
sensors

Article

A Lightweight Authentication and Key Agreement
Schemes for IoT Environments

Dae-Hwi Lee and Im-Yeong Lee *

Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Korea;
leedh527@sch.ac.kr
* Correspondence: imylee@sch.ac.kr; Tel.: +82-41-530-1323

Received: 10 August 2020; Accepted: 16 September 2020; Published: 18 September 2020
����������
�������

Abstract: In the Internet of Things (IoT) environment, more types of devices than ever before are
connected to the internet to provide IoT services. Smart devices are becoming more intelligent
and improving performance, but there are devices with little computing power and low storage
capacity. Devices with limited resources will have difficulty applying existing public key cryptography
systems to provide security. Therefore, communication protocols for various kinds of participating
devices should be applicable in the IoT environment, and these protocols should be lightened for
resources-restricted devices. Security is an essential element in the IoT environment, so for secure
communication, it is necessary to perform authentication between the communication objects and to
generate the session key. In this paper, we propose two kinds of lightweight authentication and key
agreement schemes to enable fast and secure authentication among the objects participating in the IoT
environment. The first scheme is an authentication and key agreement scheme with limited resource
devices that can use the elliptic curve Qu–Vanstone (ECQV) implicit certificate to quickly agree on the
session key. The second scheme is also an authentication and key agreement scheme that can be used
more securely, but slower than first scheme using certificateless public key cryptography (CL-PKC).
In addition, we compare and analyze existing schemes and propose new schemes to improve security
requirements that were not satisfactory.

Keywords: ECQV implicit certificate; CL-PKC; authentication; key agreement

1. Introduction

The Internet of Things (IoT) is an environment/technology in which heterogeneous devices
connected to the internet provide various services. Data collected by sensors and actuators are
processed by smartphones. The number of IoT devices connected to the internet will increase rapidly
in the 5G era [1,2]. People, objects, and spaces are becoming increasingly interconnected. Many
countries, including Korea, are investing heavily in the field. The first IoT environment was the smart
home, in which IoT technology connects household appliances to the internet. The user can remotely
control air conditioners or the boiler to adjust the temperature. Many products featuring artificial
intelligence are being released [3]. Mass-produced devices are becoming lighter, and smart buildings,
factories, and cities are under construction [4]. Previously, devices could not be connected directly
to the internet, requiring a gateway. Today, direct connections allow devices (such as smartphones)
to interact. Security is of prime concern, particularly authentication and key management; the latter
creates the session keys required for secure communication after authentication. Authentication is an
important technology that can be applied in the perception layer and transportation layer, which are the
basis of the IoT service [5]. However, existing authentication protocols are inadequate in environments
featuring multiple devices.

Sensors 2020, 20, 5350; doi:10.3390/s20185350 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8536-4262
http://dx.doi.org/10.3390/s20185350
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/18/5350?type=check_update&version=2

Sensors 2020, 20, 5350 2 of 19

Figure 1 shows a smart factory wherein IoT devices monitor and control the production
equipment [6]. Authentication and key negotiation are required to deliver information quickly and
securely. Similarly, when data are sent to the manufacturing execution system (MES), authentication
and key agreement must be performed by end-to-end communication via a gateway (GW). However,
existing public key infrastructure (PKI)-based authentication is too slow in real-time environments.

Sensors 2020, 20, x FOR PEER REVIEW 2 of 18

Figure 1 shows a smart factory wherein IoT devices monitor and control the production

equipment [6]. Authentication and key negotiation are required to deliver information quickly and

securely. Similarly, when data are sent to the manufacturing execution system (MES), authentication

and key agreement must be performed by end-to-end communication via a gateway (GW). However,

existing public key infrastructure (PKI)-based authentication is too slow in real-time environments.

Figure 1. Example model: smart factory environments. MES, manufacturing execution system; CA,

certificate authority.

Here, we developed authentication and key agreement protocols that create secure keys after

mutual authentication to allow IoT objects to communicate. The first scheme allows rapid

authentication and key agreement using an implicit certificate termed the elliptic curve Qu–Vanstone

(ECQV). Implicit certificate is a way to implicitly authenticate the other party by deriving the public

key from the certificate. The second scheme is more secure than the first, but slower, and is an

authentication and key agreement using the certificateless public key cryptosystem (CL-PKC). Both

schemes use identity (ID)-based PKCs; the first scheme features only implicit authentication. The

second scheme incorporates signature information into the public user key.

The contributions of this paper can be summarized as follows.

1. We analyze existing lightweight authentication and key agreement schemes for IoT

environments.

2. In an environment where fast communication is required, we propose a scheme that enables

rapid mutual authentication and key agreement through ECQV implicit certificates. This scheme

provides implicit authentication for public keys (Scheme 1).

3. Although slower than Scheme 1, we propose an efficient authentication and key agreement

scheme based on CL-PKC that allows explicit verification of public keys (Scheme 2).

This paper is organized as follows. Section 2 contains more details on implicit certificates and

CL-PKCs. Section 3 pertains to the security requirements. Our two schemes and their development

are described in Sections 4 and 5, respectively. Section 6 contains the conclusion.

2. Background and Related Work

In this section, we discuss background and related work. First, we examine what type of

authentication and key agreement (AKA) is used in the recent IoT environment. Further, we analyze

the AKA schemes using public key certificates and examine the ECQV implicit certificate. We also

analyze the certificateless-based AKA (CL-AKA) schemes using the certificateless PKC. Finally, we

analyze the existing schemes.

Figure 1. Example model: smart factory environments. MES, manufacturing execution system; CA,
certificate authority.

Here, we developed authentication and key agreement protocols that create secure keys after
mutual authentication to allow IoT objects to communicate. The first scheme allows rapid authentication
and key agreement using an implicit certificate termed the elliptic curve Qu–Vanstone (ECQV). Implicit
certificate is a way to implicitly authenticate the other party by deriving the public key from the
certificate. The second scheme is more secure than the first, but slower, and is an authentication
and key agreement using the certificateless public key cryptosystem (CL-PKC). Both schemes use
identity (ID)-based PKCs; the first scheme features only implicit authentication. The second scheme
incorporates signature information into the public user key.

The contributions of this paper can be summarized as follows.

1. We analyze existing lightweight authentication and key agreement schemes for IoT environments.
2. In an environment where fast communication is required, we propose a scheme that enables

rapid mutual authentication and key agreement through ECQV implicit certificates. This scheme
provides implicit authentication for public keys (Scheme 1).

3. Although slower than Scheme 1, we propose an efficient authentication and key agreement
scheme based on CL-PKC that allows explicit verification of public keys (Scheme 2).

This paper is organized as follows. Section 2 contains more details on implicit certificates and
CL-PKCs. Section 3 pertains to the security requirements. Our two schemes and their development are
described in Sections 4 and 5, respectively. Section 6 contains the conclusion.

2. Background and Related Work

In this section, we discuss background and related work. First, we examine what type of
authentication and key agreement (AKA) is used in the recent IoT environment. Further, we analyze
the AKA schemes using public key certificates and examine the ECQV implicit certificate. We also

Sensors 2020, 20, 5350 3 of 19

analyze the certificateless-based AKA (CL-AKA) schemes using the certificateless PKC. Finally,
we analyze the existing schemes.

2.1. Authentication and Key Agreement (AKA)

The IoT requires efficient and secure key management. Many objects are interconnected,
and AKA is required for secure communication [7]. Key management protocols are divided into key
distributions and key agreements (or key exchanges). During key distribution, a sender requesting
communication generates a session key, and a receiver decrypts that key. Key agreement calculates
a session key via the exchange of random values; the key is not transmitted directly. In general,
the IoT uses key agreement because the risk of secret key exposure falls when sessional keys are
generated via communication between two objects. However, additional authentication processes are
required; most basic Diffie–Hellman key agreement schemes are vulnerable to man-in-the-middle and
masquerade attacks [8], because the key agreement protocol per se does not feature authentication of
mutual objects. Thus, an authentication process is added, and key agreement is performed sequentially.
In the IoT environment, it must be confirmed that two communicating objects are legitimate users or
devices; this is termed authentication. As shown in Figure 2, a mutual authentication protocol using
secret information generally requires an intermediary (e.g., a gateway) that manages secret information
and assists with authentication; this is termed three-party key exchange [9,10]. Another scheme features
mutual authentication via a certificate issued by a certificate authority (CA), as shown Figure 3 [11].
The advantage is that two objects can communicate directly; there is no gateway. If authentication is
lacking, it is possible that an attacker can participate in communication. After authentication, a session
key is required to transmit/receive secure data. The session key is securely distributed to users/objects
authenticated via the AKA protocol. In recent years, studies on performing mutual authentication
using blockchain in authentication and key agreement have also been conducted [12,13].

