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Abstract: Surrogate Modeling (SM) is often used to reduce the computational burden of
time-consuming system simulations. However, continuous advances in Artificial Intelligence (AI) and
the spread of embedded sensors have led to the creation of Digital Twins (DT), Design Mining (DM),
and Soft Sensors (SS). These methodologies represent a new challenge for the generation of surrogate
models since they require the implementation of elaborated artificial intelligence algorithms and
minimize the number of physical experiments measured. To reduce the assessment of a physical
system, several existing adaptive sequential sampling methodologies have been developed; however,
they are limited in most part to the Kriging models and Kriging-model-based Monte Carlo Simulation.
In this paper, we integrate a distinct adaptive sampling methodology to an automated machine
learning methodology (AutoML) to help in the process of model selection while minimizing the
system evaluation and maximizing the system performance for surrogate models based on artificial
intelligence algorithms. In each iteration, this framework uses a grid search algorithm to determine
the best candidate models and perform a leave-one-out cross-validation to calculate the performance
of each sampled point. A Voronoi diagram is applied to partition the sampling region into some
local cells, and the Voronoi vertexes are considered as new candidate points. The performance of
the sample points is used to estimate the accuracy of the model for a set of candidate points to
select those that will improve more the model’s accuracy. Then, the number of candidate models is
reduced. Finally, the performance of the framework is tested using two examples to demonstrate the
applicability of the proposed method.

Keywords: surrogate model; adaptive sequential sampling; machine learning

1. Introduction

Many science and engineering fields rely on computer simulations to replace expensive physical
experimentation to analyze and improve the quality of different designs, methodologies, or products.
The continuous research of numerical simulations has reduced the gap between the physical system
and its model. Nevertheless, this improvement comes with a cost in time due to the complexity
of such numerical models. Surrogate modeling has become a solution for approximating the
expensive numerical simulations of complex systems used to solve heavily iterative problems, such as
optimization problems, and achieve acceptable accuracy at a low computational cost.

Surrogate modeling has been incorporated in multiple fields. In [1], the authors develop a
multi-fidelity surrogate model for a microwave component. In [2] the authors use a surrogate Kriging
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Model to represent bridge structures. In [3], surrogate models have been used for control design and
feedback prediction. They have alsobeen used in pedestrian detection in [4] or for process analysis in
industrial plants in [5].

Continuous research fueled artificial intelligence, developing new algorithms that, together with
large amounts of information, are capable of imitating the behavior or decision-making of complex
systems or processes.

These advances have also been caught in the potential of the surrogate models, allowing them
to extend their use to different disciplines, such as Digital Twins (DT), Design Mining (DM) and Soft
Sensing. DT are virtual replicas of physical systems generally developed to analyze and optimize
such systems. While this technology shares some of the same principles of surrogate models, it is still
at its early development stage [6]. The integration of big data and artificial intelligence models
support DT success for their potential and intense impact in multiple fields. Along with their
successful performance in some applications [7,8], DT can benefit from methodologies developed for
surrogate modeling.

Design Mining (DM) uses Artificial Intelligence techniques to iteratively search the attribute
space of a physical object evaluated directly through rapid prototyping, which is generally expensive,
and commonly surrogate models are used to reduce the physical system sampling [9]. DM explores
the design space evaluating directly through rapid prototyping in systems in which there are no formal
models or the computational models are too expensive and imprecise. Nonetheless, this methodology
comes with a considerable cost in time and resources. While DM considers rapid prototyping as a
fundamental part of the exploration of the design space, surrogate modeling has been proposed as the
main alternative to reduce the cost related to this methodology [10–12].

Soft sensors make predictions of observable variables whenever hardware sensors are unfeasible.
They are surrogate models of the system that process several related signals of hardware sensors to
estimate another variable’s value and have the advantage of a fast response at a low cost. Some of its
applications are fault detection [13], real-time monitoring [14], complex motion capture [15], and sensor
validation. Data-driven soft sensors perform well if the training data and the testing data have the
same distribution, which is generally not accomplished in real-world industrial applications [16].
These methodologies have driven surrogate models to different horizons, but also they have generated
new research opportunities. The artificial intelligence surrogate models need to handle complex
model selection and hyperparameter tuning while keeping the sample data points to a minimum.
This particular problem motivates us to develop an adaptative sampling methodology for artificial
intelligence data-driven models.

The rest of this paper is organized as follows. In Section 2 we review what we consider the
most relevant related work with our proposal and state the paper contribution. In Section 3 we
explain in detail the architecture of our proposal, the initial static sampling, the design of the AutoML
reduction method, and the adaptive sampling methodology. In Section 4 we present several test cases,
including software integrations. In Section 5, we give details on the methodology’s performance.
Finally, Section 6 is devoted to the concluding remarks.

2. Related Work

All surrogate modeling techniques share the same objective representing the target system as
accurately as possible. This objective can be archived by increasing the size of the training data set to
get a better understanding of the complete system, as models constructed using bigger datasets record
better accuracy [17]. However, this approach can become very expensive due to the computational
cost or economic cost of sampling the target plant. In these cases, a second objective is introduced,
which is to minimize the cost associated with measuring the target system. These surrogate modeling
cases are stated as multiobjective optimization problems, whose goals are to build a model as accurate
as possible whit the minimum number of points as possible. The search for the best compromise
has been studied from different angles. The first approach, meta-modeling, focuses on tailoring the



Sensors 2020, 20, 5332 3 of 25

model that will be used to emulate the target system. This is done through careful model selection
and hyperparameter tuning. The performance of the most prominent methods for surrogate creation
depends more strongly on the correct setting of many internal hyperparameters [18], and the correct
selection of the modeling method is critical for achieving good performance [19]. The second approach,
sampling, focuses on a sampling strategy that determines the best data points to measure the target
phenomena. It has been proven that the choice of observed points is crucial to the prediction quality of
the model.

The meta-modeling approach focuses on the strong sensitivity-to-design decisions during
the construction of machine learning surrogates. The main problems are model selection and
hyperparameter tuning. The field of AutoML aims to make these decisions in an automated way [20].
Every machine learning system has hyperparameters, and the most basic task of AutoML is to
automatically optimize these parameters; this is referred as automatic hyperparameter optimization (HPO).
The traditional way of performing HPO is through the grid search algorithm [21], which performs an
exhaustive search across a grid of parameters comparing them via a distance metric. Even though this
is an old algorithm, it is relatively simple and is still one of the most used nowadays [22–24].

