
1

Supplementary Information to paper

Evaluation of discrimination performance in case for
multiple non-discriminated samples: classification of
honeys by fluorescent fingerprinting

Elizaveta A. Rukosueva, Valeria A. Belikova, Ivan N. Krylov, Vladislav S. Orekhov, Evgenii V.

Skorobogatov, Andrei V. Garmash and Mikhail K. Beklemishev

400 500 600 700 800
0

100

200

300

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

I,
 a

.u
.

 nm

 (a) (b)

Figure S1. Fluorescence spectra of honey samples with added fluorophores: (a) intercalated thiazole orange

(TO, ratio DNA-2 : TO = 1 : 105, λex = 320 nm). With large amounts of the dye (TO:DNA ratios greater than

1:53), the intrinsic fluorescence of honey is quenched, and only a TO emission peak is observed in the

spectrum. The largest number of discriminated groups was achieved with the TO:DNA-2 ratio of 1:53; (b)

Ru(bpy)32+ (50 L of 1×10–5 mol/L solution added to each well). The outlaying red spectrum belongs to a

deeply colored sample.

2

(a)

 (b)

Figure S2. Scores plots of the visible region reflection images of honey samples in the 96-well plates: (a)

without added Ru(bpy)32+, (b) in the presence of Ru(bpy)32+. Conditions are the same as used in

fluorescence studies.

3

Table S1. The number of discriminated groups of points in the scores plots of 23 honey samples with added

thiazole orange (TO) intercalated into DNA-2 (TO–DNA-2 fluorophore). The groups were considered

separated if their confidence ellipses did not intersect .

Composition of the Blend (Ratio

TO:DNA)

Number of Discriminated Groups of Points in

the Scores Plot

by Full Spectrum

(400-800 nm)

by One Peak

Shortwave Longwave

Honey 7 8 –

Honey + DNA 11 10 –

Honey + DNA + TO (1:6) 10 8 5

Honey + DNA + TO (1:21) 8 5 5

Honey + DNA + TO (1:53) 9 – 12

Honey + DNA + TO (1:105) 4 – 6

Honey + DNA + TO (1:210) 4 – 5

4

Standard formulas for the calculation of confidence ellipses (based on the instruction to Origin

software)

Assuming the pair of variables (Х, Y) conforms to a bivariate normal distribution, we can

examine the correlation between the two variables using a confidence ellipse. The confidence ellipse

is centered at (𝑥̅, 𝑦̅) (for a given dataset (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, 2, … 𝑛, where x is the independent variable and

y is the dependent variable), and the major semiaxis a and semiaxis b equal:

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝑦̅ =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ,

𝑎 = 𝑐√𝜎𝑥
2+𝜎𝑦

2+√(𝜎𝑥
2−𝜎𝑦

2)+4𝑟2𝜎𝑥
2𝜎𝑦

2

2
, 𝑏 = 𝑐√𝜎𝑥

2+𝜎𝑦
2−√(𝜎𝑥

2−𝜎𝑦
2)+4𝑟2𝜎𝑥

2𝜎𝑦
2

2
,

where 𝜎𝑖
2is the variance equal.

For a given confidence level of (1-α) the confidence ellipse is defined as:

𝑐 = √
2(𝑛+1)(𝑛−1)

𝑛(𝑛−2)
(𝛼

2

2−𝑛 − 1).

The inclination angle of the ellipse is defined as:

𝛽 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

2𝑟√𝜎𝑥
2𝜎𝑦

2

𝜎𝑥
2−𝜎𝑦

2 .

Matlab function for relative position (RP) calculation (composed by the authors)

function[RP] = relative_position (sc1,sc2)

% sc1 - double [K1,2], where K1 is count of points in first class

% sc2 - double [K2,2], where K2 is count of points in second class

c1 = mean(sc1);% C1 - the center of the first group

c2 = mean(sc2);% C2 - the center of the second group

sc1 = get_border(sc1);% any border - ellipse or convex polygon

sc2 = get_border(sc2);

 % find A1,A2

 for i = 1:size(sc1,1)

 proj1(i) = (c1-c2)*(sc1(i,:)-c2)'/(sqrt((c1-c2)*(c1-c2)'));

 end

 for i = 1:size(sc2,1)

 proj2(i) = (c2-c1)*(sc2(i,:)-c1)'/(sqrt((c1-c2)*(c1-c2)'));

 end

 [~,a1] = min(proj1);

 a1 = sc1(a1,:);

 [~,a2] = min(proj2);

 a2 = sc2(a2,:);

 % find D1,D2

 di1 = find_d(a1,c1,c2);

5

 di2 = find_d(a2,c1,c2);

 % find RP

 c1c2 = sqrt((c1-c2)*(c1-c2)');

 c2d2 = sqrt((c2-di2)*(c2-di2)');

 c1d1 = sqrt((c1-di1)*(c1-di1)');

 RP = (c1c2-c2d2)/c1d1;

end

function[res] = find_d(a,ci1,ci2)

 eps = 10^(-5);

 n1 = ci2(1) - ci1(1);

 n2 = ci2(2) - ci1(2);

 if abs(n2) < eps && abs(n1) < eps

 res = a;

 elseif abs(n2) < eps

 res = [a(1),ci1(2)];

 elseif abs(n1) < eps

 res = [ci1(1),a(2)];

 elseif abs(n2-1) < eps

 de1 = (a(1)*n1^2+a(2)*n1-ci1(2)*n1+ci1(1))/(n1^2+1);

 de2 = a(2)-n1*(de1-a(1))/n2;

 res = [de1,de2];

 else

 e = -1/n1-n1;

 g=n2-1/n2;

 f=ci1(2)/n2-ci1(1)/n1-n1*a(1)-n2*a(2);

 de1 = (a(1)*n1+a(2)*n2+n2*f/g)/(n1+n2*e/g);

 de2 = a(2)-n1*(de1-a(1))/n2;

 res = [de1,de2];

 end

end

function[nodes] = get_border (X)%convex polygon

 X = unique(X,'rows');

 if size(X,1) == 2

 nodes = X;

 else

 [~,i] = min(X(:,2));

 nodes(1,:) = X(i,:);

 X(i,:) = [];

 for i = 1:size(X,1)

6

 angle(i) = acot((X(i,2)-nodes(1,2))/(X(i,1)-nodes(1,1)));%acot == arc cotangent

 end

 [angle,i] = sort(angle,'descend');

 X = X(i,:);

 X(end+1,:) = nodes(1,:);

 nodes = [X(end-1,:);nodes;X(1,:)];

 i = 2;

 while i <= length(angle)+1

 if isLeft(nodes(end-2,:),nodes(end-1,:),nodes(end,:)) > 0

 nodes(end+1,:) = X(i,:);

 i = i + 1;

 else

 nodes(end-1,:) = [];

 end

 end

 end

end

function[res] = isLeft(x0,x1,x2)

 res = ((x1(1)-x0(1))*(x2(2)-x0(2)) - (x2(1)-x0(1))*(x1(2)-x0(2)));

end

function[res] = dist(x)

 res = sqrt(x(1)^2+x(2)^2);

end