Sensors 2020, 20, x FOR PEER REVIEW 3 of 18

2.1. Authentication and Key Agreement (AKA)

The IoT requires efficient and secure key management. Many objects are interconnected, and

AKA is required for secure communication [7]. Key management protocols are divided into key

distributions and key agreements (or key exchanges). During key distribution, a sender requesting

communication generates a session key, and a receiver decrypts that key. Key agreement calculates

a session key via the exchange of random values; the key is not transmitted directly. In general, the

IoT uses key agreement because the risk of secret key exposure falls when sessional keys are

generated via communication between two objects. However, additional authentication processes are

required; most basic Diffie–Hellman key agreement schemes are vulnerable to man-in-the-middle

and masquerade attacks [8], because the key agreement protocol per se does not feature

authentication of mutual objects. Thus, an authentication process is added, and key agreement is

performed sequentially. In the IoT environment, it must be confirmed that two communicating

objects are legitimate users or devices; this is termed authentication. As shown in Figure 2, a mutual

authentication protocol using secret information generally requires an intermediary (e.g., a gateway)

that manages secret information and assists with authentication; this is termed three-party key

exchange [9,10]. Another scheme features mutual authentication via a certificate issued by a

certificate authority (CA), as shown Figure 3 [11]. The advantage is that two objects can communicate

directly; there is no gateway. If authentication is lacking, it is possible that an attacker can participate

in communication. After authentication, a session key is required to transmit/receive secure data. The

session key is securely distributed to users/objects authenticated via the AKA protocol. In recent

years, studies on performing mutual authentication using blockchain in authentication and key

agreement have also been conducted [12,13].

Figure 2. Mutual authentication flow with gateway.

Figure 3. Mutual authentication flow with certificate.

Figure 2. Mutual authentication flow with gateway.

Sensors 2020, 20, 5350 4 of 19

Sensors 2020, 20, x FOR PEER REVIEW 3 of 18

2.1. Authentication and Key Agreement (AKA)

The IoT requires efficient and secure key management. Many objects are interconnected, and

AKA is required for secure communication [7]. Key management protocols are divided into key

distributions and key agreements (or key exchanges). During key distribution, a sender requesting

communication generates a session key, and a receiver decrypts that key. Key agreement calculates

a session key via the exchange of random values; the key is not transmitted directly. In general, the

IoT uses key agreement because the risk of secret key exposure falls when sessional keys are

generated via communication between two objects. However, additional authentication processes are

required; most basic Diffie–Hellman key agreement schemes are vulnerable to man-in-the-middle

and masquerade attacks [8], because the key agreement protocol per se does not feature

authentication of mutual objects. Thus, an authentication process is added, and key agreement is

performed sequentially. In the IoT environment, it must be confirmed that two communicating

objects are legitimate users or devices; this is termed authentication. As shown in Figure 2, a mutual

authentication protocol using secret information generally requires an intermediary (e.g., a gateway)

that manages secret information and assists with authentication; this is termed three-party key

exchange [9,10]. Another scheme features mutual authentication via a certificate issued by a

certificate authority (CA), as shown Figure 3 [11]. The advantage is that two objects can communicate

directly; there is no gateway. If authentication is lacking, it is possible that an attacker can participate

in communication. After authentication, a session key is required to transmit/receive secure data. The

session key is securely distributed to users/objects authenticated via the AKA protocol. In recent

years, studies on performing mutual authentication using blockchain in authentication and key

agreement have also been conducted [12,13].

Figure 2. Mutual authentication flow with gateway.

Figure 3. Mutual authentication flow with certificate. Figure 3. Mutual authentication flow with certificate.

2.2. AKA with ECQV Implicit Certificate

A typical AKA protocol features key agreement based on the Diffie–Hellman approach. PKCs
resolve the key management problem of symmetric key cryptosystems, encrypting data or performing
digital signatures using both a private and public key. However, if public key authentication is lacking,
a man-in-the-middle attack is possible, and trust in the public key must be assumed. Currently, PKIs
featuring public key certificates signed by a third-party CA are used to ensure key reliability. However,
PKIs are complex; generation, distribution, storage, and disposal of public certificates are required,
and verification costs are high.

The ECQV scheme issues an implicit certificate as defined by standard efficient cryptography in
SECG SEC 4 [14]. Generally, a public key certificate issued to a user includes an identifier, the key, and a
digital signature. The user explicitly authenticates the message by verifying the digital signature using
the key and identifier. An implicit certificate includes only the identifier and public key recovery data.

The certificate and key are implicitly verified by computing the public key of the user via the
identifier and key recovery data. As no public key is included, an implicit certificate is smaller than a
public key certificate. The key is derived by elliptic curve cryptography (ECC); the key length is shorter
and computation is more rapid compared with other encryption schemes. An implicit certificate is
appropriate for a resource-limited IoT environment. Table 1 compares the ECC with the RSA public key
and certificate. Table 2 shows the key lengths and certificate sizes by security strength of comparison
of ECQV, elliptic curve digital signature algorithm (ECDSA), and RSA.

Table 1. A comparison of explicit and implicit certificate. PKI, public key infrastructure; ECC, elliptic
curve cryptography.

Explicit Certificate Implicit Certificate

Key Derivation Included in the certificate Must be calculated using
certificates and signatures

Public Key Verification Signature verification using a public key No verification process
Structure Identifier, public key, electronic signature Identifier, public key recovery data

Comparison The key and certificate sizes are relatively
large (PKI); slow

The key and certificate sizes are
relatively small (ECC); fast

Sensors 2020, 20, 5350 5 of 19

Table 2. A comparison of security strengths. ECQV, elliptic curve Qu–Vanstone.

Strength
Key Length (Bits) Certificate Size (Bits)

ECC RSA ECQV ECDSA RSA

80 192 1024 193 577 2048
112 224 2048 225 673 4096
128 256 3072 257 769 6144
192 384 7680 358 1153 15,360
256 521 15,360 522 1564 30,720

An ECQV implicit certificate can be used to perform the certificate-based AKA introduced in
Section 2.1. A session key is generated via Diffie–Hellman key exchange, and the public key is restored.
This reduces both the key length and certificate size (both are large in existing PKIs), and the session
key is generated quickly.

2.3. AKA with Pairing-Free Certificateless PKC

Shamir was the first to develop an ID-based cryptosystem allowing management of PKI
certificates [15]. In an ID-based PKC, the key distribution problem is solved using a known public key
(an ID) rather than an existing authorized certificate. At this time, a trusted third party termed a key
generation center (KGC) or a private key generator generates and issues a private key for each user ID.
However, all ID-based PKCs suffer from a key escrow problem; the KGC can decrypt all ciphertexts and
forge signatures because the KGC generates the private keys. In 2003, Al-Riyami et al. [16] developed
a CL-PKC to solve both the public key authentication and key escrow problems. In this cryptosystem,
the KGC generates only part of the user’s private and public keys, and the user completes the keys.
In other words, in a CL-PKC, the key escrow problem is solved because the KGC knows only some
of the private key. The CL-PKC cryptosystem allows data encryption, digital signature, and AKA.
The latter features an interactive protocol, and two users negotiate a common session key over a
network. Al-Riyami et al. were the first to develop certificateless authentication of key matching based
on a CL-PKC. However, as pairing is required, the computational efficiency is low.

