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Abstract: Today, enhancement in sensing technology enables the use of multiple sensors to track
human motion/activity precisely. Tracking human motion has various applications, such as
fitness training, healthcare, rehabilitation, human-computer interaction, virtual reality, and activity
recognition. Therefore, the fusion of multiple sensors creates new opportunities to develop and
improve an existing system. This paper proposes a pose-tracking system by fusing multiple
three-dimensional (3D) light detection and ranging (lidar) and inertial measurement unit (IMU)
sensors. The initial step estimates the human skeletal parameters proportional to the target user’s
height by extracting the point cloud from lidars. Next, IMUs are used to capture the orientation of
each skeleton segment and estimate the respective joint positions. In the final stage, the displacement
drift in the position is corrected by fusing the data from both sensors in real time. The installation
setup is relatively effortless, flexible for sensor locations, and delivers results comparable to the
state-of-the-art pose-tracking system. We evaluated the proposed system regarding its accuracy in
the user’s height estimation, full-body joint position estimation, and reconstruction of the 3D avatar.
We used a publicly available dataset for the experimental evaluation wherever possible. The results
reveal that the accuracy of height and the position estimation is well within an acceptable range of
±3–5 cm. The reconstruction of the motion based on the publicly available dataset and our data is
precise and realistic.

Keywords: human motion; activity recognition; position estimation; lidar; inertial sensor;
motion reconstruction; locomotion; position tracking

1. Introduction

Understanding human motion is key for intelligent systems to coexist and interact with humans.
Motion tracking is a technique to track and localize the three-dimensional (3D) orientation of a human
body joint [1]. Human motion tracking is widely used for activity analysis in many areas and is a
current research topic due to the advancement in micro-electro-mechanical system (MEMS) sensors
with wireless communication technologies [2]. Human motion tracking and recognition is a challenging
problem as the human body is very flexible and has 244 kinematic degrees of freedom [3].

In recent years, scientific research has significantly emphasized pose tracking, motion capture,
activity recognition, and the reconstruction of human motion. Recreating full-body human motion
accurately on a 3D stick/avatar model is a challenging task. Several techniques have been proposed to
capture data that can be reconstructed and recognized accurately. Pose tracking is classified into two
main categories: Marker-based and Marker-less systems. Marker-based pose tracking is a traditional
method where the angle between the markers placed near the joints provide the orientation and
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positional details of the person. The marker-based system is bounded within a geographical range
of the tracking device’s field of view (FoV). Therefore, this method is only applicable in an indoor
environment. Additionally, along with the prolonged setup time of the markers on the body (palpation
error [4]), the markers may move due to skin stretching and suit displacement [5] contributing to errors
in the reading.

The marker-less systems are emerging as more feasible and are becoming increasingly pervasive
in applications that span health, arts, digital entertainment, and sports [6]. The marker-less motion
capture systems (MMSs), such as depth-sensing sensors [7], are widely used for human motion tracking
and reconstruction. These kinds of MMSs have disadvantages, such as limited FoV, depth, and so on,
that are similar to those of marker-based systems. The depth-sensing sensors are limited to the size
of the tracking volume. Due to this limitation, single-sensor approaches were mostly constrained to
tracking body posture, physical therapy, rehabilitation [8], physical fitness in elderly individuals [9],
ergonomics [10], anthropometry [11], and so on. Some researchers [12–15] have proposed setups with
multiple depth-sensing sensors to cover a more considerable distance. For example, Müller et al. [16]
used six depth-sensing camera sensors to achieve 9 m distance of tracking. However, a need exists for
precise position tracking that is easy to set up, covers an extended range of distance, and is flexible to
various environmental conditions.

The implementation of the proposed system considers human body joint orientation based on
the inertial measurement unit (IMU) and light detection and ranging (lidar) generated for 3D position
tracking. The fusion of the sensor data is reconstructed on a virtual 3D avatar as depicted in Figure 1.
The current proposed work is validated in an indoor environment.

LiDAR
LiDAR LiDAR

IMU 3D Avatar IMU 3D Avatar IMU 3D Avatar

Figure 1. Real-time pose tracking of human motion for reconstruction on a three-dimensional model
using multiple lidars and inertial measurement units (IMUs).

