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Abstract: This work presents a non-invasive and low-cost alternative to traditional methods for
measuring the performance of machining processes directly on existing machine tools. A prototype
measuring system has been developed based on non-contact microphones, a custom designed signal
conditioning board and signal processing techniques that take advantage of the underlying physics
of the machining process. Experiments have been conducted to estimate the depth of cut during
end-milling process by means of the measurement of the acoustic emission energy generated during
operation. Moreover, the predicted values have been compared with well established methods based
on cutting forces measured by dynamometers.
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1. Introduction

The improvement of industrial processes demands new technologies that provide accurate information
regarding the stationary or dynamic conditions of their operations. In the case of machining processes,
the knowledge of operating conditions is required towards efficiency improvement and quality optimization.

A wide range of methods have been developed to monitor milling processes, most of them
are based on the measurement of the cutting forces present in the workpiece because it represents
accurately most of common machining phenomena. Cutting force methods have the advantage of
providing accurate results [1–3] and they are simple to implement, but they have the disadvantage of
requiring high cost transducers and direct contact between the sensor and the workpiece.

Other detecting methods rely on ultrasound emission and reception to measure the depth of cut in
milling applications [4], thus solving the direct contact requirement. More recently, the contact between
the cutting tool and the workpiece has been studied with their electrostatic contact to determine the
engagement of each tooth [5,6].

Acoustic emission (AE) techniques have received increasing attention during the last few years
due to the ability to perform multiple monitoring tasks during machining processes. One of the
first applications was the detection and study of tool and workpiece contact in machining [7,8],
which quickly led to an interest in the automatic detection of malfunctions. In the event of a tool with
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broken or blunt teeth, acoustic emission technologies can automatically detect their presence with
the use of relatively simple setups [9–13]. Even if the tool is in good working condition, phenomena
like runout [14,15] or chatter [16–19] are common problems that modern industry has to face, but due
to the change in the acoustic emission generated by each of those phenomena they can be readily
detected and solved.

Beyond their conventional uses in traditional machining, the continuous research on AE allowed
it to have newfound popularity in more subtle applications, such as roughness analysis [20] and the
study of micromachining processes [21]. The main advantages of using AE sensors rely on their low
invasiveness and the possibility to assess different sources of interest during the machining process.

Acoustic Emission

Acoustic emission has attained notable focus in the engineering community in recent years,
both in contact sensors [22–25] and non-contact ones [26–28] in a wide range of applications. Besides
the use of AE sensors in the machining field, it has also been used in detecting weak points in metallic
structures such as piping [29], aircraft [30], windmills [31] and even bone-milling surgery [32].

Acoustic emission refers to the mechanical waves generated by the plastic (irreversible) changes
in solid bodies during the application of stresses that can produce cracks, deformations and movement
of dislocations among others, as well as friction and other phenomena [33].

Traditionally, AE is obtained by means of piezoelectric transducers that are directly attached
to the surface of the specimen under load [22–25], which requires the use of expensive sensors that
may obstruct the pathway of the cutting tool and whose proximity to the cutting fluid may be
dangerous to the integrity of the sensing device. To solve the intrusiveness and cost issues, the use of
microelectromechanical systems (MEMSs) was chosen in the present work.

MEMS technology was initially applied to microelectronics because of the small form factor
required by the ever increasing processing needs of computers. Due to the elevated cost of such
devices, their mass implementation outside the field of computation was hardly profitable, but the
recent developments in MEMS manufacturing [34–42] suggest that they can potentially be used in
numerous applications where their small size and cost reduction [43–47] can offer an unobtrusive and
affordable solution.

In machining processes, AE might be one of the best options to analyze subsurface damage and
anisotropic materials [48] because of the capabilities of this technology of detecting weak points and
discontinuities inside solid bodies without the need to perform any destructive testing.

These monitoring capabilities are not limited to milling, and with some modifications, it can also
be applied to operations such as drilling [49], boring or turning [50], as all of them would benefit from
tool monitoring [51].