2.4. Analysis of Existing Schemes

2.4.1. Fast AKA Schemes Including ECQV-Based AKA

In certificate-based AKA, an implicit certificate is received after a user is registered by a CA in
the form of a certificate. In ECQV-based AKA, authentication is performed by verifying the public
key of the implicit certificate. However, ownership of the public key remains unknown. Because
ECQV does not verify the integrity of a signature by reference to the digital signature of the public key
like PKI, but performs authentication by calculating the public key of the implicit certificate, public
key replacement and man-in-the-middle attacks are possible. This problem is the same for CL-AKA.
The ECQV implicit certificate is small and efficient, but some problems are apparent. First, unlike an
explicit certificate that explicitly validates another certificate, a signature, and a message, the ECQV
system verifies a certificate and a public key by calculating the public key from another certificate
without verifying the transmitted message; there is no signature function. Replay and spoofing attacks
are also possible. The sender requests an implicit certificate from the CA. As this is being transmitted
for authentication, the attacker seizes and retransmits it, thus pretending to be a legitimate sender.
Therefore, an implicit certificate should not be used alone; additional key agreement should be ensured
using a key calculated from the implicit certificate.

Recently, many AKA schemes that use the ECQV to protect against KGC masquerade and key
replace attacks have been proposed. In both 2015 [17] and 2017 [18], Sciancalepore et al. developed
efficient, ECQV-based, implicit certificate-based AKA protocols for IoT environments. However,
the work of [17] has a problem in that the session key generation information is exposed and there is

Sensors 2020, 20, 5350 6 of 19

no nonce in the message authentication code (MAC) value for the session information, so an external
attacker could generate the session key by intercepting the transmitted data. Using this session key,
masquerade attack was also possible. The work of [18] solved the problem of generating a session key,
as described above, but there was a problem that the transmitted data could be retransmitted and used.

In addition to this, many AKA schemes that are performed quickly are proposed, including [19–24].
Abdmeziem et al. [19] propose an end-to-end key management protocol for e-health applications.
The authors of [19] propose a protocol to ensure secure communication between constrained and
unconstrained nodes using third parties. However, if a third party has malicious intent, there is a
possibility of the session key being stolen and session hijacking through a man-in-the-middle attack.

Challa et al. [20] proposed an AKA scheme for cloud-assisted cyber-physical system (CPS) in
2018. The authors of [20] proposed a secure protocol for CPS environments such as smart grid through
a trust authority, but a user masquerade attack is possible because the cloud server does not check
the validity of the authentication request. In addition, there is a problem that communication can be
performed without generating a session key.

Wazid et al. proposed [21,22] in 2018. The authors of [21] propose an authentication and key
management protocol for a generic IoT network. A process in which a user performs a sensing node
and lightweight AKA through a smartcard is proposed. They [21] do not use public keys, only exclusive
or (XOR) operation, hash operation, and symmetric key encryption/decryption. Therefore, compared
with the public key schemes, it is more efficient in terms of operation time, but only provides safety
depending on the symmetric key. In addition, there is the problem that a malicious intermediate object
can pretend to be a node and a user.

The work of [22] proposes an authentication and key management protocol for a cloud-assisted
body area sensor network. A process in which a user executes a personal server and lightweight AKA
through a mobile device is proposed. As in [21], it is a scheme that uses only XOR, hash operation,
and symmetric key encryption/decryption, but it is an improved scheme by reducing unnecessary
communication processes in intermediate objects. However, because the public key is not used,
non-repudiation is not provided, and safety of parameters needs to be considered. Until recently,
Wazid proposed authentication and key management schemes for various environments such as
cloud-based IoT [23], fog computing services [24], Internet of Drones (IoD) [25], and implantable
medical devices deployment [26]. The basics of these schemes are the similar to [21,22], and satisfy the
security requirements in a specific environment.

2.4.2. CL-AKA Schemes

Generally, CL-AKA schemes feature the following six algorithms. The Set-Secret-Value,
Set-Private-Key, and Set-Public-Key algorithms are employed by the user to set the secret and
public key pair. In the key agreement phase, users A and B create a common session key required for
encryption via message exchange.

1. Setup: the KGC generates a public parameter and a master secret key (security parameter inputs).
2. Partial-Key-Extract: the KGC generates a user’s partial private and public keys using the public

parameter, master secret key, and user’s ID, and delivers it to the user.
3. Set-Secret-Value: the user creates secret information by inputting the public parameter and

his/her ID.
4. Set-Private-Key: the user sets a private key by inputting the public parameter, partial private key,

and secret information.
5. Set-Public-Key: the user sets a public key by inputting the public parameter, his/her partial public

key, and secret information.
6. Key Agreement: users A and B generate messages using their IDs, public keys, and temporary

keys. After exchanging messages, a common session key is generated using secret information.
If the protocol is successful, the session keys generated by the two communicators will be identical.

Sensors 2020, 20, 5350 7 of 19

CL-PKC-based authentication key agreement protocols without pairing were developed by
Geng et al. [27] and Hou et al. [28] to increase computational efficiency. However, the public key used
for AKA cannot be confirmed to be the public key of the sender, as described above. Efforts have
been made to resolve this problem. Since then, many CL-AKA schemes have been proposed [29–37].
There are two common security requirements for CL-PKC technologies. First, because the public key
and identifier must be verified without a certificate, a replacement attack on the public key is possible,
unlike the existing PKI-based cryptographic technology. This is an attack performed by an attacker
by replacing the user’s public key with a value generated by the attacker, and occurs because there
is no certificate that serves as a signature for the public key. In addition, in CL-PKC, KGC generates
partial secret keys to users, and attacks performed using partial secret keys should be considered.
Therefore, CL-AKA should also consider public key replacement attacks and partial private key attacks
by malicious KGC.

Yang et al. [29] proposed a certificateless key exchange scheme that does not use pairing operation
in 2011. Although we propose AKA based on Diffie–Hellman key exchange between users who
generated ID-based partial private keys through KGC, they are vulnerable to public key replacement
attacks. The attacker can perform the authentication and key agreement process by being disguised as
a legitimate participant through public key replacement, and can also generate the session key.

Kim et al. [30] proposed efficient CL-AKA between two objects in 2013. However, it is possible
to perform a masquerade attack by retransmitting a value for generating session key as public key
replacement attack.

Farouk et al. [31] proposes a two-party CL-AKA for the grid computing environment,
but masquerade attack is also possible through public key replacement attack, and there is the
problem that an attacker can legitimately generate a key. In addition, Xie et al. [32] and Park et al. [33]
proposed pairing-free CL-AKA in 2016, but both schemes can perform masquerade attacks through
public key replacement.

In Sun et al. [34] and Simplicio Jr et al. [35], because the partial key generated by KGC contains
only the information of the user’s identifier and the verification tag, only the identifier can actually be
checked. Later, Xie et al. [36] and Daniel et al. [37] solve this problem by including the information of
verification public key generated by the user and the identifier in the partial key generated by KGC.
However, public key replacement attacks are also possible in [36]. The authors of [37] argued that there
was no problem even if the partial key generated by KGC was transmitted publicly. However, if a
partial key is transmitted publicly, anyone can create values that are used as input when performing
hash operation on the value to be authenticated. Therefore, it is necessary to consider parameter safety.

3. Security Requirements

3.1. Mutual Authentication

The most important security aspect of an IoT environment is authentication. Mutual authentication
is essential during communications among multiple entities; key agreement is required.

3.2. Prevent Key Leakage

Authentication generates a session key for later use, and this must not be leaked. If an attacker
derives or steals a key, all transmitted data will be exposed. Therefore, the key must not be leaked as a
result of a public key replacement attack or replay attack.

3.3. Prevent Replay and Masquerade Attacks

Key leak is possible if a key is calculated via a transmitted message or retransmitted. The person
who retransmits may be disguised as a legitimate user. A spoofing attack compromises availability to
legitimate users; a party views the attacker as legitimate.

Sensors 2020, 20, 5350 8 of 19

4. Proposed Schemes

We develop two schemes allowing two objects to communicate directly when establishing AKA
in IoT environments. Existing ECQV-based key management protocols are at risk of node spoofing
caused by replay attacks. To solve this problem, Scheme 1 eliminates unnecessary key generation
processes and employs legitimate parameters. Scheme 2 is based on CL-AKA and proposes a way to
explicitly verify the identifier and public key. In this section, firstly, the proposed model is explained,
and the protocol for the two proposed schemes is explained in detail.