The paper is structured as follows: Section 2 discusses the related work on various advancements
in MMSs. Section 3 details the proposed system for position and orientation estimation.
Next, the proposed system implementation and experimental results are presented in Sections 4 and 5.
Finally, the work is concluded with a discussion of future work.

2. Related Work

Several methods exist to capture and recognize human motion depending on the data capture
equipment (depth cameras, IMUs, and lidars). Depth cameras are widespread primarily due to ease of
use and availability of open-source tools and community [17] (e.g., the Microsoft Kinect depth camera).
Depth cameras convert depth data into RGBZ data. This helps detect human joints [18] and extract
rotational information from the skeletal structure. However, the methods suffer from occlusion [19].
Multiple depth sensors strategically positioned in the environment [20] can reduce the body occlusion
issue but do not fully compensate for it. In [21], the accuracy of the Kinect was evaluated in terms of
detecting the human body center of mass using the length of body links in the Kinect skeleton model.

Kinect is inaccurate in recognizing the center of joints while measuring short links of the body,
such as the foot [22], and [23] assessed the accuracy of the Kinect in lower-extremity gait analysis.
In these studies, the accuracy of the Kinect was assessed using a commercial MMS as the gold
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standard. They reported considerable errors in tracking ankle joint angles using both versions of
Kinect, which indicates some inherent challenges in this sensor. Some recent research study [24–26]
used machine learning-based pose estimation methods to track human pose. These method uses
two-dimensional RGB cameras to recognize human motion.

The IMU sensors offer the accurate orientation of a rigid body in the form of quaternions,
Euler angles, and axis angles. Quaternions are a better and gimbal-lock-free representation,
unlike Euler angles [27]. Therefore, most MMSs use IMUs, capturing the data in the form of quaternions.
A human body comprises various interconnected bones and joints, and it is imperative to understand
and set up a hierarchical and kinematic model of a human body before attaching IMUs on a person.
Thus, most of the motion databases include hierarchical information along with rotational data [28],
solving the body occlusion problem.

However, IMU-based pose tracking is not mature enough to detect accurate positional
data for individual joints [29] and is majorly used for motion analysis in rehabilitation and
physiotherapy [30,31]. To counter this, a merger of IMU data with depth cameras has been
attempted [32–34]. In [32], the fusion of sensors is adapted to validate the acquired movement data
in two steps (generative and discriminative). In the generative process, the sensor provides human
pose data, whereas the discriminative process validates the data. In other research [33], the purpose of
sensor fusion is to complement each other for accurate results. In the lidar-IMU fusion experiment,
the IMU sensor provides orientation information, whereas the lidar is used to filter the data. A similar
approach was proposed by [34], where the IMU sensor detects human rotation and a laser sensor
detects the human body position to correct the drift over time. The approach presents only the
trajectory of the human motion in outdoor environment but the full skeleton pose is not described.

The current work focuses on full-body tracking with an easy multi-sensor set up (lidars and
IMUs), that enables an estimation of joints’ position, bone segment orientation, and reconstruction on
a 3D avatar in real-time.

3. Method Overview

In this section, we discuss more details on the sensor fusion system based on lidar and
IMU for position and orientation estimation and reconstruct the motion on the 3D avatar. In the
proposed approach, the process of human body tracking includes the following as depicted in
Figure 2: (1) Initial data retrieval (reference and full-body clouds), (2) base pose detection, (3) skeleton
construction, (4) real-time pose tracking, and (5) reconstruction using the avatar.

Skeleton Construction

Reference Cloud

Base Pose Detection Pose Tracking Reconstruct on Avatar

1

2 3 4 5

Full-Body Cloud

Figure 2. Sequence diagram of the proposed system: Acquisition→ base pose detection→ skeleton
construction→ pose tracking→ reconstruction.

In the proposed method, two 3D lidar sensors were used to track the position of the human body,
and IMU sensors were used to estimate the orientation and position of each joint during the human
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body activity in real time. Figure 3 illustrates the complete setup of multiple lidars and IMUs (the laser
ray depicted in the figure is only in y direction of lidar, i.e., the vertical FoV).

