Evaluation of discrimination performance in case for multiple non-discriminated samples: classification of honeys by fluorescent fingerprinting

Elizaveta A. Rukosueva, Valeria A. Belikova, Ivan N. Krylov, Vladislav S. Orekhov, Evgenii V. Skorobogatov, Andrei V. Garmash and Mikhail K. Beklemishev

Figure S1. Fluorescence spectra of honey samples with added fluorophores: (a) intercalated thiazole orange (TO, ratio DNA-2 : TO = $1: 105, \lambda_{\mathrm{ex}}=320 \mathrm{~nm}$). With large amounts of the dye (TO:DNA ratios greater than 1:53), the intrinsic fluorescence of honey is quenched, and only a TO emission peak is observed in the spectrum. The largest number of discriminated groups was achieved with the TO:DNA-2 ratio of 1:53; (b) $\mathrm{Ru}(\mathrm{bpy}))^{2+}\left(50 \mu \mathrm{~L}\right.$ of $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ solution added to each well). The outlaying red spectrum belongs to a deeply colored sample.

(b)

Figure S2. Scores plots of the visible region reflection images of honey samples in the 96-well plates: (a) without added $\mathrm{Ru}(\mathrm{bpy}) 3^{2^{2+}},(\mathbf{b})$ in the presence of $\mathrm{Ru}(\mathrm{bpy}) 3^{2+}$. Conditions are the same as used in fluorescence studies.

Table S1. The number of discriminated groups of points in the scores plots of 23 honey samples with added thiazole orange (TO) intercalated into DNA-2 (TO-DNA-2 fluorophore). The groups were considered separated if their confidence ellipses did not intersect

Composition of the Blend (Ratio TO:DNA)	Number of Discriminated Groups of Points in the Scores Plot		
	by Full Spectrum $(400-800 ~ n m)$	by One Peak	
	Shortwave	Longwave	
Honey	7	8	-
Honey + DNA	11	10	-
Honey + DNA + TO (1:6)	10	8	5
Honey + DNA + TO (1:21)	8	5	5
Honey + DNA + TO (1:53)	9	-	12
Honey + DNA + TO (1:105)	4	-	6
Honey + DNA + TO (1:210)	4	-	5

Standard formulas for the calculation of confidence ellipses (based on the instruction to Origin software)

Assuming the pair of variables (X, Y) conforms to a bivariate normal distribution, we can examine the correlation between the two variables using a confidence ellipse. The confidence ellipse is centered at (\bar{x}, \bar{y}) (for a given dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots n$, where x is the independent variable and y is the dependent variable), and the major semiaxis a and semiaxis b equal:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i},
$$

$$
a=c \sqrt{\frac{\sigma_{x}^{2}+\sigma_{y}^{2}+\sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)+4 r^{2} \sigma_{x}^{2} \sigma_{y}^{2}}}{2}}, b=c \sqrt{\frac{\sigma_{x}^{2}+\sigma_{y}^{2}-\sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)+4 r^{2} \sigma_{x}^{2} \sigma_{y}^{2}}}{2}},
$$

where σ_{i}^{2} is the variance equal.
For a given confidence level of $(1-\alpha)$ the confidence ellipse is defined as:

$$
c=\sqrt{\frac{2(n+1)(n-1)}{n(n-2)}\left(\alpha^{\frac{2}{2-n}}-1\right)} .
$$

The inclination angle of the ellipse is defined as:

$$
\beta=\frac{1}{2} \arctan \frac{2 r \sqrt{\sigma_{x}^{2} \sigma_{y}^{2}}}{\sigma_{x}^{2}-\sigma_{y}^{2}}
$$