The measurement of airborne AE signals poses a big challenge in filtering the background noise,
which is produced by the machine under study and by other industrial noise sources present in the
surrounding environment. Previous works have shown different approaches to find a flexible method
that works under different operating conditions without compromising accuracy. For example, the use
of neural networks by Gaja et al. [52], fuzzy logic algorithms [53–55], and radial basis functions [56,57]
have proven to be effective methods to estimate the axial depth of cut based on AE.

With the aforementioned state of the art in mind, the objective of the present work is to analyze
the performance and applicability of a truly non-invasive and low-cost alternative AE measurement
system with the ability to estimate the cutting conditions during end-milling operations. In order to do
so, a system prototype has been developed and tested in real operating conditions, and the accuracy of
the method has been compared with the results of well established methods based on the measurement
of the cutting forces [3].

Section 1 describes the context of this work and provides the theoretical background. Section 2
includes the geometrical model used to characterize the signal pattern of the cutting forces in
end-milling processes and Section 3 expands on its application in system that is being studied. Section 4
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presents the materials and methods used in the development of a measuring system prototype,
including the design of the signal conditioning unit, the hardware and software architecture of
the system, the calibration and signal processing algorithms. Section 5 presents and discusses the
experimental results from both a qualitative and a quantitative point of view. Finally, Section 6
summarizes the main findings this work.

2. Geometrical Model of the End-Milling Process

The machining conditions in end-milling process can be obtained in terms of the geometrical
characteristics of the cutting tool. This means, that the radial depth of cut (ae) and the axial depth
of cut (ap) can be related to the characteristic angles of the tool flute (entry angle φen, exit angle φex,
projected angle φpr and flute angle λs) shown in Figure 1a,b.

Figure 1. Main parameters of the end-milling process. (a) Top view, (b) front view, and (c) time history
of the cutting process.

If the diameter of the tool (D) is known, the relationship between the entry angle of the tool and
the width of cut can be established geometrically as shown in Equation (1):

φeni = π − arcos
(

1 − 2aei

D

)
(1)

Furthermore, if a fixed geometrical reference is set, and a time base is available, this angle can be
determined by measuring the time it takes the flute to complete that part of the rotation. This can be
done by adding a digital pulse for each revolution of the spindle as shown in Figure 1c. The associated
time parameter is denoted as the entry time (teni ) and it represents the time, measured from the
reference pulse, that takes the cutting edge of the tool to get in contact with the workpiece on each
spindle revolution.

The entry time and entry angle are related by the spindle period (T) as shown in Equation (2):

teni =
φeni

2π
T (2)

The width of cut can be obtained in terms of the tool diameter (D), the entry time (teni ) and the
spindle period (T) (see Equation (3)).

aei =
D
2

(
1 + cos

(
1 − 2πteni

T

))
(3)

Analogously, the projected time depends on the projected angle of the active flute over the
working plane of the workpiece being machined (φpr). This angle can be obtained by measuring the
time it takes each flute of the tool to travel the projected angle as shown in Equation (4).

tpri =
T

2π
φpri =

Tapi tanλs

πD
(4)
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Therefore, the depth of cut can be obtained in terms of the projected angle (φpr) and the spindle
period (T) of the tool as shown in Equation (5).

api =
πD

Ttanλs
tpri (5)

3. Cutting Force Model

One of the main problems in measuring airborne acoustic emissions during machining processes
is dealing with background noise. Among the main sources one can find electrical noise, environmental
noise, and some other internal noise sources from the machine under analysis. This effect can be
noticed in Figure 2, when comparing the experimental signals of the cutting forces measured by a
dynamometer and the acoustic emission registered from a non-contact microphone during end-milling
operations. In the case of the cutting forces, there are three clearly marked phases depending on the
degree of engagement between the cutting tool and the workpiece. In the first phase, the cutting
tool is approaching the workpiece with no material removal; the second phase, where the tool is
entering into the workpiece; and the third phase, the zone of uniform cut once the tool is fully engaged.
These features are not easy to find on the acoustic emission signal, and therefore signal filtering
is required. In this work an adaptive filter is used, taking the synthesized model of cutting forces
proposed by Leal et al. [3] as the reference signal.