4.1. Proposed Model

The target model in this paper is an IoT service environment, and end-to-end authentication and
key agreement between two objects constituting the IoT environment can be applied. For example,
in the smart factory environment shown in Figure 1, IoT sensor devices located on the production
line must communicate in real time. If an external attacker device participates in the production
line network, it can transmit false information to the MES, causing financial and physical damage
to the factory. Therefore, production line devices must exchange data with each other in real time,
and Scheme 1 can be applied to environments that require such fast AKA. In addition, AKA is also
required when transmitting data collected by sensor devices to the MES or when commanding devices
from the MES. In particular, if the MES issues a command, sending an incorrect command message can
cause great damage as well. In this situation, more reliable communication than Scheme 1 is required,
and Scheme 2 can be applied. Figure 4 shows a model in which Schemes 1 and 2 can be applied in a
smart factory environment. In the existing CL-PKC, a partial key was created through KGC, which
generates a key, but it is unified and used as a CA to perform the roles of both Schemes 1 and 2. CA
manages ECQV implicit certificate and partial key.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

required when transmitting data collected by sensor devices to the MES or when commanding

devices from the MES. In particular, if the MES issues a command, sending an incorrect command

message can cause great damage as well. In this situation, more reliable communication than Scheme

1 is required, and Scheme 2 can be applied. Figure 4 shows a model in which Schemes 1 and 2 can be

applied in a smart factory environment. In the existing CL-PKC, a partial key was created through

KGC, which generates a key, but it is unified and used as a CA to perform the roles of both Schemes

1 and 2. CA manages ECQV implicit certificate and partial key.

Figure 4. Proposed Internet of Things (IoT) smart factory service model for Schemes 1 and 2.

4.2. AKA via an ECQV Implicit Certificate (Scheme 1)

In this section, we propose Scheme 1 using ECQV so that two objects can communicate directly

on authentication and key agreement in the IoT environment. In the existing ECQV-based key

management protocol, node masquerade due to replay attacks has been a problem. To solve this

problem, we propose an AKA protocol that reduces unnecessary processes in the key generation

process and uses legitimate parameters. Figure 5 shows the scenario of Scheme 1 and the system

parameters of Scheme 1 are as follows.

Figure 5. The scenario of Scheme 1. ECQV, elliptic curve Qu–Vanstone.

1. ∗: A communication participant (CA: certificate authority, A: device A, B: device B).

2. 𝐼𝐷∗: Identifier of the entity;

3. 𝑃𝑈∗, 𝑃𝑅∗: The public and private key pair of the entity;

Figure 4. Proposed Internet of Things (IoT) smart factory service model for Schemes 1 and 2.

4.2. AKA via an ECQV Implicit Certificate (Scheme 1)

In this section, we propose Scheme 1 using ECQV so that two objects can communicate directly
on authentication and key agreement in the IoT environment. In the existing ECQV-based key
management protocol, node masquerade due to replay attacks has been a problem. To solve this
problem, we propose an AKA protocol that reduces unnecessary processes in the key generation
process and uses legitimate parameters. Figure 5 shows the scenario of Scheme 1 and the system
parameters of Scheme 1 are as follows.

Sensors 2020, 20, 5350 9 of 19

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

required when transmitting data collected by sensor devices to the MES or when commanding

devices from the MES. In particular, if the MES issues a command, sending an incorrect command

message can cause great damage as well. In this situation, more reliable communication than Scheme

1 is required, and Scheme 2 can be applied. Figure 4 shows a model in which Schemes 1 and 2 can be

applied in a smart factory environment. In the existing CL-PKC, a partial key was created through

KGC, which generates a key, but it is unified and used as a CA to perform the roles of both Schemes

1 and 2. CA manages ECQV implicit certificate and partial key.

Figure 4. Proposed Internet of Things (IoT) smart factory service model for Schemes 1 and 2.

4.2. AKA via an ECQV Implicit Certificate (Scheme 1)

In this section, we propose Scheme 1 using ECQV so that two objects can communicate directly

on authentication and key agreement in the IoT environment. In the existing ECQV-based key

management protocol, node masquerade due to replay attacks has been a problem. To solve this

problem, we propose an AKA protocol that reduces unnecessary processes in the key generation

process and uses legitimate parameters. Figure 5 shows the scenario of Scheme 1 and the system

parameters of Scheme 1 are as follows.

Figure 5. The scenario of Scheme 1. ECQV, elliptic curve Qu–Vanstone.

1. ∗: A communication participant (CA: certificate authority, A: device A, B: device B).

2. 𝐼𝐷∗: Identifier of the entity;

3. 𝑃𝑈∗, 𝑃𝑅∗: The public and private key pair of the entity;

Figure 5. The scenario of Scheme 1. ECQV, elliptic curve Qu–Vanstone.

1. ∗: A communication participant (CA: certificate authority, A: device A, B: device B).
2. ID∗: Identifier of the entity;
3. PU∗, PR∗: The public and private key pair of the entity;
4. E: An elliptic curve on group G of prime order q;
5. P: The generator on cyclic group G used to calculate the certificate;
6. (C∗, γ∗): The ECQV implicit certificate of the entity;
7. H(·): The cryptographic hash function;
8. DS: The shared secret value used by the two objects to agree on the session key;
9. KDF: The key derivation function;
10. SK: The agreed key to be used in the current session.

4.2.1. Setup Phase

In the setup phase, the devices participating in the IoT are registered in the CA. An ECQV implicit
certificate is issued via registration. Thereafter, in the AKA phase, entities with implicit certificates can
authenticate and negotiate keys without the intervention of the CA. Below, A sets up the issue of an
implicit certificate (CA,γA).

Step 1. A selects a random positive integer kA and generates a public elliptic curve point RA = kA·P
and sends it to the CA.

Step 2. The CA selects a random positive integer kCA and generates an implicit certificate CA and
an implicit signature γA (points on the elliptic curve), as follows, and sends them to A. The full implicit
certificates are (CA,γA) pairs:

CA = RA + kCA·P (1)

γA = PRCA + kCA·H(PA, IDA) (2)

Step 3. A computes a private key PRA and a public key PUA, as shown below. Thus, A can
generate pairs of implicit certificates (CA,γA) and public keys (PRA, PUA) through the CA. The implicit
certificate is verified if the public key can be successfully restored from the implicit certificate because
the content is calculated by the CA when generating the public key pair.

PRA = γA + kA·H(CA, IDA) (3)

PUA = PRA·P (4)

Sensors 2020, 20, 5350 10 of 19

4.2.2. Authentication and Key Agreement Phase

The entities registered in the CA engage in mutual authentication using their implicit certificates
for session key generation that guarantees secure communication; they agree on a session key. During
this process, a key derivation function that prevents the possible replay and spoofing attacks to which
conventional schemes are exposed is applied. Below, the AKA that allows A to communicate securely
with B is described.

Step 1. A selects a random positive integer rA and sends an ECQV implicit certificate (CA,γA) to
B together with rA and a personal identifier.

Step 2. B restores the public key PUA using the implicit certificate and identifier received from A
as follows. This confirms that A has been issued a certificate by the CA.

PUA = PUCA + CA·H(CA, IDA) (5)

Step 3. B calculates the shared secret value DS to be used by A and B when generating a session
key as follows:

DS = PRB·PUA = PRB·PRA·P (6)

Step 4. B selects any positive integer rB. Using this, the rA and identifier received from A, as well
as the DS, are inputs to the key derivation function KDF, which calculates KDS as follows:

KDS = KDF(DS, IDA, IDB, rA, rB) (7)

Step 5. B sends rB, its implicit certificate (CB,γB), and an identifier IDB to A. Then, the session key
SK = H(KDS) is calculated to prepare for secure communication with A.

Step 6. A restores the public key PUB as follows using its implicit certificate and the identifier
received from B. This confirms that B has successfully received a certificate from the CA.

PUB = PUCA + CB·H(CB, IDB) (8)

Step 7. A calculates the shared secret value DS to be used to generate the same session key
as created by B as follows. DS can be computed by only A and B using the elliptic curve discrete
logarithm approach.

DS = PRA·PUB = PRA·PRB·P (9)

Step 8. A inputs the identifier rB received from B and the DS generated by itself into the key
derivation function KDF to calculate a KDS, which is the same as that generated by B, as follows:

KDS = KDF = (DS, IDA, IDB, rA, rB) (10)

Step 9. A calculates the session key SK = H(KDS) using KDS. Thereafter, an encrypted message
can be transmitted to B (which prepared the secure communication). Interaction is now possible.