Virtual Environment

~
3
 m

LiDAR

IMU

~8 m

L1

L2

Physical Environment

XZ

Y

X

Z
Y

Figure 3. Proposed light detection and ranging (lidar)-IMU fusion-based system for human motion
tracking in an indoor environment.

The 3D lidar-based human body tracking process includes the segmentation of raw data and
the classification of objects of interest. The lidar sensor used in this system has a distance range and
accuracy of up to 100 m and ±3 cm. For human body tracking, the maximum range is 14 to 17 m [35],
which is well within the 100 m range. Therefore, in the current work, two lidars (L1 and L2) were used
within an operating range of an 8 × 4 × 3 m indoor environment (Figure 3).

3.1. Initial Data and Pose Extraction

To track the user in real time, two separate sets of point cloud data (P(i){x, y, z}, where i = 0
to n point data) were initially acquired in the calibration step. One set, with the user (P f(i){x, y, z};
full-body cloud) in the FoV, primarily computes the actual height of the user and constructs the
skeleton structure. The second set of point cloud data, without the user (Pr(i){x, y, z}; reference cloud)
in the FoV, filters the user from the background data. The reference cloud has information about
the environment in which human motion is detected. To compute the actual height and construct a
skeleton structure, the user must stand at an optimal distance away so that both lidars covers the full
body (Figure 3) within their collective FoVs.

Thus, the acquired full-body cloud was compared against the reference cloud to extract the
position of the user point cloud in a real environment (x, y, and z-axes). An Octree-based change
detection algorithm [36] was adopted to filter out the user point cloud (Pt(i){x, y, z}) from the full-body
cloud, as depicted in the second step of Figure 2. The main aim in this section is to extract the point
cloud corresponding to the user and the accuracy of the extraction directly affects the following process
and correctness of the result.

The ground point g{x, y, z} is the actual floor location from L1, considering the maximum point
in the y-axis, as illustrated in Figure 3. A slight inclination occurs in L1 due to its mounting. Therefore,
the resulting point cloud has an inherent slope (m). Considering the actual floor is at g, the slope m is
given by Equation (1).

m = (maxy − gy)/(maxx − gx), (1)

where gx and gy are the x and y component of g, and maxx and maxy are the maximum x and y
component of Pt.
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The user may be located at any point on this slanted floor. Therefore, the slope of the floor due to
the inclination of L1 should be factored into computing the actual height (Ah) of the user, as indicated
in Equation (2):

Ah = (gy −miny) + cx ×m, (2)

where miny is the minimum y component of Pt, and cx is the x component of the centroid of Pt.

3.2. Identifying the Human Skeletal Structure

The maximum (maxy) and minimum (miny) in the Pt provide the actual height of the user with an
accuracy of ±3–5 cm. The actual height (see Equation (2)) is the baseline for calculating each body
part proportion to construct the skeleton of the user. An average person is generally 7.5 times the
height of his or her head [37]. To construct each bone segment in the skeleton, we considered the
head height (Hh) to be the standard measurement proportion (i.e., Hh = Ah/7.5), which is used to
parameterize the lengths of each segment [38]. Figure 4 depicts the constructed skeleton from the point
cloud with 15 segments (b1 to b15) and 16 connecting joints. At this step, we know the relative joint
positions of the human skeleton, which aids in the estimation of real-time pose tracking.

Bone bi

Segment [ i → 1 to 15 ]

Pelvis → P

Sternum → S

Torso → T

Head → H

Shoulder → Rs & Ls

Elbow → Re & Le

Wrist → Rw & Lw

Hip → Rh & Lh

Knee → Rk & Lk

Ankle → Ra & La

Segments and Joints

→

Figure 4. Generated human skeleton using the three-dimensional lidar point cloud.

3.3. Real-Time Pose Tracking

We captured the initial position and generated the human skeleton in the previous subsections.
Along the same lines, the movement of the user in real time was acquired (position) as the person
moves from the initial position. In the current work, the real-time motion of the full-body position
and orientation was estimated using 10 IMU sensors attached to the human body (bone segments,
Figure 3). Concurrently, the pose from the lidar data was estimated and fused with the IMU sensor
data because the pose estimate of the IMU sensor is affected by the displacement drift. In the following
section, we discuss more details regarding the position and orientation estimation.