Figure 2. Phases of the end-milling process. (a) Cutting force signal, and (b) acoustic emission (AE) signal.

The formulation of the geometric model described in the previous section can be extended to the
three cutting phases shown in Figure 1c, then the instantaneous axial depth of cut can be rewritten as
shown in Equation (6).

apa(φ) =


φj−φen

φpr
ap φen ≤ φj ≤ φex

φex−φen
φpr

ap φex ≤ φj ≤ φen + φpr
φex−(φj−φpr)

φpr
ap φen + φpr ≤ φj ≤ φex + φpr

(6)

Equation (7) allows the determination of the average chip thickness (h̄(φ)) on each of the three
cutting phases, where fz is the feed per tooth in mm.
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h̄(φ) =


1

φj−φen
fz[cos(φen)− cos(φj)] φen ≤ φj ≤ φex

1
φex−φen

fz[cos(φen)− cos(φex)] φex ≤ φj ≤ φen + φpr
1

φex−(φj−φpr)
fz[cos(φj − φpr)− cos(φex)] φen + φpr ≤ φj ≤ φex + φpr

(7)

Thus, the three components of the cutting forces can be obtained from Equations (8)–(10):

Ft(φ) = kt(φ)apa h̄(φ) (8)

Fr(φ) = kr(φ)apa h̄(φ) (9)

Fa(φ) = ka(φ)apa h̄(φ) (10)

where kt, kr and ka correspond to the cutting force coefficients for tangential, radial and axial directions,
respectively. These coefficients are obtained experimentally and adjusted for each material. This set
of equations can be used to model the cutting forces as shown in Figure 3, where the entry and exit
points of the cutting edge on each tool revolution are time parameters needed to estimate the depth of
cut. This signal is generated from the nominal cutting conditions and the cutting tool geometry, and it
represents the reference signal for the adaptive filter described in Section 4.1.

Figure 3. Cutting force model for a single edge cutting tool, with D = 8 mm, ap = 8 mm, ae = 1 mm, fz =
0.08 mm and n = 1200 rpm.

4. Materials and Methods

This section describes the design of the prototype measuring system, and the experimental setup
used to perform the validation of the method.

4.1. Prototype Measuring System

The prototype proposed in this work is a combination of hardware and software to measure
the airborne acoustic emission during the end-milling process in order to estimate the depth of cut.
The transducer selected for this application is the Knowles SPU1410LR5H-QB. This corresponds to
a low-cost and non-contact microelectromechanical systems (MEMS) microphone with the ability to
measure high frequency content of acoustic emissions [7,8] but at expense of amplitude precision.
The technical specifications of this transducer are listed in Table 1.

Additionally, a signal conditioning board has been designed to provide power supply to the
microphone and also to handle basic amplification and filtering. Its schematic circuit is depicted in
Figure 4, where IC2, C1 and C8 provide a 5 V DC stabilized power supply from a 9 V battery connected
to J1. The microphone MC1 is powered from a 3.6 V DC using R10 and R11, and C2 has been added to
eliminate power fluctuations. The output of the microphone is connected to a three-stage low pass
Butterworth filter with a cut-off frequency of 1 kHz represented by R5, C4, R6, C3, R9 and C10. Finally,
the signal amplification stage is composed by U1 and its surrounding components (R2 and R3 for the
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voltage divider, R1 and R4 for the input resistor and R3 for the feedback resistor). The latter deals with
the inherent offset value of the microphone and it also maximizes the achievable dynamic range with a
unipolar power supply.

Table 1. Technical specifications of the SPU1410LR5H-QB microphone.