4.3. Proposed AKA with Pairing-Free Certificateless PKC (Scheme 2)

Scheme 2 (based on CL-AKA) confirms the existence of a public key in Scheme 1. Two objects can
communicate directly during AKA in an IoT environment. Current ECQV-based key management
protocols cannot confirm the existence of a public key. They are faster than AKA schemes based
on PKI certificates, but their security strengths are lower. To solve this problem, we link the public
key to the verification value. Scheme 2 verifies the user and public keys. Scheme 2 features the
certificateless-based AKA introduced in 2.4; however, to bind the public key to the signature generated
by the CA, the user first generates a key pair and a partial secret key in the CA. This is the scheme
described previously [37]. Figure 6 shows the scenario of Scheme 2 and the system parameters of
Scheme 2 are as follows.

Sensors 2020, 20, 5350 11 of 19

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18

Step 6. A restores the public key 𝑃𝑈𝐵 as follows using its implicit certificate and the identifier

received from B. This confirms that B has successfully received a certificate from the CA.

𝑃𝑈𝐵 = 𝑃𝑈𝐶𝐴 + 𝐶𝐵 ∙ 𝐻(𝐶𝐵, 𝐼𝐷𝐵) (8)

Step 7. A calculates the shared secret value DS to be used to generate the same session key as

created by B as follows. DS can be computed by only A and B using the elliptic curve discrete

logarithm approach.

𝐷𝑆 = 𝑃𝑅𝐴 ∙ 𝑃𝑈𝐵 = 𝑃𝑅𝐴 ∙ 𝑃𝑅𝐵 ∙ 𝑃 (9)

Step 8. A inputs the identifier 𝑟𝐵 received from B and the DS generated by itself into the key

derivation function KDF to calculate a 𝐾𝐷𝑆, which is the same as that generated by B, as follows:

𝐾𝐷𝑆 = 𝐾𝐷𝐹 = (𝐷𝑆, 𝐼𝐷𝐴, 𝐼𝐷𝐵, 𝑟𝐴, 𝑟𝐵) (10)

Step 9. A calculates the session key 𝑆𝐾 = 𝐻(𝐾𝐷𝑆) using 𝐾𝐷𝑆. Thereafter, an encrypted message

can be transmitted to B (which prepared the secure communication). Interaction is now possible.

4.3. Proposed AKA with Pairing-Free Certificateless PKC (Scheme 2)

Scheme 2 (based on CL-AKA) confirms the existence of a public key in Scheme 1. Two objects

can communicate directly during AKA in an IoT environment. Current ECQV-based key

management protocols cannot confirm the existence of a public key. They are faster than AKA

schemes based on PKI certificates, but their security strengths are lower. To solve this problem, we

link the public key to the verification value. Scheme 2 verifies the user and public keys. Scheme 2

features the certificateless-based AKA introduced in 2.4; however, to bind the public key to the

signature generated by the CA, the user first generates a key pair and a partial secret key in the CA.

This is the scheme described previously [37]. Figure 6 shows the scenario of Scheme 2 and the system

parameters of Scheme 2 are as follows.

Figure 6. The scenario of Scheme 2.

1. ∗: A communication participant (CA: certificate authority, A: device A, B: device B).

2. 𝐼𝐷∗: The identifier of an entity;

3. 𝐸: An elliptic curve on group G of prime order q;

4. 𝑃: The generator of cyclic group G;

5. 𝑠: The CA master secret key;

6. 𝑃𝑝𝑢𝑏: The CA master public key;

7. 𝑠𝑣∗, 𝑝𝑣∗: The verification private/public key pair generated by an entity;

8. 𝐷∗: The partial key of an entity;

9. 𝑃𝑟∗, 𝑃𝑢∗: The full private and public key pair;

Figure 6. The scenario of Scheme 2.

1. ∗: A communication participant (CA: certificate authority, A: device A, B: device B).
2. ID∗: The identifier of an entity;
3. E: An elliptic curve on group G of prime order q;
4. P: The generator of cyclic group G;
5. s: The CA master secret key;
6. Ppub: The CA master public key;

7. sv∗, pv∗: The verification private/public key pair generated by an entity;
8. D∗: The partial key of an entity;
9. Pr∗, Pu∗: The full private and public key pair;
10. H1(·): The mapping hash function H1 : {0, 1}∗ ×G2

→ Z∗q ;

11. H2(·): The mapping hash function H2 : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ ×G4
→ Z∗q;

12. Hk(·): The one-way hash function;
13. SK: The session key to be used (generated via agreement).

4.3.1. Setup Phase

In the setup phase, the CA generates the initial parameters employing the Setup (k) algorithm
that uses the security parameter k. The CA then obtains a master secret key s and generates a master
public key Ppub = s·P. The CA then creates public parameters and registers devices that request
registration. The devices create individual public and private key pairs using the UserKeyGeneration
(params, IDi) algorithm and send their identifiers and public keys to the CA for registration. The CA
signs off on device requests via the ExtractPartialKey (params, s, IDi, pvi) algorithm and generates
and returns partial secret keys (the ppki values). Each device receiving a partial secret key generates a
static private/public key pair using the SetPrivateKey (params, IDi, ppki, svi) and SetPublicKey (params,
IDi, ppki, pvi) algorithms.

Step 1. The CA selects a security parameter k and generates a master secret key s. Then, a master
public key Ppub = s·P is generated, as is the public parameter params; both are released via the Setup
(k) algorithm as follows:

params =
{
G, q, P, Ppub, H1, H2, Hk

}
(11)

Step 2. A device i that wishes to receive a partial secret key from the CA first generates an
individual public/private key pair pui, svi employing the UserKeyGeneration (params, ID) algorithm.
Device i chooses xi ∈R Z∗q and calculates pui = xi·P and svi as svi = xi.

Sensors 2020, 20, 5350 12 of 19

Step 3. Device i sends its identifier IDi and public key pui to the CA, which uses the
ExtractPartialKey (params, s, IDi, pvi) algorithm to generate a partial secret key for that device.
The CA selects ri ∈R Z∗q and generates Ri = ri·P and a signature zi = ri + s·H1(IDi, pvi, Ri) for the
public key. The CA then transmits the partial secret key ppki = (Ri, zi) to device i via a secure channel.

Step 4. Device i receiving the partial secret key ppki generates a personal static secret key Pri
employing SetPrivateKey (params,IDi, ppki, svi) and sends a static public key Pri via SetPublicKey
(params,IDi, ppki, pvi). Pui is generated as follows:

Pri = svi + zi (12)

Pui = (pui, Ri, Zi = zi·P) (13)

4.3.2. Authentication and Key Agreement Phase

When A, which has received a partial secret key from the CA, wishes to communicate securely
with B via AKA, the KeyAgreement algorithm is enlivened.

Step 1. A selects an ephemeral secret key tA ∈R Z∗q and computes an ephemeral public key
TA = tA·P.

Step 2. A sends IDB, IDA, PuA, and TA to B.
Step 3. B verifies TA ∈ G for the TA received from A and confirms that this is the public key of A

generated by the CA, using the following formula:

ZA? = RA + Ppub·H1(IDA, puA, RA) (14)

Step 4. When verification is complete, B also chooses an ephemeral secret key tB ∈R Z∗q and
computes an ephemeral public key TB = tB·P.

Step 5. B sends IDA, IDB, PuB, and TB to A.
Step 6. A verifies TB ∈ G for the TB received from B and confirms that it is the public key of B

generated by the CA using the following Equation:

ZB? = RB + Ppub·H1(IDB, puB, RB) (15)

Step 7. If verification is confirmed, A calculates SB = puB + ZB, and B calculates SA = puA + ZA.
Both A and B generate the session information data e and d as follows:

e = H2(IDA, IDB, SA, SB, TA, TB) (16)

d = H2(IDB, IDA, SB, SA, TB, TA) (17)

Step 8. A creates σAB and B creates σBA as follows:

σAB = (dtA + PrA)·(eTB + SB) (18)

σBA = (etB + PrB)·(dTA + SA) (19)

The equivalence of σAB and σBA above is verified as follows in
Si = xiP + ziP = (xi + zi)·P = Pri·P:

σAB = (dtA + PrA)·(eTB + SB)

= dtA·eTB + dtA·SB + PrA·eTB + PrA·SB

= detAtBP + dtAPrBP + etBPrAP + PrAPrBP
= (etB + PrB)·(dTA + SA) = σBA

(20)

Thereafter, H(σAB) and H(σBA) are calculated using σAB, σBA and used as session keys.