3.3.1. Position and Orientation from Inertial Sensors

The IMU sensors were used to estimate body segment position and orientation changes in real
time (segments are connected by joints), and the changes were updated on a biomechanical model
of avatar segments. The IMU sensors used in our work output orientation data in the form of
quaternions (q = (qw, qx, qy, qz)). Full-body motion was captured over time for 10 joint-bone segments.
Moreover, the orientation of 5 segments (red color in Figure 4) rely on the torso (i.e., b3, b4, and b7) and
pelvis (i.e., b10 and b13) bone joint sensors. All segments are hierarchically connected in the avatar,
as presented in Figure 4. The position and orientation of the joint estimation process are illustrated
in Figure 5.
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Figure 5. Process of updating the bone joint position and orientation.

The IMU sensors provide the orientation with respect to a global coordinate frame (x-axis
pointing north, z-axis against gravity, and y-axis pointing west). For each bone segment, all kinematic
parameters were expressed in a common coordinate global frame, which is the right-handed Cartesian
coordinate system (Figure 6). The sensors were calibrated and aligned to the global frame to compute
the rotation of the individual joint-bone segment, as given in Equation (3):

Aqi = qiq−1
0 ; [i = 0 to n f rames], (3)

where qi is the continuous frames of quaternion data from the IMU sensors, q−1
0 is the inverse of first

qi, and Aqi denotes the aligned quaternion data.

Figure 6. Estimating position using lower limb rotation from inertial measurement unit (IMU) sensors:
(a) Updating from foot position to pelvis and (b) updating from pelvis to full body.

After the alignment of the sensors to the global frame, the joint position and segment rotation
were computed. We considered each joint position to be a unit vector in the direction parallel to the
respective bone axis in the attention pose (Figure 6). For instance, if we consider the foot joint axis
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parallel to the z-axis, then a unit vector for the foot joint can be determined as v̂ = (0, 0, 1), and it is
represented as qv = (0, 0, 0, 1) in quaternion form:

Rv = Aqi × qv × Aq−1
i , (4)

where Rv is the rotated joint vector after quaternion multiplication in quaternion form.
Next, we extracted the rotated vector from Rv = (qw, qx, qy, qz) (i.e., joint vector Ĵv = (qx, qy, qz))

and updated the respective joint position in the skeleton by considering the neighbor joint, scaling it to
the respective segment length as given in Equation (5):

PcJoint = PnJoint + Ĵv × Slength, (5)

where PcJoint is the updated position of the current joint, pnJoint is the position of the neighboring joint
to PcJoint, and Slength is the length of the respective bone segment.

Figure 6 illustrates an overview of the positional relation of the bone joints with the adjacent
joint, denoted by a directional vector (describing the unit vector at that joint with its direction) with
the length of the individual segments. In Figure 6a,b, the joints marked in green are the base joints,
as the positions of the rest of the joints in the lower body are dependent on these joints (right foot (R f )
and left foot (L f )). The positions of all upper body joints are dependent on the pelvis position (P).
Magenta and yellow indicate the individual bone segments. The magenta indicates the directional
vector starts from the pelvis as the base position, whereas yellow presents the directional vector begin
from the foot as the base position.

For instance, in Figure 7b, the upper body is moving vertically down due to the rotation in the leg.
In this condition, the positions of the other joints were estimated by considering the fixed foot joint (R f )
to be a reference point (base position), and all joint positions were updated (bottom-up joint position
update). Similarly, in Figure 7c, the pelvis joint is fixed, and the foot is changing. The pelvis is the
reference point (base position), and all joint positions were updated (top-down joint position update).