Range 10 Hz–10 kHz
Directivity Omnidirectional
Sensitivity −38 dBV/Pa
Signal to Noise Ratio 63 dB(A)
DC Output at Vdd = 1.5 V 0.73 V
Total Harmonic Distortion at 1 kHz 0.15%

Figure 4. Schematic representation of the conditioning board.

The analog output from the conditioning board is digitalized by means of a data acquisition
system which would be described in the next section. This signal is fed to an algorithm that estimates
the axial depth of cut. The block diagram of the main routine is illustrated in Figure 5, where three
stages can be identified.

In the first stage, the reference signal for the adaptive filter is generated based on the cutting force
model described in Section 3. The second stage, which can be considered as core of the algorithm,
applies an adaptive filter to obtain the time parameters needed to compute the depth of cut using
Equation (5). Finally, the third stage consists on the estimation of the depth of cut after adjustments
that compensate for systematic errors present along the measurement chain.

Figure 5. Block diagram of the system.

4.1.1. Stage 1: Generation of Cutting Force Reference Signal

As mentioned previously, the goal of this stage was to provide a reference signal for the adaptive
filter on stage 2. This was done by extracting the main features of the acoustic emission signal based on
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the geometric model of the cutting forces presented in Equations (6)–(10). This strategy was sensitive
to changes in the operation conditions, and therefore, this measuring system had the ability to work
completely independent of the machining control system.

Before obtaining the time parameters, a third order Butterworth filter with a cut-off frequency of
150 Hz needed to be applied to the microphone raw signal, in order to remove most of the electrical
and background noise. From the low frequency waveform, the entry and exit times were found
by detecting the amplitude peaks that exceeded a threshold value (see Figure 6a). This threshold
was automatically set from the mean value of the signal while the cutting tool was approaching the
workpiece with no material removal. Furthermore, the digital pulse allowed the transformation of
time values to the angle domain, which were independent of the spindle speed variations.

Figure 6. Time parameters measurement. (a) Threshold-based algorithm. (b) Slope-based algorithm.

4.1.2. Stage 2: Estimation of Depth of Cut Using the Adaptive Filter

At this stage, the AE raw signal was filtered using the reference signal generated in stage 1.
Both signals were divided into equally sized segments (windowing), whose size depended on the
priorities of the monitoring process. A short window could be used to respond quickly to changes in
the process parameters (e.g., width or depth of cut), but it would make the system less robust against
background noise, whereas long windows would have the opposite effect. A window width of two
tool revolutions (0.1 s) was chosen as a good compromise between these two factors.

The adaptive filter implemented was a 7th order that uses a Normalized Least Mean Squares
algorithm (NLMS), which made it stable against any scaling of the input (raw) signal.

Due to the high frequency content of the filtered signal, the threshold based algorithm of stage
1 was not suitable to determine the time parameters. As a consequence, a slope-based algorithm
(see Figure 6b) was selected, where the estimation of the entry and exit points were obtained by
intersecting the threshold level with the slope lines of the rising and falling edges of each peak.

4.1.3. Stage 3: Calibration and Correction Factor

At the final stage, a correction factor was added in order to compensate for systematic errors
along the measurement chain. The main error contribution came from the microphone due to its slow
response time at the exit of the cutting edge. The experimental procedure to determine the correction
factors is described in Section 5.2.

4.2. Experimental Setup

Experiments of an end-milling process were carried out in a DMG 1035 three-axis machining
center. An 8 mm diameter three-flute cutter rotating at 1200 rpm was used to machine a 7075 aluminum
workpiece. The cutting forces were measured on a Kistler 9257A dynamometric platform (see Table 2)
connected to a Kistler 5070 amplifier unit. In addition, a Knowles SPU1410LR5H-QB non-contact
MEMS microphone (see Table 1) and a custom made conditioning board (see Figure 4) were used in
order to measure the airborne acoustic emissions. In all tests, the microphone was placed at a distance
of 500 mm perpendicular to the center of the workpiece.