The sampling approach is a crucial process in constructing an accurate surrogate model. In [25],
the authors classified the main sampling approaches into two categories: one-shot sampling methods
and adaptive sequential sampling. One-shot sampling methods consist of generating sampling points
through different design of experiments (DoE) methods. Their objective is to allocate the sampling
points reasonably as uniformly as possible in the design space. Classic DoE methods include Factorial
Designs [26], Central Composite Design (CCD) [27], Monte Carlo Sampling (MCS) [28] and Latin
Hypercube Design (LHD) [29]. Adaptive Sampling distributes more points in the regions of interest by
analyzing the performance of the surrogate model in previous data. In comparison, adaptive sampling
performs better than the one-shot sampling, having great potential to build accurate meta-models
with fewer points [30]. For complex systems, sampling more points where the surrogate model has
large prediction errors increases the accuracy using fewer points than those needed if the points are
sampled evenly; that is, focusing in regions with large prediction errors (regions of interest) allowing
the sampling process to adapt to the target function. For improving the surrogate model accuracy,
the selection of the regions of interest must consider two conflicting parts: (1) local exploitation:
using the model to find regions with large prediction error and (2) global exploration to discover
interesting regions that have not been sampled before [31].

The current adaptive sampling approaches are classified into four categories based on the
representation type of prediction errors. The variance-based adaptive sampling [31–34] uses estimations
of statistical models, mainly the Kriging model, to detect the regions of interest of regression models.
The query-by-committee (QBC) strategy [31,35,36] uses the predictions of multiple competing surrogate
models as a committee to predict the response at a candidate point. The cross validation (CV) based
adaptive sampling [37–39] estimates the prediction error at a candidate point using a cross-validation
process. Finally, The gradient-based adaptive sampling [40–42] uses the local gradient information of the
model to represent the prediction errors. All adaptive sampling methodologies use a particular local
exploitation method for searching for new critical samples accordingly to the meta-model performance.
The variance-based and gradient-based approaches use the model information as the model gradient
or the model hyperparameters, which represent a model dependence. This limits the models that can
be used for surrogating, mainly to the Kriging models, while query-by-committee, and cross-validation
can be applied to different types of surrogate models.

The main limitation of the current adaptive sampling methods is that they seek to identify the
points that most favor a predetermined meta-model based on its performance [37–42]. However,
it is not easy to determine if the points were selected due to the target system behavior or to an intrinsic
limitation of the selected meta-model. Ideally, all the selected samples are critical due to the complex
behavior of the target system; however, when evaluated through their performance in the surrogate
model, it is not possible to differentiate if they are complex by themselves or if they are only complex
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for the selected model. This issue raises the following question: does the selected meta-model and
its current hyperparameter selection is suitable for representing the target system? or a different
meta-model with a different tuning can improve the performance of the surrogate? The question of
whether it is possible to generate a new sample point through an adaptive sampling methodology that
is independent of the meta-model used to evaluate its performance.

To solve this problem, we propose an adaptive sampling methodology that combines the CV and
QBC methodologies together with a grid search algorithm to generate new sampling points at the
same time that performs a model selection and a hyperparameter tuning.

3. Proposed Method (ASAMS)

The proposed methodology is named Adaptive Sampling and Automatic Model Selection (ASAMS).
It consists of an AutoML methodology to adjust the hyperparameters of the AI algorithms, and an
adaptive sampling method that combines the two methods independently of models CV and QBC.
The AutoML method is complemented with a reduction process based on the elitism mechanism of
evolutionary methods. A flow diagram of the methodology consists of the modules shown in Figure 1,
explained in detail below.

Figure 1. Adaptive Sampling and Automatic Model Selection (ASAMS) general architecture.

1. Parameter Selection and Constraints. In this stage, the problem statement is carried out,
determining the design parameters and constraining the design space. See Section 3.2 for
more details.

2. Design of experiments. In order to initialize the construction of the surrogate model, a small
number of initial training points are generated using a one-shot sampling method or DoE. In this
work, we decided to use a full factorial sampling but any other method can be applied.

3. Plant Evaluation. In this stage, the response of the plant to each training point is measured and
assigned as a target for the surrogate training process. The process of evaluating the plant can be
online as mathematical models, computational simulations, or physical online measurements,
as in DT; or it can be offline for DM. In this paper, we analyze two problems that use an online
implementation: one mathematical model and one multiphysics computational simulation.

4. Model Selection and Hyperparameter Tuning. In this step, an AutoML algorithm is applied
to perform an algorithm selection and hyperparameter tuning for each possible algorithm.
See Section 3.3 for more details.

5. Reduced Model Selection and Hyperparameter Tuning. This step is similar to the Model Selection
and Hyperparameter Tuning with only one difference: after the first iteration, the number
of candidate models will be reduced through an elitism mechanism; this step performs the
hyperparameter tuning and model selection to reduce candidates.

6. Cross-validation. As a result, this process returns the best candidates and the validation score for
each candidate model obtained by cross-validation.
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7. Stop Learning Conditions. In this step, the methodology validates if the algorithm has met any
stop criteria. In this proposal, we consider three different stop conditions. See Section 3.4 for
more details.

8. Reduced Model Selection. The process of selecting a suitable model and the correct
hyper-parametrization can be explained as an exploration–exploitation problem. During the
Model Selection and Hyperparameter Tuning step, the design space is explored, and in the
Reduced Model Selection phase, we propose an exploitation mechanism to reduce the search
space. See Section 3.5 for a detailed explanation.

9. Adaptive Sampling. In this step, a novel mechanism of adaptive sampling that combines CV and
QBC generates new training points through a Voronoi approach. See Section 3.7 for a detailed
explanation of the contribution.

We developed the ASAMS algorithms mainly in Python [43], with the idea of integrating them
with computer-aided engineering (CAE) and computer-aided design (CAD) software. We performed
the integration through Matlab R© [44]. As CAE software, we selected COMSOL Multiphysics R© [45] and
as CAD software we used SolidWorks R© [46]. Software and experiments are available at GitHub [47].
Some references are made to the code implementation, however, the methodology is independent of
the software selection.