Fixed Pelvis

Rf

Rk

P

Rf

Rk

Rh

P

Rf

Rk

Rh P
Fixed Foot

(a) (b) (c)

Base Joint
Vectors in the direction 
of neighbor  Joint

Changes in the Joint Position 

Initial Pose

Rh

Figure 7. Computing the pelvis position. (a) Position of lower right leg joints in the attention
pose, (b) updating knee, hip, and pelvis positions with the fixed foot position (bottom-up update),
and (c) updating the hip, knee, and foot position with the fixed pelvis (updated from (b)) position
(top-down update).
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3.3.2. Position Tracking from Lidars

With the efficient extraction of the base position in the initial stage (Section 3.1), locating the real
time position using lidar data has two simple steps. The first step is extracting the full-body cloud (Ptr)
of a user in real time (similar to the procedure followed in Section 3.1). The second step is detecting all
bone segments by their geometry using the particle filter [39] and tracking only the legs to locate the
real-time foot positions. The detected foot positions are aided to correct the displacement drift in the
positions calculated using the bone orientation.

In the Pt data (Section 3.1), the point clouds corresponding to the lower leg (Pleg
t ) are clustered

with the aid of the joint positions and bone segment lengths. Our approach employs a similar technique
to detect the leg position in the point clouds, as proposed by [34]. In the current work, we used a
particle filter [39] to track the lower leg-bone point cloud. The particle filter tracks the observation
cloud (Pleg

t ) within the measured point cloud (Ptr). Thus, the computed foot positions from the output
of the particle filter are used to correct the displacement drift within a threshold distance (δ = 10 cm).

4. Implementation Details

Our proposed system consists of the following sensory setup and calibration steps.
(1) Velodyne VLP-16 lidar: A Velodyne lidar is used to estimate the initial position and height of

the subject and to track the real-time position. It offers 16-channel lidar scanning with a 360◦ horizontal
and ±15◦ vertical FoV, as illustrated in Figure 3. The sensor has low power consumption, scans the
environment in three dimensions at a frequency of 10 to 20 Hz, and generates 600,000 points per second
with a maximum range of 100 m with a claimed accuracy of ±3 cm. Due to the frequency difference
between lidars and IMUs, we adopted a linear interpolation of the positional data of the lidar to match
the IMU body orientation data.

To obtain a dense point cloud, two lidars are perpendicularly positioned, as presented in Figure 3.
The lidar at the top (L1) is used to track a person from the top view (which primarily aids in tracking the
position when a person poses parallel to the ground (sleeping condition)), and is also used to estimate
the height of a person (with an error within ±3 to 5 cm) and the ground position (floor). Another lidar
is used to create dense point data that are located on the front side of the user. To integrate multiple
lidar data into a single frame, we followed the procedure in the work by [40]. The normal distributions
transform (NDT) algorithm [39] is used for point cloud registration.

(2) Xsens IMU: The MTw motion tracking system is a miniature IMU [41] (Figure 5). It is a
small, lightweight, wireless inertial sensor-based 3D motion tracker manufactured using MEMS
technology. This sensor returns the 3D orientation, acceleration, angular velocity, static pressure,
and earth-magnetic field intensity at a frequency of 60 Hz. Only the 3D orientation is considered for
the proposed work. The real-time motion of the full-body position and orientation is estimated using
10 IMU sensors attached to the human body segments, except b3, b4, b7, b10, and b13, as shown in the
skeleton structure with the maroon color. Before tracking and capturing the data, the sensors must be
calibrated to avoid the incorrect estimation of the base position and to reduce sensor drift. These issues
lead to the misalignment of the bone segments, which results in the mismatching of the avatar to the
user in real time. The calibration routine has one step with an attention pose.

5. Experiments

We conducted an experimental evaluation of the proposed fusion system by considering various
poses (involving changes in full-body joint position and segment orientations) by conducting a
statistical analysis of the acquired real-time data. Multiple key poses were considered, which affect
multiple joint segments, both in position and orientation. The first objective is to investigate the
accuracy of the proposed fusion system concerning the position estimation against the ground truth.
The second objective is to compare the proposed system against a publicly available 3D pose estimation
dataset, the TotalCapture dataset [42].



Sensors 2020, 20, 5342 9 of 16

5.1. Height Accuracy

The accuracy of the joint position highly depends on the length of the bone segments, as a result of
the user’s height computed from the lidar data, as described in Section 3.1. The heights (estimated) of
seven different users are compared against their known actual heights (ground truth). Considering the
inherent error in the lidar and the error due to mounting, an error of ±3 cm in the calculated height is
shown in Table 1. As Hh is the standard measurement proportion for skeleton construction, the error
in the length of individual segments trickles down to less than 1 cm. Therefore, this difference in the
height is insignificant for the construction of the skeleton and has a minimal effect on the position
estimation of joints.

