do not require specific
stiffness values to be executed, but stiffness ranges along principal axes. An example is the assembly
tasks (e.g., peg-in-hole), where the stiffness profile along the insertion must be higher than the others
to comply with the environmental constraints. For this kind of application, the measurement error
in the proposed model may not result in task failure. However, there are other applications that are
more sensitive to the variation of stiffness values, which means that the task may fail because of the
existence of a similar error. In this case, only relying on the task-related stiffness information recorded
from human arm may be not sufficient. Nonetheless, by combining adaptive control approaches or
reinforcement learning algorithms, a fine modulation of the modeled stiffness profile is expected to
compensate for such an error.
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