Sensors 2020, 20, 5350 13 of 19

5. Analysis of Proposed Schemes

We now compare and analyze the two schemes and show that they meet the security requirements
set out in Section 3.

5.1. Mutual Authentication

As mentioned above, the most important security factor in an IoT environment is authentication.
Mutual authentication is essential to guarantee secure communication, as is key agreement. Our two
schemes are key agreement protocols, and implicit certificates are issued via ECQV, as in previous
works. If an entity’s public key can be restored using an implicit certificate, the user is implicitly
authenticated. In the real world, a replay or a spoof attack, or a key leak, may occur.

In Scheme 1, the elliptic curve Diffie–Hellman (ECDH) algorithm is applied using a public key
restored by an implicit certificate, solving certain problems. Equation (6) shows that the DS is generated
via an ECDH-based key agreement that only A and B can calculate. It is possible to generate a KDS that
in turn generates a session key (via the key derivation function KDF) by inputting IDA, IDB and rA, rB;
these are the identifiers and random positive integers (nonces) used to create the DS and establish the
session. The only entities that can calculate these are A and B, and mutual authentication is assured
via calculation of KDS.

Scheme 2 performs authentication using partial keys based on the Schnorr signature. Each partial
key is generated by the CA and is verified using both the CA and object’s public key. If A first sends
a public key PuA and tag TA to B, the validity of A’s public key can be checked using Equation (14).
Similarly, if B sends a public key PuB and tag TB to A, the validity can be checked employing
Equation (15). Mutual authentication is performed in this manner.

5.2. Prevent Key Leakage

In existing schemes [17,18,29,31,36], an attacker can generate a key by simply eavesdropping
on transmitted data. To solve this problem, the key is generated during authentication and the key
agreement phase in the session. An arbitrary value was used during key agreement, but key leakage
via a replay attack was not prevented. In our two present schemes, key leakage is possible if anyone
other than A and B can generate a session key. Therefore, we make it impossible to derive a key via
messages transmitted over a public channel.

In Scheme 1, calculation of PUA (the public key of A; Equation (5)) can be performed by an attacker.
However, Equation (6), which calculates the secret value DS for calculation of the session key, can be
performed only using the private key of B. An attacker seeking the session key SK = H(KDS) faces
considerable difficulty, equivalent to that experienced when seeking to solve the elliptic curve discrete
logarithm problem (ECDLP) of PRB·PUA = PRB·PRA·P.

In Scheme 2, the public keys A and B received from the CA can be validated using Equations (14)
and (15). A’s public key PuA is composed of puA, RA, and ZA. Even if the attacker knows the public
key and calculates e, d using public information, it is difficult to calculate a session key σAB or σBA
because the attacker lacks the secret keys A and B. In other words, it is difficult for an attacker to
obtain a session key; the difficulty is identical to that experienced when seeking to solve the ECDLP of
(puA + ZA) = (svA + zA)·P to determine the secret key A.

5.3. Prevent Replay and Masquerade Attacks

Most existing schemes use ECDH for key agreement. The attacker participates in communication
using the certificate and the arbitrary value transmitted from a sender to a receiver; both replay and
spoof attacks are possible. Existing schemes aim to participate in communication by disguising as a
legitimate user through key theft, replay, and public key replacement attacks. Therefore, if a security
threat occurs in the existing schemes, it becomes a cause of masquerade attack. In our schemes, keys are

Sensors 2020, 20, 5350 14 of 19

generated by adding identifiers of A and B; these are not available to anyone who seeks to attack using
the rA, rB, and KDS generated by the user.

5.4. Efficiency

The simulation environment featured an Intel i5-4690 3.50-GHz CPU processor, 16 GB RAM, and the
Windows 10 operating system. In both schemes, the Koblitz elliptic curve y2 = x3 + ax + b (mod p),
where a = 1 and b is a 163 bit random prime defined on F2163 , was used to provide safety equivalent to
that of a 1024 bit RSA.

In Scheme 1, we reduced the number of communication times compared with the existing [17–22]
scheme, which enabled us to speed up the process of authentication and key agreement. Figure 7
compares the times required for AKA by the ECDSA with existing schemes and our schemes (which are
faster). The proposed scheme using ECQV is faster than using general ECDSA, and the speed of the
proposed scheme is slightly faster. Table 3 shows the comparison of Scheme 1 with the existing schemes.

In Scheme 2, the computational overhead is better than that of an existing CL-AKA scheme.
Compared with Scheme 1, which can perform authentication and key agreement quickly, it does
not show efficiency in terms of speed. However, compared with the existing ECDSA or other
schemes [29,30,32–37], the computation speed of Scheme 1 is reduced, and it provides safety considering
masquerade attack, replay attack, and public key verifiability. Table 4 shows the comparison of Scheme
2 with the existing schemes.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

key, can be performed only using the private key of B. An attacker seeking the session key 𝑆𝐾 =

𝐻(𝐾𝐷𝑆) faces considerable difficulty, equivalent to that experienced when seeking to solve the elliptic

curve discrete logarithm problem (ECDLP) of 𝑃𝑅𝐵 ∙ 𝑃𝑈𝐴 = 𝑃𝑅𝐵 ∙ 𝑃𝑅𝐴 ∙ 𝑃.

In Scheme 2, the public keys A and B received from the CA can be validated using Equations

(14) and (15). A’s public key 𝑃𝑢𝐴 is composed of 𝑝𝑢𝐴, 𝑅𝐴, and 𝑍𝐴. Even if the attacker knows the

public key and calculates 𝑒, 𝑑 using public information, it is difficult to calculate a session key 𝜎𝐴𝐵

or 𝜎𝐵𝐴 because the attacker lacks the secret keys A and B. In other words, it is difficult for an attacker

to obtain a session key; the difficulty is identical to that experienced when seeking to solve the ECDLP

of (𝑝𝑢𝐴 + 𝑍𝐴) = (𝑠𝑣𝐴 + 𝑧𝐴) ∙ 𝑃 to determine the secret key A.

5.3. Prevent Replay and Masquerade Attacks

Most existing schemes use ECDH for key agreement. The attacker participates in communication

using the certificate and the arbitrary value transmitted from a sender to a receiver; both replay and

spoof attacks are possible. Existing schemes aim to participate in communication by disguising as a

legitimate user through key theft, replay, and public key replacement attacks. Therefore, if a security

threat occurs in the existing schemes, it becomes a cause of masquerade attack. In our schemes, keys

are generated by adding identifiers of A and B; these are not available to anyone who seeks to attack

using the 𝑟𝐴, 𝑟𝐵, and 𝐾𝐷𝑆 generated by the user.

5.4. Efficiency

The simulation environment featured an Intel i5-4690 3.50-GHz CPU processor, 16 GB RAM, and

the Windows 10 operating system. In both schemes, the Koblitz elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 +

𝑏 (𝑚𝑜𝑑 𝑝), where 𝑎 = 1 and 𝑏 is a 163 bit random prime defined on 𝐹2163, was used to provide

safety equivalent to that of a 1024 bit RSA.

In Scheme 1, we reduced the number of communication times compared with the existing [17–

22] scheme, which enabled us to speed up the process of authentication and key agreement. Figure 7

compares the times required for AKA by the ECDSA with existing schemes and our schemes (which

are faster). The proposed scheme using ECQV is faster than using general ECDSA, and the speed of

the proposed scheme is slightly faster. Table 3 shows the comparison of Scheme 1 with the

existing schemes.

In Scheme 2, the computational overhead is better than that of an existing CL-AKA scheme.

Compared with Scheme 1, which can perform authentication and key agreement quickly, it does not

show efficiency in terms of speed. However, compared with the existing ECDSA or other schemes

[29,30,32–37], the computation speed of Scheme 1 is reduced, and it provides safety considering

masquerade attack, replay attack, and public key verifiability. Table 4 shows the comparison of

Scheme 2 with the existing schemes.