3.1. Formal Problem Statement

As mentioned in Section 2, the surrogate model creation problem can be stated as an
optimization problem which consists of minimizing the error between meta-model prediction and
the real measurement represented by Equation (1), and minimizing the number of experiments M
Equation (2), subjected to the algebraic and inequality restriction in functions of the design parameters
Equations (3) to (12).

min(
1
N

i=1

∑
N
(Yi − Ȳ(i,t))2) (1)

min(M) (2)

Ȳ(i,t) = Ft(Hp(v,t), Xi, Td) (3)

F̂T = {F1, F2, F3, . . . , Ft} t = 1, 2, 3, . . . , T (4)

Ĥp = {Ĥp1, Ĥp2, Ĥp3, . . . , Ĥpt} (5)

Ĥpt = {Hp(1,t), Hp(2,t), Hp(3,t), . . . , Hp(vt ,t)} vt = 1, 2, 3, . . . , Vt (6)

Hp(v,t) = {hp(1,t), hp(2,t), hp(3,t), . . . , hp(kt ,t)} kt = 1, 2, 3, . . . , Kt (7)

Xi = {x(1,i), x(2,i), x(3,i), . . . , x(j,i)} i = 1, 2, 3, . . . , N (8)

Yi = {y(1,i), y(2,i), y(3,i), . . . , y(s,i)} s = 1, 2, 3, . . . , S (9)

Td = {d1, d2, d3, . . . , dm} m = 1, 2, 3, . . . , M (10)

hp(kt ,t) ∈ P̂(kt ,t) P̂(kt ,t) = {p(1,kt ,t), p(2,kt ,t), p(3,kt ,t), . . . , p(q(k,t),kt ,t)} q(k,t) = 1, 2, 3, . . . , Q(k,t) (11)

xL
j ≤ xj ≤ xU

i j = 1, 2, 3, . . . , J (12)

The target error, Equation (1), is calculated using the outputs of the surrogate model Ȳ(i,t) and
the corresponding targets of the testing dataset Yi of N elements, in which every element is a set of S
outputs, as shown in Equation (9). The i-th output of the surrogate model Ȳ(i,t) is a function of the
selected model Ft performance, Equation (3), which depends on the training data set Td used to fit the
model; the hyperparameters Hp(v,t) selected for the model and the i-th input vector Xi of the testing
dataset, Equation (8). The other target is the minimization of the number of points M of the training
dataset Td, shown in Equation (10).
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The design variables selected for this optimization problem are the surrogate model algorithm
Ft from a set of possible T models F̂T, stated in Equation (4). The hyperparameters set Hp(v,t),
shown in Equation (7), are used to configure the Ft model. Each hyperparameter set can have Kt

different hyperparameters, and each hp(k,t) hyperparameter is selected from a set P(kt ,t) of possible
hyperparameter values, Equation (11).

Finally, we must consider that all the model inputs are constrained, as represented by Equation (12).
The nomenclature used in this section is shown in the end of this paper.

3.2. Parameter Selection and Constraints

A correct selection of the design parameters and a constrained search space are crucial factors for
developing an accurate surrogate model. In this step, we define the initial size M and data points of the
initial dataset Td, as well as the size N and input Xi and output Yi vectors of the testing dataset. Finally,
we define the number J, type, and constraints for each input parameter using a JSON notation built
by a list of objects representing each design parameter. In this proposal, we consider three different
types of input variables: continuous, discrete, and categorical. Continuous and discrete variables are
constrained by a minimum and a maximum value, while categorical ones are constrained to a set of
values. Categorical variables are defined by two properties: set and table. Set is described by a list of
categories and table has a list of objects associated with their corresponding list of values. Listing 1
shows an example of these parameters.

Listing 1: Parameter JSON visualization.

1 {"ParameterName": {
2 "Name": "Descriptive name of the parameter ",
3 "Type": "TypeName",
4 "min": "Minimal constraint",
5 "max": "Maximum constraint",
6 "set": ["Category name list"],
7 "Table":[
8 "ParameterName":["list of values"],
9 "ParameterName":["list of values"],

10 "ParameterName":["list of values"]
11 ]
12 }
13 }

3.3. Model Selection and Hyperparameter Tuning

The main inconvenience of the grid search is its high dimensionality and time cost. Still,
its required execution time is relatively short compared with complex computational simulations
of physical experimentation. This motivated us to incorporate an exhaustive grid search for
hyperparameter tuning for multiple algorithms—this allows the algorithm to perform hyperparameter
tuning and model selection simultaneously. With these, we seek to give the surrogate model the
greatest possibility to obtain a suitable performance with the minimum number of plant evaluations.
In our implementation, we selected a set F̂T of three machine learning algorithms: a support vector
machine regressor (SVM) [48], a random forest regressor (RF) [49], and a Bayesian Ridge model
(BR) [50], as shown in Equation (13), although this methodology can be generalized to any set of
machine learning algorithms.

We also make a proposal for the hyperparameters for each algorithm in Listing 2. The formal
statement of the hyperparameters is shown in Equations (14) to (28).
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Listing 2: Hyperparameter grid search.

1 {"SVM":{
2 "kernel":["linear","rbf"],
3 "C":[0.01,0.1,1,10,100],
4 "gamma":[1,10,100,1000,10000, ’auto ’]
5 },
6 "RF":{
7 "n_estimators":[200, 600, 1000, 1400, 1800],
8 "max_features":["auto", "log2"],
9 "max_depth": [10, 50, 90, None],

10 "min_samp_leaf": [1, 2, 4],
11 "min_samp_split": [2, 5, 10]
12 },
13 "BR":{
14 "alpha_1":[1× 10−4, 1× 10−6, 1× 10−7],
15 "alpha_2":[1× 10−4, 1× 10−6, 1× 10−7],
16 "lambda_1":[1× 10−4, 1× 10−6, 1× 10−7],
17 "lambda_2":[1× 10−4, 1× 10−6, 1× 10−7]
18 }
19 }

F̂T = {SVM, RF, BR} (13)

HpSVM = {kernel, C, gamma} (14)

HpRF = {n_estimators, max_ f eatures, max_depth, min_samp_lea f , min_samp_split} (15)