The data acquisition of both signals was performed by a NI-9234 module for dynamic signals
attached to a personal computer. The sampling rate was 51.2 kHz configured for bipolar input with a
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dynamic range of 10 V and a resolution of 24 bits. It should be noted that this device had a crosstalking
specification of −110 dB, which was especially suitable considering the difference in magnitude of the
signals that were compared. This setup is represented schematically in Figure 7.

Figure 7. Scheme of the setup (top) and image of the sensors and the piece being machined (bottom).

Table 2. Main characteristics of the dynamometer Kistler 9257A.

Dynamic range ±5 kN
Threshold <0.01 N
Pretensioning direction Vertical
Frequency range 1 Hz–2 kHz
Linearity, all ranges <±1%

5. Results and Discussion

In this work, two sets of experiments were conducted. First, a comparison between the cutting
forces and the acoustic emission signals. This can be considered a qualitative waveform analysis to
validate the accuracy of the method in the detection of the time parameters fed into the geometric
model. Then, the performance of the prototype measurement system was tested under different
machining conditions during end-milling operations.

5.1. Qualitative Waveform Analysis

The cutting forces are considered a good descriptor of the physics behind machining processes.
The latter remains valid in the case of the end-milling process, and therefore, this knowledge can be
used to validate the predictions of the time parameters obtained from the acoustic emission signal.

In Figure 8a three different waveforms are presented, the cutting force signal, the raw AE signal
and the filtered AE signal, respectively. Although the amplitude of the background noise in the raw AE
signal hid most of the features of the process, the filtered AE signal resembled the pattern of the cutting
force. Figure 8b shows a zoomed section of the cutting force and the filtered AE signals within the
zone of uniform cut. This reveals that both signals captured in amplitude and time the most important
attributes of the process, such as the entrance and exit of the three cutting edges on each revolution of
the spindle. Additionally, one can notice that these three peaks had different amplitudes, which could
be an indication of tool runout [58].
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Figure 8. Experimental signals under analysis. (a) Cutting force signal (top), raw AE signal (middle),
and filtered AE signal (bottom). (b) Zoomed section of the cutting force and filtered AE signals within
the zone of uniform cut.

5.2. Performance of the Prototype Measurement System

After the previous validation stage, the performance of the prototype measurement system was
tested under different machining conditions during end-milling operations as shown in Table 3. In all
runs, only the axial depth of cut was changed from 2 to 10 mm, increasing this value in steps of 2 mm.
An additional test was carried out, in order to evaluate the response to sudden changes by increasing
the axial depth of cut from 2 to 10 mm in a single step.

Table 3. Machining conditions of the experiment.

Depth of cut ap [mm] 2–10
Width of cut ae [mm] 1
Feed per tooth fz [mm] 0.08
Spindle speed n [rpm] 1200
Tool flute number N [-] 1
Tool diameter D [mm] 8
Tool helix angle λs [º] 30
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The mean value and standard deviation of the estimated depth of cut are presented in Table 4.
These results were obtained from the analysis of signals within the zone of uniform cut, with a period
of 7 s, equivalent to 140 revolutions of the cutter. In most cases, the error of the estimated depth of cut
was larger than the nominal value. However, the standard deviation was consistently independent of
the size of depth of cut increment between two different runs.

The presence of large errors was a direct consequence of the slow time response of the microphone,
which gave a poor estimation of the exit time of the cutting edge (see Figure 9a). However, the exit
time difference between the cutting force and the filtered AE signal remained relatively constant and
therefore, the predicted value can be adjusted in terms of a correction factor obtained from a calibration
curve as shown in Figure 9b. This calibration curve was valid for the test conditions listed in Table 3.
Any new set of machining conditions requires its own calibration process, which is the main drawback
of this methodology.

On the other hand, the use of an adaptive filter and the geometric model of the end-milling
process offers the potential to estimate the depth of cut even if the depth of cut varies during the
cutting operation. However, this property requires further study and testing.

Table 4. Experimental results for the estimated axial depth of cut.