Figure 7. Comparison of key agreement time with existing schemes.
Figure 7. Comparison of key agreement time with existing schemes.

Sensors 2020, 20, 5350 15 of 19

Table 3. Comparison of Scheme 1.

[17] [18] [19] [20] [21] [22] Proposed Scheme 1

Prevent Key
Leakage Attack O O

X
Possible to steal

key during
connection

O

X
The key of the

node is leaked to
the user

O O

Prevent
Masquerade

X
Possible to

masquerade as a
result of replay

X
Possible to

masquerade as a
result of replay

X
Possible session
hijacking during

connection

X
Possible to

masquerade
without key
agreement

X
Possible to

masquerade via
node’s key

X
Cannot provide

non-repudiation of
sender

O

Prevent Replay
Attack

X
No nonce in MAC

X
Reuse of

published values
O

X
Reuse of

published values
O O O

Public Key
Verifiability

∆
Only implicit
authentication

∆
Only implicit
authentication

∆
Only implicit
authentication

X
Only use

pre-shared
symmetric key

X
Only use

pre-shared
symmetric key

X
Only use

pre-shared value

∆
Only implicit
authentication

Operation 2EA + 4EM + 4h 2EA + 4EM + 4h 4SE + 6h 4EM + 22h 8SE + 16h 19h 2EA + 4EM + 2h

O (X): scheme is strong (weak) in this category, ∆: scheme is partial strong in this category, EA: elliptic curve addition operation, EM: elliptic curve scalar multiple operation, SE: symmetric
key encryption, h: one-way hash function.

Sensors 2020, 20, 5350 16 of 19

Table 4. Comparison of Scheme 2.

[29] [30] [31] [32] [33] [34] [35] [36] [37] Proposed
Scheme 2

Prevent Key
Leakage
Attack

X
Possible to

leakage as a
result of
replay

O

X
Possible to

leakage as a
result of

masquerade

O O O O

X
Possible to
replay with

leaked
temporary

key

O O

Prevent
Masquerade

X
Possible to

masquerade
by replay

X
Possible to

masquerade
by replay

X
Possible to

masquerade
by key
replace

X
Possible key
replaces and
masquerade

X
Possible key
replaces and
masquerade

X
Possible key
replaces and
masquerade

X
Cannot

verify public
key

X
Possible to

masquerade
by replay

X
Possible to

masquerade
by replay

O

Prevent
Replay
Attack

X
Possible to

replay

X
Possible to

replay

X
Possible to
join session

with
masquerade

O O

X
Possible

man-in-the-middle
attack

O O O O

Public Key
Verifiability

X
Possible to
public key

replacement

O O

X
Cannot

verify public
key

X
Cannot

verify public
key

X
Cannot

verify public
key

X
Cannot

verify public
key

O

X
Cannot

verify public
key

O

Operation 12E + 11EM
+ 7h

10EA + 8EM
+ 4h

10EA + 6EM
+ 4h

2P + 8EA +
8EM + 4h 8E + 4h 36EA +

40EM + 14h
6EA + 10EM

+ 8h
10EA + 8EM

+ 4h
8EA + 12EM

+ 5h
6EA + 8EM

+ 4h

O (X): scheme is strong (weak) in this category, E: exponential operation, P: pairing operation, EA: elliptic curve addition operation, EM: elliptic curve scalar multiple operation, h: one-way
hash function.

Sensors 2020, 20, 5350 17 of 19

6. Conclusions and Future Research

In increasingly large IoT environments, AKA is essential for secure communication. AKA protocols
have been investigated for many years, and efforts have been made to render them lightweight for
IoT. In particular, in the IoT environment, various cryptographic technologies such as authentication,
authorization, and access control are being studied according to the service environment and security
requirements. In recent years, data generated by IoT devices are stored and managed through cloud/fog
computing [38]. However, several security requirements existing schemes must be satisfied. We present
two AKA protocols to provide end-to-end security in IoT environments such as a smart factory. Our two
schemes are mutually authenticated via an implicit certificate or public key issued by the CA.

Scheme 1 uses ECQV implicit certificates for authentication. Scheme 2 derives partial keys using
CL-PKC. ECQV implicit certificate enables fast and efficient authentication, but public keys can be
attacked. The public key lacks a signature; a receiver performing authentication cannot know whether
it is the public key of a sender or a “fallback” attacker. Scheme 2 secures the public key via Schnorr
signature, employing CL-PKC to verify the key, but is slower than Scheme 1. Both schemes resolve
current security problems and meet the security requirements of Section 3. The existing schemes are
open to replay and public key replacement attacks and key leakage. We thus minimized transmitted
data and increased the communication speed.

We only describe AKA for an end-to-end IoT environment in this paper. However, the components
of the IoT environment are diverse and the network structure can also change. Rather than the
end-to-end structure between a single device and server, it can be 1: N communication between
multiple devices and servers, and this structure can be hierarchical. In the future, we will evaluate AKA
techniques that can solve problems arising when gateway objects are used in hierarchical/multiple
sources rather than end-to-end communication IoT environments. In the former environments,
the devices are very heterogeneous, as are the network configurations. In addition, research
on authorization and access control technologies closely related to authentication in a cloud/fog
computing environment is also required as the recent IoT service changes, and should be lighter than
existing schemes.

Author Contributions: Conceptualization, D.-H.L. and I.-Y.L.; data investigation, D.-H.L.; analysis and validation,
D.-H.L. and I.-Y.L.; writing—original draft, D.-H.L.; writing—review and editing, D.-H.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the High-Potential
Individuals Global Training Program (IITP-2020-0-01596) supervised by the IITP (Institute for Information
& communications Technology Planning & Evaluation) and supported by the Soonchunhyang University
Research Fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services.
In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I),
Mysore, India, 27–29 November 2014; pp. 874–878.

2. Li, S.; Xu, L.D.; Zhao, S. 5G Internet of things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
3. Yang, H.; Lee, W.; Lee, H. IoT Smart Home Adoption: The Importance of Proper Level Automation. Available

online: https://www.hindawi.com/journals/js/2018/6464036/ (accessed on 2 September 2020).
4. Kim, T.; Ramos, C.; Mohammed, S. Smart city and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162.

[CrossRef]
5. Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and challenges.

Wirel. Netw. 2014, 20, 2481–2501. [CrossRef]

http://dx.doi.org/10.1016/j.jii.2018.01.005
https://www.hindawi.com/journals/js/2018/6464036/
http://dx.doi.org/10.1016/j.future.2017.03.034
http://dx.doi.org/10.1007/s11276-014-0761-7

Sensors 2020, 20, 5350 18 of 19

6. Shrouf, F.; Ordieres, J.; Miragliotta, G. Smart factories in Industry 4.0: A review of the concept and of energy
management approached in production based on the Internet of Things paradigm. In Proceedings of the
2014 IEEE International Conference on Industrial Engineering and Engineering Management, Petaling Jaya,
Malaysia, 9–12 December 2014; pp. 697–701.

7. Chakrabarty, S.; Engels, D.W. A secure IoT architecture for Smart Cities. In Proceedings of the 2016 13th IEEE
Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January
2016; pp. 812–813.

8. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
9. Lu, R.; Cao, Z. Simple three-party key exchange protocol. Comput. Secur. 2007, 26, 94–97. [CrossRef]
10. Kim, H.-S.; Choi, J.-Y. Enhanced password-based simple three-party key exchange protocol.

Comput. Electr. Eng. 2009, 35, 107–114. [CrossRef]
11. Hummen, R.; Ziegeldorf, J.H.; Shafagh, H.; Raza, S.; Wehrle, K. Towards viable certificate-based authentication

for the internet of things. In Proceedings of the 2nd ACM Workshop on Hot Topics on Wireless Network
Security and Privacy, Budapest, Hungary, 17–19 April 2013; pp. 37–42.