HpBR = {alpha_1, alpha_2, lambda_1, lambda_2} (16)

kernel ∈ {“linear′′, “rb f ′′} (17)

C ∈ {0.01, 0.1, 1, 10, 100} (18)

gamma ∈ {1, 10, 100, 1000, 10000,′ auto′} (19)

n_estimators ∈ {200, 600, 1000, 1400, 1800} (20)

max_ f eatures ∈ {“auto′′, “log2′′} (21)

max_depth ∈ {10, 50, 90, None} (22)

min_samples_lea f ∈ {1, 2, 4} (23)

min_samples_split ∈ {2, 5, 10} (24)

alpha_1 ∈ {1× 10−4, 1× 10−6, 1× 10−7} (25)

alpha_2 ∈ {1× 10−4, 1× 10−6, 1× 10−7} (26)

lambda_1 ∈ {1× 10−4, 1× 10−6, 1× 10−7} (27)

lambda_2 ∈ {1× 10−4, 1× 10−6, 1× 10−7} (28)

In each iteration, the grid search algorithm will test the performance of all possible hyperparameter
combinations for each candidate model. In the proposed structure of models and hyperparameters,
this will represent 60 hyperparameter combinations for the SVM algorithm, 360 hyperparameter
combinations for the RF algorithm, and 81 hyperparameter combinations for the BR algorithm.
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The combinations of all the algorithms are represented in Ĥp show in Equations (29)–(32).

Ĥp = { ˆHPCSVM, ˆHPCRF, ˆHPCBR} (29)

ˆHPCSVM = {HP1
SVM, HP2

SVM, HP3
SVM, . . . , HPE1

SVM} E1 = 60 (30)

ˆHPCRF = {HP1
RF, HP2

RF, HP3
RF, . . . , HPE2

RF} E2 = 360 (31)

ˆHPCBR = {HP1
BR, HP2

BR, HP3
BR, . . . , HPE3

BR} E3 = 81 (32)

3.4. Stop Conditions of Learning

We decided to stop the surrogate optimization process by three different criteria. The first criterion
is the accuracy assessment (acc). It considers if the surrogate has achieved the desired performance by
performing an error comparison using Equation (33).

acc =

{
True : min(~εm) ≤ εt

False : min(~εm) > εt
(33)

where ~εm = [εm1, εm2, ..., εmi] is the vector of the error εmi for each of the i models; εt is the target error.
The second criterion limits the computational power expended by the search algorithms

constraining the maximum number of iterations (maxI). The third criterion considers the cost in
time or money in each plant evaluation, limiting the maximum number of points (maxP) that can
be evaluated.

3.5. Reduced Model Selection

The proposed sequential methodology changes the number of training points in each iteration,
which gives more information to the machine learning models, enabling us to change the model
that fits better for solving the target problem. However, the grid search algorithm suffers from the
dimensionality problem and it is necessary to reduce the models that are too far away to represent the
intended phenomenon. This characteristic can be interpreted as an exploration–exploitation problem
in which we want to keep exploring the models that have an opportunity to fit the system but focus on
exploiting the ones that have better performance. Previously, the exploration process through Model
Selection and Hyperparameter Tuning was discussed in Section 3.3 in which the proposed structure of
models and hyperparameters represent a total of 501 models. However, testing all the models in each
iteration of the ASAMS is too computationally expensive. This motivated us to include a mechanism
for reducing the number of candidate models in each iteration.

We developed an exploitation mechanism based on elitism. The main objective is to reduce
the models to explore via grid search in each iteration. The proposed exploitation mechanism is
Reduced Model Selection. As a first step, we rank the models in F̂T for all ĤPt hyperparameter
combinations taking advantage of the CV score obtained by the grid search method. Then, we proceed
to remove the models that had the worst performance. The number of models to be removed in each
iteration is provided as a hyperparameter of ASAMS. Then, after each hyperparameter set ĤPt is
sorted, we proceed to remove the Wt hyperparameter combinations from each model Ft that had the
worst performance. The number of models Wt to be removed in each iteration is a function of the
keepRate hyperparameter of ASAMS, shown in Equation (34).

Wt = round((1− keepRate)Vt) (34)

As an example, we propose keepRate = 0.6, which means that we will keep 60% of the
hyperparameter combinations, using the proposed method described in Section 3.3. We estimate the
Wt values for three subsequent iterations in Equations (35) to (43).
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In the first iteration, we assume that we have the 501 initial models, and reduce them considering
the proposed keep ratio, as indicated in Equations (35)–(37).

WSVM = round((1− keepRate) ·VSVM) = round((1− 0.6) · 60) = 24 (35)

WRF = round((1− keepRate) ·VRF) = round((1− 0.6) · 360) = 144 (36)

WBR = round((1− keepRate) ·VBR) = round((1− 0.6) · 81) = 32 (37)

In the second iteration, we need to remove the models selected in the first iteration, which leaves
us 36 SVM, 216 RF, and 49 BR models. Then we will reduce them further in the second iteration
considering the proposed keep ratio, as indicated in Equations (38)–(40).

WSVM = round((1− keepRate) ·VSVM) = round((1− 0.6) · 36) = 14 (38)

WRF = round((1− keepRate) ·VRF) = round((1− 0.6) · 216) = 58 (39)

WBR = round((1− keepRate) ·VBR) = round((1− 0.6) · 49) = 20. (40)

In the third iteration, we need to remove the models selected in the first and second iteration,
which leaves us 22 SVM, 158 RF, and 29 BR models. Then, we will reduce them further in the third
iteration considering the proposed keep ratio, as indicated in Equations (41)–(43).

WSVM = round((1− keepRate) ·VSVM) = round((1− 0.6) · 22) = 9 (41)

WRF = round((1− keepRate) ·VRF) = round((1− 0.6) · 158) = 63 (42)

WBR = round((1− keepRate) ·VBR) = round((1− 0.6) · 29) = 12 (43)

This process is repeated for all iterations.

3.6. Adaptive Sampling

The main challenge is to build a suitable surrogate model with the minimum number of training
examples, which means we cannot waste samples or system evaluations. It is particularly meaningful if
assessments come from a physical system that is constructed and measured. We propose a framework
that partitions the sampling space into regions in Section 3.6.1, and then decides which the best are,
via a CV and QBC evaluation (Section 3.6.2), and take few candidate points from them.