Table 1. Accuracy of user height estimated from the lidar data against the ground truth (in cm).

Person Ground Truth Height Lidars Calculated Height Change in Height Error

1 180 178 −2
2 168 165 −3
3 171 172 1
4 155 158 3 SD = 0.44,
5 175 178 3 Mean = 2.7
6 164 162 −2
7 161 164 3

5.2. Orientation Accuracy

To provide the validation for orientation accuracy of motion reconstruction on the avatar, we compare
against the ground truth angle data. To formulate ground truth angle data, we selected a physically
measurable angle between two bone segments using measurement apparatus (Goniometer) [43] as
highlighted and depicted in Figure 8. Few common poses are chosen for different bone segments and
manually noted as ground truth angle data. Simultaneously IMU sensors are attached and orientation
data (quaternion) is recorded from respective bone segments. The angle between two bone segments is
estimated (i.e., inverse cosine of the dot product of two quaternions) and compared against the ground
truth values as shown in Figure 8. The estimated mean error of the measured angle is within the ±5◦ for
the proposed system.

110°

130°

110°
90°

114°

105°

133°

83°

Goniometer

Figure 8. Comparison of reconstruction angle between two bone segments against ground truth.

5.3. Full-Body Position Accuracy

To validate position accuracy, 14 different poses that affect all 16 joint positions were considered,
as indicated in Figure 9. The point cloud data captured from the lidar have positions corresponding
to different joints. The data are manually annotated for 14 different poses using the CloudCompare
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tool (3D point picking list feature) [44], as depicted in Figure 10. The labeled data are used as the ground
truth for measuring the accuracy of the estimated joint position. Figure 9 presents a visual comparison
of the reconstruction of poses against the ground truth, which is a reasonably realistic reconstruction.

Figure 9. Overlapping point cloud and stick model indicate the accuracy of orientation and position.
The same is reconstructed on the three-dimensional avatar for 14 different key poses.

Manually annotated joint 

Position data from 
the point cloud

Figure 10. An example demonstrating manually annotated position data using the CloudCompare
tool for validating position accuracy.

The Figure 11 demonstrates the 14 different poses captured at 60 fps, with a total of 4480 frames.
The standard error in the position for individual joints and the error in the position concerning the
ground truth were both well within 5 cm, as depicted in Figure 11a. Figure 11b displays the linear
average positional error for all joints over time.
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Figure 11. (a) Standard error in the position with respect to the ground truth (in cm) for 14 poses and
(b) average positional error for all joints for 14 poses for over 4480 frames (60 fps).

The calculated pelvis position was compared to the ground truth. Three different users with
different heights performed a combination of walking and squatting movements in a predefined
geometric pattern. The changes in the pelvis position for all users in the three axes are revealed in
Figure 12. The pelvis position in a geometric pattern with intermediate squats in five different locations
was observed with an accuracy of up to ±5 cm in all conditions.

Walk

Squat

Figure 12. Proposed fusion-based trajectory against the ground truth (in cm) for the walk and
squat pattern.

5.4. Position Estimation Using the TotalCapture Dataset

The TotalCapture dataset [42] contains orientation information acquired from multiple Xsens IMU
sensors attached to bone segments. Joint position data were acquired from a multiple viewpoint video.
Various motions, such as walking, acting, and freestyle, and range of motion (ROM) were available as
part of the dataset. For the current study, we considered multiple movements within the orientation
data that affect all joints. The positions of joints were estimated using the proposed method and were
compared against the position data in the TotalCapture dataset. Table 2 lists six different motion types,
the respective observed joints, the standard deviation, and the mean difference from the ground truth.
The results reveal that the estimated positions are at an average standard deviation of 0.24 cm and an
average mean difference of 0.86.
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Table 2. Positional difference (in cm) between TotalCapture [42] and our proposed method for a few
selected motions in the TotalCapture dataset. (* See Figure 4 for abbreviations).