Nominal ap [mm] Calculated ap [mm] STD [µm] Error [mm]

2 4.14 174 2.14
4 5.21 185 1.21
6 7.10 280 1.10
8 8.70 300 0.70

10 9.80 259 −0.20
2 4.12 159 2.12

10 9.82 241 −0.18

Figure 9. Experimental results. (a) Exit time delay between the cutting force signal (blue) and filtered
AE signal (orange). (b) Calibration curve: estimated vs. nominal depth of cut.

5.3. Precision of the Proposed Method

The experimental results after the calibration stage are shown in Table 5. The corrected estimates
of the depth of cut, obtained from the filtered AE signal, are of the same order to the reference values
given by the cutting forces. The absolute difference between these estimates is slightly above 10%,
which supports the feasibility of this prototype system as an alternative to the traditional methods
with the advantage of reduced cost and low invasiveness.

Furthermore, it should be noted that this algorithm is capable of working completely independent
of the CNC control. If the nominal value of the depth of cut is provided as an input to the system,
the difference between the estimates of the filtered AE signal and the values of cutting force drops to
less than 1%, as can be seen in Table 6.

The applicability of this method relies on controlling the presence of any external disturbance,
and further analysis should be performed. As an example, Figure 10 shows the calculated depth of cut
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values for all the test runs listed in Table 3. Note that the effect of higher background noise level and
impacts can be seen for ap = 2 mm and ap = 6 mm, respectively.

Table 5. Comparison between the dynamometer and the microphone values.

Dynamometer Microphone
Nominal ap [mm] Calculated ap [mm] STD [µm] Calculated ap [mm] STD [µm] Difference [%]

2 2.01 8 2.23 174 9.87
4 4.03 14 3.65 185 −10.41
6 5.99 23 6.17 280 2.92
8 8.04 31 8.30 300 3.13

10 10.30 39 9.76 259 −5.13

Table 6. Results with known nominal depth of cut.

Dynamometer Microphone
Nominal ap [mm] Calculated ap [mm] STD [µm] Calculated ap [mm] STD [µm] Difference [%]

2 2.01 8 2.01 14 0.50
4 4.03 14 4.00 25 <0.01
6 5.99 23 5.99 38 −0.17
8 8.04 31 8.00 62 <0.01

10 10.30 39 10.01 53 0.10

Figure 10. Effect of impacts and high level of background noise on the experimental results.

6. Conclusions

The present contribution discusses a prototype measurement system with the ability to estimate
the axial depth of cut during end-milling operations. This is performed by the analysis of airborne
acoustic emissions registered by a non-contact MEMS microphone. The advantage of this system is the
reduced cost and low invasiveness, which might be considered as an alternative to traditional methods
with contact-based transducers mounted rigidly to the workpiece.

Here, a geometric model of the machining process, an adaptive filter and a calibration stage has
been used to estimate the depth of cut during end-milling operations. The feasibility of this method has
been tested experimentally in a CNC machining center under laboratory conditions. The estimations
of the depth of cut are compared with the reference values given by the cutting forces. These errors are
slightly above 10% when the algorithm is working completely independent from the CNC control,
and it drops to less than 1% if the nominal depth of cut is fed into the algorithm.

Extending this methodology to industrial applications requires further study. For instance,
the accuracy of the predicted values should be assessed in terms of the background noise level of the
input signal. Moreover, the calibration process and the analysis of overlapping in multi-flute cutters
should also be considered in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Acoustic Emission
ae Radial depth of cut, mm
aei Axial depth of cut, mm
api Axial depth of cut of the flute i, mm
apa Actual axial depth of cut, mm
φen Entry angle, rad
φeni Entry angle of flute i, rad
φpr Projected angle of the cutting edge, rad
Fx Cutting force in X direction, N
T Period of spindle rotation, s
D Tool diameter, mm
fz Feed per tooth, mm
n Spindle speed, rpm
N Tool flute number, -
λs Tool helix angle, rad
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