3.6.1. Partition of the Sampling Space and Candidate Points Selection

We define the sampling region as the set of input values that are valid in all the input constraints.
At the start, the sampling region must be reduced from an infinite number to a finite number of points.
Therefore, the selected sampling points named candidate points should be far enough from each
other and spread in all the search space. In [51], the authors generate a candidate points population
using Monte Carlo sampling (MCS); other alternatives are translational propagation Latin Hypercube
Design (TPLHD) [52], Uniform Design (UD) [53], and Voronoi sampling [39]. From the latest emerging
methodologies, we selected the Voronoi sampling approach because the partition of the design space
is done according to the current samples, which allows us to focus on the regions of interest instead of
the whole design space.

In our proposal, we create Voronoi regions based on the work of [39] from the training samples
and incorporate a constraint-handling technique to select a subset of Voronoi vertexes that meet the
parameters’ constraints. For constraint handling, the methodology considers two approaches: for any
Voronoi vertex that goes outside the minimum and maximum value of any parameter, we apply
the death penalty constraint-handling technique [54], in any other point we apply the bounce back
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constraint-handling technique [55]. The set of data points selected by this technique is denominated as
the Voronoi set (VoP) and is represented in Equation (44).

VoP = {vp1, vp2, vp3, . . . vpg} g = 1, 2, 3, . . . G (44)

The points of the Voronoi set are the Voronoi vertexes that are estimated from the points of the
training dataset Td. A graphical example of two-dimensional Voronoi regions is shown in Figure 2.

Figure 2. Voronoi plane diagram [56].

3.6.2. Region Assessment and Candidate Selection

The assessment process consists of estimating the precision of the surrogate model in each of the
points of the Voronoi set VoP. In this proposal, we combine the two adaptive sampling approaches that
have no model dependencies: the CV and the QBC approaches. Voronoi regions can be evaluated using
the cross-validation approach proposed in [39]. However, we have more than one model trained with
the same data as a result of the grid search methodology, and each model has a different assessment of
regions of interest due to the particular characteristics of each model. For this reason, instead of using
a particular model for estimating the critical regions, we decide to make a committee conformed from
the best of each model type to determine the accuracy of each region. With this approach, we can use
the leave-one-out cross-validation approach for each training point on each of the different models to
estimate the global performance of all Voronoi regions.

In the first step, every Voronoi region a is rated considering the LOOCV score for the central
point of the region by the best hyperparameter set HpB for each model Ft independently. As a result,
every Voronoi region has as many ratings as different models trained by the grid search, as shown by
Equations (45)–(46).

Ȳ(a,t) = Ft(HpB, Xa, Td ∩ {Xa}) (45)

RR(a,t) = (Ya − Ȳ(a,t))2 t = 1, 2, 3, . . . , T (46)

R̂R(a) =
1
T

t=1

∑
T
(RR(a,t)) (47)

R̂R = {R̂R(1), R̂R(2), R̂R(3), . . . , R̂R(a)} a = 1, 2, 3, . . . , A (48)
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where

Xa central point of the a-th Voronoi region
HpB best hyperparameter set for the t-th model

Td ∩ {Xa} Training data set excluding the Xa point
RR(a,t) prediction error of the t-th model in the central point of the a-th region
R̂R(a) mean prediction error of the central point of the a-th region

R̂R set of mean prediction error of the all Voronoi regions
Ȳ(a,t) Output vector of the t-th surrogate model with the a-th input vector trained excluding

the Xa point
A number of Voronoi regions

In order to consider the information of each model in the committee, the final score for each region
is the mean value of the scores, see Equation (47).

Finally, it is necessary to rate each candidate’s point. As we stated before, the candidate points are
a subset of the Voronoi vertexes VoP. By definition, a Voronoi vertex is the midpoint where multiple
Voronoi regions collide [56], as shown in Figure 3. The subset of regions that collide with the g-th
Voronoi vertex ˆRRzg is shown in Equation (50). With this consideration, we define the performance of a
candidate point VPRg as the mean performance of the adjacent regions (Equation (49)). After assessing
the candidate points( ˆVPR), we sort them and select the Np points with the worst performance. Np is a
hyperparameter of ASAMS.

Figure 3. Vertex and colliding regions.

VPRg =
1
Z

z=1

∑
Z
(R̂R(g,z)) (49)

ˆRRzg = {R̂R(g,1), R̂R(g,2, R̂R(g,3), . . . , R̂R(g,z)} zg = 1, 2, 3, . . . , Zg (50)

ˆRRzg ⊆ R̂R (51)
ˆVPR = {VPR1, VPR2, VPR3, . . . , VPRg} g = 1, 2, 3, . . . , G (52)

where

VPRg assessment of the g-th Voronoi point
ˆRRzg set of assessments of coliding regions to the g-th candidate Voronoi point
ˆVPR set of assessments candidate Voronoi points
G Number of candidate Voronoi points

Zg Number of coliding regions to the g-th candidate Voronoi point
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3.7. Step by Step Algorithm

In this section, we present a step-by-step algorithm to detail the input outputs and requirements of
each step in the ASAMS Algorithm (see Section 3.7). The ASAMS algorithm uses the Problem or plant
evaluation function, the parameters declaration, the candidate models Mdls, and the DoE algorithm as
an input. It has five hyperparameters for adjusting the behavior of the algorithm. It uses a keep rate
keepRate to indicate how many models must be carried on to the next iteration, the number of new
points that will be generated each iteration nExp, and three stop conditions. The maximum number of
points maxExp, the maximum number of iterations maxIter, and the target MSE Error.

The experiment design function creates the starting sample using a DoE and the parameter
description. The plant evaluation function takes the sample and evaluates the problem. Then, the model
selection and hyperparameter tuning (MdlSeletHyParm) function perform the grid search and the
cross-validation of the candidate models. The stop condition function validates all the stop conditions
and returns a boolean True if any condition has been broken; False in other cases. The reduce model
function returns the remaining models after applying the keep rate. The adaptive sampling returns
the nExp new points generated, and the joint function unites the new points and evaluations of the
training set.