Matlab function for relative position (RP) calculation (composed by the authors)

function[RP] = relative_position (sc1,sc2)
\% sc1 - double [K1,2], where K1 is count of points in first class
\% sc2 - double [K2,2], where K2 is count of points in second class
$\mathrm{c} 1=$ mean(sc1);\% C1 - the center of the first group
c2 $=$ mean(sc2);\% C2 - the center of the second group
sc1 = get_border(sc1);\% any border - ellipse or convex polygon
sc2 = get_border(sc2);
\% find A1,A2
for $\mathrm{i}=1$:size(sc1,1)
proj1(i) $=(\mathrm{c} 1-\mathrm{c} 2)^{*}(\mathrm{sc} 1(\mathrm{i},:)-\mathrm{c} 2)^{\prime} /\left(\mathrm{sqrt}\left((\mathrm{c} 1-\mathrm{c} 2)^{*}(\mathrm{c} 1-\mathrm{c} 2)^{\prime}\right)\right) ;$
end
for $\mathrm{i}=1$:size(sc2,1)
$\operatorname{proj} 2(i)=(c 2-c 1)^{*}(\operatorname{sc} 2(i,:)-c 1)^{\prime} /\left(\operatorname{sqrt}\left((\mathrm{c} 1-\mathrm{c} 2)^{*}(\mathrm{c} 1-\mathrm{c} 2)^{\prime}\right)\right) ;$
end
[~, a1] = min(proj1);
a1 $=\operatorname{sc} 1(\mathrm{a} 1,:)$;
[~, a2] = min(proj2);
a2 = sc2(a2,:);
\% find D1,D2
di1 = find_d(a1,c1,c2);

```
    di2 = find_d(a2,c1,c2);
    % find RP
    c1c2 = sqrt((c1-c2)*(c1-c2)');
    c2d2 = sqrt((c2-di2)*(c2-di2)');
    c1d1 = sqrt((c1-di1)*(c1-di1)');
    RP = (c1c2-c2d2)/c1d1;
end
function[res] = find_d(a,ci1,ci2)
    eps = 10^(-5);
    n1 = ci2(1) - ci1(1);
    n2 = ci2(2) - ci1(2);
    if abs(n2) < eps && abs(n1) < eps
        res = a;
    elseif abs(n2) < eps
        res = [a(1),ci1(2)];
    elseif abs(n1) < eps
        res = [ci1(1),a(2)];
    elseif abs(n2-1) < eps
        de1 = (a(1)*n1^2+a(2)*n1-ci1(2)*n1+ci1(1))/(n1^2+1);
        de2 = a(2)-n1*(de1-a(1))/n2;
        res = [de1,de2];
    else
        e = -1/n1-n1;
        g=n2-1/n2;
        f=ci1(2)/n2-ci1(1)/n1-n1*a(1)-n2*a(2);
        de1 = (a(1)*n1+a(2)*n2+n2*f/g)/(n1+n2*e/g);
        de2 = a(2)-n1*(de1-a(1))/n2;
        res = [de1,de2];
    end
end
```

function[nodes] = get_border (X)\%convex polygon
$X=$ unique(X,'rows');
if $\operatorname{size}(X, 1)=2$
nodes $=X ;$
else
$[\sim, i]=\min (X(:, 2))$;
nodes $(1,:)=X(\mathrm{i},:)$;
$X(\mathrm{i},:)=[]$;
for $\mathrm{i}=1$:size $(\mathrm{X}, 1)$

```
                    angle(i) = acot((X(i,2)-nodes(1,2))/(X(i,1)-nodes(1,1)));%acot == arc cotangent
        end
        [angle,i] = sort(angle,'descend');
        X = X(i,:);
        X(end+1,:) = nodes(1,:);
        nodes = [X(end-1,:);nodes;X(1,:)];
        i = 2;
        while i <= length(angle)+1
            if isLeft(nodes(end-2,:),nodes(end-1,:),nodes(end,:)) >0
                nodes(end+1,:) = X(i,;);
                i = i + 1;
            else
                nodes(end-1,:) = [];
            end
        end
    end
end
function[res] = isLeft(x0,x1,x2)
    res =((x1(1)-x0(1))*(x2(2)-x0(2)) - (x2(1)-x0(1))*(x1(2)-x0(2)));
end
function[res] = dist(x)
    res = sqrt(x(1)^2+x(2)^2);
end
```