12. Lin, C.; He, D.; Huang, X.; Choo, K.-K.R.; Vasilakos, A.V. BSeIn: A blockchain-based secure mutual
authentication with fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 2018, 116,
42–52. [CrossRef]

13. Jangirala, S.; Das, A.K.; Vasilakos, A.V. Designing secure lightweight blockchain-enabled RFID-based
authentication protocol for supply chains in 5G mobile edge computing environment. IEEE Trans. Ind. Inf.
2020, 16, 7081–7093. [CrossRef]

14. Campagna, M. SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV). Available online:
https://www.secg.org/sec4-1.0.pdf (accessed on 2 June 2020).

15. Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of the Advances in Cryptology;
Blakley, G.R., Chaum, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 47–53.

16. Al-Riyami, S.S.; Paterson, K.G. Certificateless public key cryptography. In Proceedings of the Advances in
Cryptology—ASIACRYPT 2003, Taipei, Taiwan, 30 November–4 December 2003; Laih, C.-S., Ed.; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 452–473.

17. Sciancalepore, S.; Capossele, A.; Piro, G.; Boggia, G.; Bianchi, G. Key management protocol with implicit
certificates for IoT systems. In Proceedings of the 2015 Workshop on IoT challenges in Mobile and Industrial
Systems, Florence, Italy, 18 May 2015; pp. 37–42.

18. Sciancalepore, S.; Piro, G.; Boggia, G.; Bianchi, G. Public key authentication and key agreement in IoT devices
with minimal airtime consumption. IEEE Embed. Syst. Lett. 2017, 9, 1–4. [CrossRef]

19. Abdmeziem, M.R.; Tandjaoui, D. An end-to-end secure key management protocol for e-health applications.
Comput. Electr. Eng. 2015, 44, 184–197. [CrossRef]

20. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated
key agreement scheme in cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108,
1267–1286. [CrossRef]

21. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Conti, M.; Jo, M. Design of secure user authenticated key
management protocol for generic IoT networks. IEEE Internet Things J. 2018, 5, 269–282. [CrossRef]

22. Wazid, M.; Das, A.K.; Vasilakos, A.V. Authenticated key management protocol for cloud-assisted body area
sensor networks. J. Netw. Comput. Appl. 2018, 123, 112–126. [CrossRef]

23. Wazid, M.; Das, A.K.; Bhat, K.V.; Vasilakos, A.V. LAM-CIoT: Lightweight authentication mechanism in
cloud-based IoT environment. J. Netw. Comput. Appl. 2020, 150, 102496. [CrossRef]

24. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V. Design of secure key management and user authentication
scheme for fog computing services. Future Gener. Comput. Syst. 2019, 91, 475–492. [CrossRef]

25. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V.; Rodrigues, J.J.P.C. Design and analysis of secure lightweight
remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet
Things J. 2019, 6, 3572–3584. [CrossRef]

26. Wazid, M.; Das, A.K.; Kumar, N.; Conti, M.; Vasilakos, A.V. A novel authentication and key agreement
scheme for implantable medical devices deployment. IEEE J. Biomed. Health Inform. 2018, 22, 1299–1309.
[CrossRef]

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1016/j.cose.2006.08.005
http://dx.doi.org/10.1016/j.compeleceng.2008.05.007
http://dx.doi.org/10.1016/j.jnca.2018.05.005
http://dx.doi.org/10.1109/TII.2019.2942389
https://www.secg.org/sec4-1.0.pdf
http://dx.doi.org/10.1109/LES.2016.2630729
http://dx.doi.org/10.1016/j.compeleceng.2015.03.030
http://dx.doi.org/10.1016/j.future.2018.04.019
http://dx.doi.org/10.1109/JIOT.2017.2780232
http://dx.doi.org/10.1016/j.jnca.2018.09.008
http://dx.doi.org/10.1016/j.jnca.2019.102496
http://dx.doi.org/10.1016/j.future.2018.09.017
http://dx.doi.org/10.1109/JIOT.2018.2888821
http://dx.doi.org/10.1109/JBHI.2017.2721545

Sensors 2020, 20, 5350 19 of 19

27. Geng, M.; Zhang, F. Provably secure certificateless two-party authenticated key agreement protocol without
pairing. In Proceedings of the 2009 International Conference on Computational Intelligence and Security,
Beijing, China, 11–14 December 2009; Volume 2, pp. 208–212.

28. Hou, M.; Xu, Q. A Two-party certificateless authenticated key agreement protocol without pairing.
In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information
Technology, Beijing, China, 8–11 August 2009; pp. 412–416.

29. Yang, G.; Tan, C.-H. Strongly secure certificateless key exchange without pairing. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, Hong Kong, China, 22–24 March 2011;
Association for Computing Machinery: New York, NY, USA, 2011; pp. 71–79.

30. Kim, Y.-J.; Kim, Y.-M.; Choe, Y.-J.; O Chol, H. An efficient bilinear pairing-free certificateless two-party
authenticated key agreement protocol in the eCK model. arXiv 2013, arXiv:1304.0383.

31. Farouk, A.; Miri, A.; Fouad, M.M.; Abdelhafez, A.A. Efficient pairing-free, certificateless two-party
authenticated key agreement protocol for grid computing. In Proceedings of the 2014 Fourth International
Conference on Digital Information and Communication Technology and its Applications (DICTAP), Bangkok,
Thailand, 6–8 May 2014; pp. 279–284.

32. Xie, Y.; Wu, L.; Zhang, Y.; Xu, Z. Strongly secure two-party certificateless key agreement protocol with short
message. In Proceedings of the Provable Security; Chen, L., Han, J., Eds.; Springer International Publishing:
Cham, Switzerland, 2016; pp. 244–254.

33. Park, J.S.; Ha, J.C. Certificateless-based Authenticated Key Agreement (AKA) protocol without pairings.
J. Secur. Eng. 2016, 13, 451–466. [CrossRef]

34. Sun, H.; Wen, Q.; Li, W. A strongly secure pairing-free certificateless authenticated key agreement protocol
under the CDH assumption. Sci. China Inf. Sci. 2016, 59, 32109. [CrossRef]

35. Simplicio, M.A., Jr.; Silva, M.V.M.; Alves, R.C.A.; Shibata, T.K.C. Lightweight and escrow-less authenticated
key agreement for the internet of things. Comput. Commun. 2017, 98, 43–51. [CrossRef]

36. Xie, Y.; Wu, L.; Shen, J.; Li, L. Efficient two-party certificateless authenticated key agreement protocol under
GDH assumption. Int. J. Ad Hoc Ubiquitous Comput. 2018, 30, 11–25. [CrossRef]

37. Daniel, R.M.; Rajsingh, E.B.; Silas, S. An efficient eCK secure certificateless authenticated key agreement
scheme with security against public key replacement attacks. J. Inf. Secur. Appl. 2019, 47, 156–172. [CrossRef]

38. Kayes, A.S.M.; Kalaria, R.; Sarker, I.H.; Islam, M.S.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.;
Kumara, I. A survey of context-aware access control mechanisms for cloud and fog networks: Taxonomy
and open research issues. Sensors 2020, 20, 2464. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14257/jse.2016.12.07
http://dx.doi.org/10.1007/s11432-015-5303-0
http://dx.doi.org/10.1016/j.comcom.2016.05.002
http://dx.doi.org/10.1504/IJAHUC.2019.097093
http://dx.doi.org/10.1016/j.jisa.2019.05.003
http://dx.doi.org/10.3390/s20092464
http://www.ncbi.nlm.nih.gov/pubmed/32349242
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Authentication and Key Agreement (AKA)
	AKA with ECQV Implicit Certificate
	AKA with Pairing-Free Certificateless PKC
	Analysis of Existing Schemes
	Fast AKA Schemes Including ECQV-Based AKA
	CL-AKA Schemes

	Security Requirements
	Mutual Authentication
	Prevent Key Leakage
	Prevent Replay and Masquerade Attacks

	Proposed Schemes
	Proposed Model
	AKA via an ECQV Implicit Certificate (Scheme 1)
	Setup Phase
	Authentication and Key Agreement Phase

	Proposed AKA with Pairing-Free Certificateless PKC (Scheme 2)
	Setup Phase
	Authentication and Key Agreement Phase

	Analysis of Proposed Schemes
	Mutual Authentication
	Prevent Key Leakage
	Prevent Replay and Masquerade Attacks
	Efficiency

	Conclusions and Future Research
	References