Algorithm 1 ASAMS

def ASAMS(Problem,Parameters,Mdls,DoE,
keepRate,maxExp,maxIter,Error,nExp):

Sample=ExperimentDesign(DoE,Parameters)
SEval=PlantEvaluation(Problem,Sample)
(mdlGrid MdlCVS)=MdlSeletHyParm(Sample,SSEval,Mdl)
StopFlag=stopCondition(MdlCVS,maxExp,maxIter,Error)
while StopFlag=True:
(mdlGrid,MdlCVS)=ReducedModel(mdlGrid,MdlCVS,keepRate)
newPoints=AdaptativeSampling(mdlGrid,Sample,SSEval,nExp)
NPEval=PlantEvaluation(Problem,newPoints)
(Sample,SSEval)=joint(Sample,SSEval,newPoints,NPEval)
(mdlGrid MdlCVS)=MdlSeletHyParm(Sample,SSEval,mdlGrid)
StopFlag=stopCondition(MdlCVS,maxExp,maxIter,Error)

return mdlGrid

4. Case Studies

4.1. Highly Nonlinear Oscillator

The first example is a highly nonlinear oscillator proposed in [57], as shown in Figure 4a,
subjected to a rectangular load pulse with random duration and amplitude (Figure 4b). This is
a benchmark problem widely used in many adaptive sampling works [34,58,59]. The limit state is
defined by Equation (53), in which zmax is the maximum displacement of the system and r is the
displacement at which one of the spring yields. The maximum displacement zmax, Equation (54),
is determined by the magnitude of the force F1, the duration of the pulse t1, the mass of the system m,
and the oscillation frequency w0. The oscillation frequency w0 is defined by the spring constants c1

and c2. Performance function is defined by Equations (53)–(55) in Equation (56).

g = 3r− | zmax | (53)

zmax =
2F1

mw2
0

sin(
w0t1

2
) (54)
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wo =

√
c1 + c2

m
(55)

g(c1, c2, m, r, t1, F1) = 3r− | 2F1

mw2
0

sin(
w0t1

2
) | (56)

(a) Nonlinear oscillator.

(b) Pulse load.
Figure 4. Nonlinear oscillator.

The surrogation problem stated to find a model mai that is capable of representing the nonlinear
oscillator performance (Equation (56)). The inputs and outputs of the proposed surrogate are presented
in Figure 5 and Equation (57).

mai(c1, c2, m, r, t1, F1) = g (57)

Figure 5. A nonlinear oscillator surrogate.

Parameter selection and constrains: this problem consists of five input variables whose constraints
are defined in Listing 3 and is considered a moderate dimensional problem.

Design of experiments: we select the full factorial method for two levels with a total of 64 samples
as starting training points.

Plant Evaluation: the plant evaluation will be performed using Equation (56).
Model and Hyperparameter constraints: the search of the surrogate model will be constrained to

the algorithms and parameters proposed in Listing 2.
Selection of the stop Learning Conditions: the objective of this study is to compare the performance

of the proposed algorithm with a baseline static design of experiments. As a baseline, we select a full
factorial design of three levels which yields a total of 730 experiments. These motivate us to use as
stop criteria a maximum number of points equal to the number of points of the factorial design 730.
We select a maximum number of iterations of 100 and a target error of 0.
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Listing 3: Nonlinear oscillator parameters.

1 {
2 "c1" : {"Name" : "spring one constant","Type" : "continuum",
3 "min" : 0.5,"max" : 1.5},
4 "c2" : {"Name" : "spring two constant","Type" : "continuum",
5 "min" : 0.05,"max" : 0.15},
6 "m" : {"Name" : "mass","Type" : "continuum",
7 "min" : 0.5,"max" : 1.5},
8 "r" : {"Name" : "mass","Type" : "continuum",
9 "min" : 0.4,"max" : 0.6},

10 "F1" : {"Name" : "Force","Type" : "continuum",
11 "min" : 0.5,"max" : 1.5},
12 "t1" : {"Name" : "time ","Type" : "continuum",
13 "min" : 0.5,"max" : 1.5}
14 }

ASAMS parametrization: we select the following parameters for the ASAMS algorithm in this
case study. A keep rate of 0.3, which represents that only 30% of the target models will be kept from
each iteration. A number of experiments nExp of 8, which means that the algorithm will generate
eight new experiments in or each iteration.

4.2. Magnetic Circuit

A magnetic circuit is a path in which a magnetic field can be enclosed, as shown in Figure 6a.
These circuits can be modeled by computer simulation and have been used to optimize the circuit’s
performance [60]. The magnetic circuit is described by a CAE simulation in COMSOL Multiphysics R©,
shown in Figure 6b. In this figure, the magnetic field of all the circuit is estimated using the CAE
model. As the surrogate target, the mean magnetic field in the central tube is used.

(a) Computer-aided design (CAD) model in
SolidWorks R©

(b) Computer-aided engineering (CAE) model in
COMSOL Multiphysics R©

Figure 6. Magnetic circuit.

The physical parameters that determine the characteristics of the magnetic circuit are the number
turns of the coil Nt, the core wire diameter Dw, and core geometry, defined by the core base Bc, the core
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height hc, the core width wc, and the core depth Pc. This problem consists of five input variables defined
in Listing 3 and is considered a moderately-dimensional problem. Additionally to the geometrical
parameters, it is necessary to include the electric current I that passes through the coils. Figure 7 shows
the geometric parameters.

Figure 7. Geometrical parameters.

To state the model inputs, we take some considerations about the physical construction of the
magnetic circuit, the core geometry is built using laminated silicon steel, which is commercially
available in some specific geometries. For this reason, as a design parameters, we select a categorical
parameter, the core Id that is related to the core geometry (Bc,hc,wc). The core wire diameter Dw is
limited to commercial gauges available and is considered a categorical parameter. The number of turns
of the coil Nt is considered a discrete integer parameter, and the core deep is a discrete parameter with
increments of 0.5.

The objective is to find a surrogate capable of predicting the mean magnetic field B inside the
tube at the center of the magnetic circuit. The proposed surrogate model is shown in Figure 8.

Figure 8. Magnetic circuit surrogate.

Parameter Selection and Constrains: the resulting five input variables and their constraints are
defined in Listing 4.
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Listing 4: Magneticcircuit parameters.