Sl. No. Motion Type Frame No. Observed Joints Standard
Deviation

Mean
Difference

1 Upper Arm Swing 292–351 Rs, Re, Rw, Ls, Le, Lw 0.02 0.45

2 Upper Arm Rotation 745–818 Rs, Re, Rw, Ls, Le, Lw 0.08 0.36

3 Lower Arm Swing 1235–1300 Re, Rw, Le, Lw 0.02 0.33

4 Pelvis Bending 2475–2389 P, S, T, H 0.21 0.73

5 Right Upper Leg Swing 3200–3250 Rh, Rk, Ra 0.40 0.98

6 Squat 4703–4836 Full Body 0.68 2.35

5.5. Accuracy of Reconstruction on the Avatar

The system estimates bone segment orientation in 3D and full-body joint positions using IMU
and lidar sensor data fusion. This enables users to track their pose while performing motion in real
time. In this section, we validate the accuracy of our 3D model for motion reconstruction. The 3D
model avatar was developed using a visualization toolkit (in C++) [45]. Section 3.3.1 details how the
model is updated. The TotalCapture dataset has various ROM, which were applied directly to the 3D
avatar to validate the reconstruction accuracy. Figure 13a presents a few selected reconstructed poses
from the TotalCapture dataset against their ground truth images. Figure 13b shows multiple poses
reconstructed on the same model using our data against the ground truth images. The results reveal
that the reconstruction is reasonably accurate.

(a)

(b)

Figure 13. Validation of motion reconstruction on the three-dimensional avatar: (a) Reconstruction of
the TotalCapture range of motion (Subject 1) data and (b) reconstruction of the user data.

6. Discussion

In the previous section, the results demonstrate that the pose tracking of human motion
with the estimation of the orientation and position is reasonably accurate and within the range
of ±3–5 cm. The position estimation of the pelvis using the lower body orientation and the estimation
of the full-body joint position is an effective approach. The reconstruction of the motion on the
3D avatar is realistic and delivers results comparable to state-of-the-art pose-tracking systems,
such as TotalCapture [42]. The position of the foot is continuously corrected for displacement
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drift due to the position estimation from the lower body orientation. Furthermore, the approach
uses fewer sensors with a relatively easier installation setup and has minimal environmental
dependencies. We use a simple calibration where the user starts at an attention position.
The proposed system can be adopted for real-time pose-tracking applications, such as in rehabilitation,
athletic performance analysis, surveillance, human-machine interfaces, human activity tracking and
recognition, kinesiology, physical fitness training and therapy, human-computer interaction, virtual
reality, and so on.

Nevertheless, during the bottom-up update, while estimating the pelvis position from the fixed
foot, the right and left legs were translated to the ground before computing the pelvis position. As the
foot positions are fixed at every step on the ground and the right and left legs are independently
considered, human activities involving jumping, running, and locomotion, such as hand walking,
cannot be reconstructed realistically on the 3D avatar. During such activities, the avatar suffers
occlusion with the ground. To counter such issues, multiple kinematics and rigid body constraints can
be applied to the model, and acceleration from the IMU sensors could be used to estimate the position
of the joints to increase the efficiency and accuracy of the system.

7. Conclusions

The results of our experimental evaluation demonstrated that the overall lidar and IMU
fusion-based system exhibited better accuracy in estimating the joint position and bone segment
orientation. The experimental setup of the proposed system was relatively more accessible and flexible
concerning sensor locations.

The proposed method was efficient and accurate for human pose-tracking system by fusing lidar
and IMU sensors. The system estimated body joint orientation and position in 3D using IMU sensors
and used lidars to compensate for the displacement drift. The lidar data were also instrumental during
the initial calibration and user height estimation for skeleton construction.

The TotalCapture dataset is used wherever possible for validating the proposed approach and the
accuracy of the reconstruction on the 3D model. Multiple experiments were conducted to validate the
proposed system against the ground truth. All results indicated that the proposed system could be used
in real-time applications as stated above. Future work involves the consideration of complex human
activities, such as running, jumping, hand walking, dancing, and so on that have more spatio-temporal
changes in the orientation and position of the bone segments and joints.
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