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                            (a)                        (b) 

Figure S1. Fluorescence spectra of honey samples with added fluorophores: (a) intercalated thiazole orange 

(TO, ratio DNA-2 : TO = 1 : 105, λex = 320 nm). With large amounts of the dye (TO:DNA ratios greater than 

1:53), the intrinsic fluorescence of honey is quenched, and only a TO emission peak is observed in the 

spectrum. The largest number of discriminated groups was achieved with the TO:DNA-2 ratio of 1:53; (b) 

Ru(bpy)32+ (50 L of 1×10–5 mol/L solution added to each well). The outlaying red spectrum belongs to a 

deeply colored sample. 
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                         (b) 

Figure S2. Scores plots of the visible region reflection images of honey samples in the 96-well plates: (a) 

without added Ru(bpy)32+, (b) in the presence of Ru(bpy)32+.  Conditions are the same as used in 

fluorescence studies. 
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Table S1. The number of discriminated groups of points in the scores plots of 23 honey samples with added 

thiazole orange (TO) intercalated into DNA-2 (TO–DNA-2 fluorophore). The groups were considered 

separated if their confidence ellipses did not intersect . 

Composition of the Blend (Ratio 

TO:DNA) 

Number of Discriminated Groups of Points in 

the Scores Plot 

by Full Spectrum 

(400-800 nm) 

by One Peak 

Shortwave Longwave 

Honey 7 8 – 

Honey + DNA 11 10 – 

Honey + DNA + TO (1:6) 10 8 5 

Honey + DNA + TO (1:21) 8 5 5 

Honey + DNA + TO (1:53) 9 – 12 

Honey + DNA + TO (1:105) 4 – 6 

Honey + DNA + TO (1:210) 4 – 5 
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Standard formulas for the calculation of confidence ellipses (based on the instruction to Origin 

software) 

Assuming the pair of variables (Х, Y) conforms to a bivariate normal distribution, we can 

examine the correlation between the two variables using a confidence ellipse. The confidence ellipse 

is centered at (𝑥̅, 𝑦̅) (for a given dataset (𝑥𝑖 , 𝑦𝑖), 𝑖 =  1, 2, … 𝑛, where x is the independent variable and 

y is the dependent variable), and the major semiaxis a and semiaxis b equal: 
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where 𝜎𝑖
2is the variance equal. 

For a given confidence level of (1-α) the confidence ellipse is defined as: 
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The inclination angle of the ellipse is defined as: 
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Matlab function for relative position (RP) calculation (composed by the authors) 

function[RP] = relative_position (sc1,sc2) 

% sc1 - double [K1,2], where K1 is count of points in first class 

% sc2 - double [K2,2], where K2 is count of points in second class 

c1 = mean(sc1);% C1 - the center of the first group  

c2 = mean(sc2);% C2 - the center of the second group   

sc1 = get_border(sc1);% any border - ellipse or convex polygon 

sc2 = get_border(sc2); 

 % find A1,A2 

 for i = 1:size(sc1,1) 

  proj1(i) = (c1-c2)*(sc1(i,:)-c2)'/(sqrt((c1-c2)*(c1-c2)')); 

 end 

 for i = 1:size(sc2,1) 

  proj2(i) = (c2-c1)*(sc2(i,:)-c1)'/(sqrt((c1-c2)*(c1-c2)')); 

 end 

 [~,a1] = min(proj1); 

 a1 = sc1(a1,:); 

 [~,a2] = min(proj2); 

 a2 = sc2(a2,:); 

 % find D1,D2 

 di1 = find_d(a1,c1,c2); 
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 di2 = find_d(a2,c1,c2); 

 % find RP 

 c1c2 = sqrt((c1-c2)*(c1-c2)'); 

 c2d2 = sqrt((c2-di2)*(c2-di2)'); 

 c1d1 = sqrt((c1-di1)*(c1-di1)'); 

 RP = (c1c2-c2d2)/c1d1; 

end 

 

function[res] = find_d(a,ci1,ci2) 

 eps = 10^(-5); 

 n1 = ci2(1) - ci1(1); 

 n2 = ci2(2) - ci1(2); 

 if abs(n2) < eps && abs(n1) < eps 

  res = a; 

 elseif abs(n2) < eps 

  res = [a(1),ci1(2)]; 

 elseif abs(n1) < eps 

  res = [ci1(1),a(2)]; 

 elseif abs(n2-1) < eps 

  de1 = (a(1)*n1^2+a(2)*n1-ci1(2)*n1+ci1(1))/(n1^2+1); 

  de2 = a(2)-n1*(de1-a(1))/n2; 

  res = [de1,de2]; 

 else 

  e = -1/n1-n1; 

  g=n2-1/n2; 

  f=ci1(2)/n2-ci1(1)/n1-n1*a(1)-n2*a(2); 

  de1 = (a(1)*n1+a(2)*n2+n2*f/g)/(n1+n2*e/g); 

  de2 = a(2)-n1*(de1-a(1))/n2; 

  res = [de1,de2]; 

 end 

end 

 

function[nodes] = get_border (X)%convex polygon 

    X = unique(X,'rows'); 

    if size(X,1) == 2 

        nodes = X; 

    else 

        [~,i] = min(X(:,2)); 

        nodes(1,:) = X(i,:); 

        X(i,:) = []; 

        for i = 1:size(X,1) 
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            angle(i) = acot((X(i,2)-nodes(1,2))/(X(i,1)-nodes(1,1)));%acot == arc cotangent 

        end 

        [angle,i] = sort(angle,'descend'); 

        X = X(i,:); 

        X(end+1,:) = nodes(1,:); 

        nodes = [X(end-1,:);nodes;X(1,:)]; 

        i = 2; 

        while i <= length(angle)+1 

            if isLeft(nodes(end-2,:),nodes(end-1,:),nodes(end,:)) > 0 

                nodes(end+1,:) = X(i,:); 

                i = i + 1; 

            else 

                nodes(end-1,:) = []; 

            end 

        end 

    end 

end 

 

function[res] = isLeft(x0,x1,x2) 

    res = ((x1(1)-x0(1))*(x2(2)-x0(2)) - (x2(1)-x0(1))*(x1(2)-x0(2))); 

end 

 

function[res] = dist(x) 

    res = sqrt(x(1)^2+x(2)^2); 

end 

 

 