1 {
2 "Nt" : {"Name" : "number turns of the coil",
3 "Type" : "Continuum","min" : 200,"max" : 16291},
4 "Wid" : {"Name" : "wire Id","Type" : "categorical",
5 "set" : [ 1, 2, 3, 4, 5, 6, 7, 8 ],
6 "Table" : {
7 "Dw" : [ 0.511, 0.450, 0.404, 0.361, 0.320,
8 0.287, 0.254, 0.226 ]
9 }

10 },
11 "Cid" : {"Name" : "Core Id ","Type" : "categorical",
12 "set" : [ 1, 2, 3, 4, 5 ],
13 "Table" : {
14 "Alt" : [ 71, 63.8, 55.5, 48.5, 40 ],
15 "base" : [ 86, 76, 66.5, 57, 42.5 ],
16 "wc" : [ 14, 12.8, 11, 9.5, 8 ]}},
17 "Nc" : {"Name" : "Core Deep","Type" : "Discrete",
18 "min" : 7,"max" : 40,
19 "Equation" : [{"name" : "Pf","eq" : "Nc*0.5"}]},
20 "I" : {"name" : "Electric current","Type" : "Continuum",
21 "min" : 0.18,"max" : 0.8}
22 }

Design of experiments: we select the full factorial method for two levels with a total of 33 samples
as starting training points.

Plant Evaluation: the plant evaluation will be performed using the CAE simulation in COMSOL
Multiphysics R©.

Model and Hyperparameter constraints: the search of the surrogate model will be constrained to
the algorithms and parameters proposed in Listing 2.

Selection of the stop Learning Conditions: the objective of this study is to compare the performance
of the proposed algorithm with a baseline static design of experiments. As a baseline, we select a
full factorial design of three levels which yields a total of 244 experiments. These motivate us to use,
as stop criteria, a maximum number of points equal to the number of points of the factorial design 300.
We selected a maximum number of iterations of 34 and a target error of 0.

ASAMS parametrization: we selected the following parameters for the ASAMS algorithm in this
case study. A keep rate of 0.5, which represents that only 50% of the target models will be kept from
each iteration. A number of experiments nExp of 14, which means that the algorithm will generate 14
new experiments in or each iteration.

5. Experiments and Discussion

5.1. Highly Nonlinear Oscillator

The first problem is a benchmark problem; due to this reason, the performance of the algorithm can
be analyzed by different means. First, we aim to compare the generalization capability of the algorithm
trained using ASAMS with a one-shot approach as a baseline. We select the full factorial method for
two and three levels that yields a total of 64 and 730 sampling points respectively. For validating
the model performance, we will use a data set of 200 random points that are different from the ones
used in the training of any algorithm. This testing set was used for comparing the performance of
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both baselines with the accuracy of the ASAMS at a different number of sample points. We select two
different metrics for this comparison: the RScore metric [61] and the squared mean error (MSE) stated
in Equation (58). In Figure 9, the comparison of the baselines with the ASAMS algorithm is shown.
It can be appreciated that with 537 samples, the algorithm performs better than the 730 one-shot
sampling approach.

Figure 9. Baseline comparison of nonlinear oscillator.

We noticed some fluctuations in the performance during the testing face between 150 and
250 samples; however, these variations were not present during the training cross-validation mean
square error (MSE) shown in Figure 10.

Figure 10. Cross-validation training score of nonlinear oscillator.

We found that the variability was due to the performance of the model in some particular zones.
For this reason, we decided to focus our test on the zones of interest by generating additional testing
points using the ASAMS methodology without training the model with them. The new testing set of
fifty points was used to compare the models of ASAMS methodology for different numbers of samples
with the baseline models. Results are shown in Figure 11. In this figure, we can appreciate that the
type of model for each iteration is the same, which means that the ASAMS algorithm does not take
advantage of the capability of changing the model while generating new training points.
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Figure 11. Interest region squared mean error (MSE) comparison of a nonlinear oscillator.

The critical region experiment shows that the ASAMS model has better performance than any
baseline in the regions that are considered as harder regions for the model to capture. Another
important observation is that the baseline model with more points has the worst performance in the
critical regions.

One advantage of the ASAMS methodology is that it is capable of changing the type and
hyperparameters of the selected surrogate model in each iteration. We hypothesize that this feature
will help to improve the performance and the selected model will be changing when the size of the
training dataset increases. To analyze this hypothesis, we decide to register the number of changes
between the models. In Figure 12 we show the changes between the model types.

Figure 12. Type of model selection for the nonlinear oscillator.

It is clear that the algorithm has been fixed since the starting dataset. However, we also want to
analyze if the algorithm at least changes the hyperparameters for fine-tuning the model. In Figure 13a,
a histogram of the selected hyperparameters is shown. A table of the selected hyperparameters is
shown in Figure 13b. In this analysis, we can appreciate that the algorithm adjusts a couple of times
the hyperparameters before it converges to a specific set. The final model is SVM with the following
hyperparameters: C = 100, gamma = auto, and kernel = rbf.



Sensors 2020, 20, 5332 19 of 25

(a) Histogram of the selected hyperparameters.

(b) Table of values.

Figure 13. Histogram of the selected hyperparameters of the nonlinear oscillator.

5.2. Magnetic Circuit

This second problem is harder to evaluate because of the integration with COMSOL
Multiphysics R© and SolidWorks R©. In Figure 14 we compare the generalization capability of the
algorithm trained using ASAMS with a one-shot approach as a baseline using the full factorial method
for 2 and 3 levels that yield a total of 33 and 244 sampling points. We compare both baselines with
the accuracy of the ASAMS at a different number of sample points using MSE for an independent
35 point test set. Note that, with 75 samples, the algorithm performs better than the 244 one-shot
sampling approach.

1
N

i=1

∑
N
(Yi − Ȳ(i,t))2). (58)

Figure 14. Baseline comparison of magnetic circuit.

As in the previous case, we can observe some oscillations in the ASAMS results. For this reason,
we decided to perform also an independent testing set of 64 points of critical regions using ASAMS
mechanisms. In Figure 15, a comparison of both baselines with the accuracy of the ASAMS using
the Critical Testing set is shown. In this experiment, it can be seen that the 244 point baseline
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does not improve in the critical regions while the ASASM algorithm clearly improves without
losing generalization.

Figure 15. Interest region MSE comparison of the magnetic circuit.

A correct model selection and a fine hyperparameter tuning are crucial for a complex task.
We hypothesize that the AutoML feature of the ASAMS will become increasingly important to improve
the performance in harder problems. To analyze this hypothesis, we decide to register the number of
changes between the models. In Figure 16, we show the changes between the model types.

Figure 16. Type of model selection for the magnetic circuit.

Observe that in this case, the algorithm shows some changes between the model types. We are
also interested in analyzing if the algorithm changes the hyperparameters for achieving a fine-tuning
of the model. In Figure 17a, a histogram of the selected hyperparameters is shown. A table of the
selected hyperparameters is shown in Figure 17b. In this analysis, we can appreciate that the algorithm
adjusts the hyperparameters before and does not achieve convergence. The final model is RF with
the following hyperparameters: max_depth = NaN, max_features = auto, min_samples_leaf = 2,
min_samples_split = 5 and n_estimators = 200.
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(a) Histogram of the selected hyperparameters

(b) Table of values.

Figure 17. Histogram of the selected hyperparameters of the magnetic circuit.

5.3. Discussion

We hypothesize that the capability of changing the algorithm of the surrogate model during the
iterative adaptive sampling that generates additional data points will become crucial to improve the
performance. While this was true in the magnetic circuit problem, in the nonlinear oscillator the model
selection was not important after four iterations, and we can even argue that the changes between the
selected models were minimum. From this behavior, we can infer that the additional computational
cost is only justified in complex problems because in simpler problems the initial sampling provides
enough information for selecting a suitable model for the task.

We decided to perform two different kinds of validation. The first one was performed using a
random sampling of the valid input space. In this experiment, the baseline performs as expected when
we use a bigger dataset the predictions of the model improved. As expected, the performance of the
model trained using ASAMS was better than the baseline with fewer points in both cases. The second
experiment was performed using a sampling of critical points form the model trained by ASAMS
which by definition are the points in which our model performs worst. This dataset became interesting
because we found out that the baseline models do not improve their performance when the size of
the data set is increased as expected. However, the model train by ASAMS improves in the testing set
when the data set size increases. This characteristic must be studied in future work.

After the analysis, we note that the use of ASMS should be limited to complex problems since the
improvement is marginal in simple problems and does not justify the additional computational cost.

The proposed methodology can be generalized to any surrogation problems, provided there
is some alternative for evaluating the performance of the proposed points. The evaluation can be
performed online using any type of computational model or offline by an experimental method.
In the case of experimental measures, the algorithm must be stopped in every iteration to preform
experimental evaluations. From the target system, the designer must identify the inputs and outputs
for the surrogate model. The inputs of the surrogate model will be selected as parameters, and they
must be constrained. Then, the algorithm must start with a one-shot sampling method.

The ASAMS algorithm can be tuned by changing the number and type of candidate IA algorithms
for surrogating the system, also the list of hyperparameters can be changed. Finally, the stop conditions,
keep rate, max experiments, and the number of experiments must be set.

With all these hyperparameters the ASAMS algorithm can be tuned for many surrogation tasks.
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6. Conclusions and Future Work

Adaptive sampling algorithms have been proven to be useful in reliability analysis for traditional
surrogate models like the Kriging method, but the growing demand for algorithms to translate
the surrogate models into applications such as digital twinning, design mining or soft sensors has
generated the need to transfer adaptive sampling methods into machine learning models. In this
paper, we have proposed a new adaptive sequential sampling approach that combines a meta-learning
algorithm with two adaptive sampling methods for machine learning models. Constrain handling
techniques were introduced to consider different types of discrete design parameters, allowing the
algorithm to handle more types of problems. We proposed an elitism mechanism for reducing the
number of candidate models as part of the meta-learning approach.

We selected two different study cases for testing the ASAMS performance: a benchmark and
a real problem. In these tests, we compared the performance of a surrogate model trained with the
ASAMS algorithm and a model trained with a baseline one-shot sampling. Two different testing sets
were used for the comparison. The first one is a random sampling of 200 points and the other is a focal
sampling of the critical points of the study case. These experiments show that the model generated by
the ASAMS algorithm can obtain better performance than the baseline approaches with fewer sampled
points. Additionally, we verified that the surrogate models were more robust to the critical parts of the
target system without losing generalization.

Another important factor is the ability of the ASAMS methodology to perform a selection of
suitable algorithms for surrogating the problem and the fine-tuning of the selected algorithm. In the
test, we observed that this feature is relevant for complex models.

While the methodology was tested using a couple of well-known algorithms, it can be easily used
for almost any machine learning algorithm and can be applied for generating a surrogate model for
any field of study.

The ASAMS methodology is an initial approach to combine AutoML with adaptive sampling
techniques. As future work, we suggest improving the proposed methodology with more complex
AutoML algorithms. Additionally, we recommend studying further the differences between the critical
points for a model and a system to improve the performance of adaptive sampling techniques.
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Nomenclatures

Yi Target vector of the i-th element of the Testing data set
Xi Input vector of the i-th element of the Testing data set
Ȳ(i,t) Output vector of the t-th surrogate model w/ the i-th input vector of the Testing data set
Ft Algorithm selected from the F̂T algorithm set
Ĥp Set of all hyperparameter combinations for the T candidate solutions
Ĥpt Set of valid hyperparameter combinations for the t-th candidate model
Hp(v,t) Hyperparameters selected for the Ft model
hp(kt ,t) Value of the kt hyperparameter of the t model
Td Training dataset
F̂T Set of candidate algorithms
P̂(kt ,t) Set of candidate values for the kt hyperparameter of the t model
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x(j,i) j-th element of the input vector Xi

y(s,i) s-th element of the target vector Yi

dm m-th data point of the Training dataset
p(q(k,t) ,kt ,t) q-th candidate value for the kt hyperparameter of the t model
xL

j Lower constraint for the j-th elements of the i-th input vector
xU

j Upper constraint for the j-th elements of the i-th input vector
M Number of points of the training dataset
N Number of points of the Testing dataset
T Number of candidate algorithms
Kt Number of hyperparameters of the t-th algorithm
S Number of elements of the target vector
J Number of elements of the input vector
Q(k,t) Number of candidate values of the kt hyperparameter of the t model
Vt Number of valid hyperparameter combinations for the t-th model
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