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Abstract: We present a mode localized mass sensor prototype based on a hybrid system excited at a
fixed frequency slightly below the resonances. Indeed, we show, both theoretically and experimentally,
that this condition yields higher sensitivities and similar sensitivity ranges than that of resonance
peak tracking while being less time consuming than a classical open-loop configuration due to the
absence of frequency sweep. The system is made of a quartz resonator and a hardware that includes
a resonator and the coupling. The digital aspect allows maximum sensitivity to be achieved with
a fine tuning of the different parameters and the implementation of a coupling, regardless of the
physical resonator geometry. This allows the generation of mode localization on shear waves resonant
structures such as the quartz cristal microbalance widely used in biosensing. This solution has been
successfully implemented using resin micro balls depositions. The sensitivities reach almost their
maximum theoretical values which means this fixed frequency method has the potential to reach
lower limit of detection than the open loop frequency tracking method.
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1. Introduction

The last two decades saw the development of sensors that were based on arrays of weakly coupled
resonators. Using two or more weakly coupled resonators allows for taking advantage of the mode
localization (ML) phenomenon, which is a manifestation of the well-known Anderson localization [1]
applied to structural dynamics, often described, as follows: in a weakly coupled symmetrical system,
the introduction of a slight perturbation breaking the symmetry of the structure will cause a drastic
confinement of the vibrational energy.

The output parameter of mode localized sensors is the vibration amplitude shift, whether for
evaluating a change in eigenvectors or amplitude ratios at resonance. This is a major difference from
mechanical resonant sensors that measure a change in resonant frequency (RtF). While the resolution of
such sensors is rather good, the normalized sensitivity (NS), defined as the relative output over input
shifts, is limited to the constant value of 1

2 [2]. On the other hand, the theoretical NS of mode-localized
sensors can be two to three orders of magnitude higher than this value. The lower the coupling,
the higher the NS. However, there is a low limit for weak coupling imposed by the mode aliasing that
appears when the frequency difference between two vibration modes is too small with respect to the
bandwidth of the modes, so that the two modes merge [3]. Therefore, it seems appropriate to work
with high quality factor resonators to achieve the highest possible NS.
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Most of the papers dealing with mode localized sensors concern MEMS sensors. These sensors
have been developed for various applications, ranging from mass sensors [4–6] to force [7] or
acceleration [8,9] sensors, electrometers [10–12], and magnetometers [13,14].

The main disadvantage of MEMS sensors using ML is manufacturing defects. These defects make
it difficult to produce perfectly identical resonators, which is a necessary condition for obtaining a
balanced system before perturbation. One strategy to counteract this is to use electrostatic actuation
in order to use electrostatic softening to rebalance the system after manufacturing [15]. Another
disadvantage of MEMS sensors with ML is the lack of adjustment of the coupling, which does not
necessarily allow for reaching the optimal value leading to the highest possible normalized sensitivity.
In the case of mechanical coupling, the coupling value is directly dictated by the geometry of the
coupling structure. Therefore, some sensors use electrostatic coupling, which allows for adjustment by
varying the voltage [5,6,16,17], but prevents the sensor from being used in a liquid medium. However,
such coupled structures cannot be designed using high Q-factor shear waves resonators, such as the
quartz cristal microbalance (QCM), because of their geometry and wave form.

Here, we present an alternative solution based on a hybrid system, where a QCM is connected to
a field programmable gate array (FPGA) that emulates the presence of a second virtual and tunable
coupled resonator, in order to overcome these limitations. In such an architecture, maximum sensitivity
can be achieved and geometry constraints due to the coupling are suppressed. Tunable ML has already
been demonstrated on electrical resonators [18] and a device following the same principle has also been
recently presented, where a cantilever is virtually coupled with an electrical resonator made of passive
and active components to achieve sensitive mass sensing by means of ML [19]. Finally, in previous
publications were shown the principle of virtualization [20,21], where only digital perturbations
were applied.

This work first exposes the theoretical results in Section 2 (analytical developments and
simulations) on NS in a two degrees of freedom (DoF) coupled resonators subjected to a mass
perturbation. It also introduces a new open loop sensing method based on the amplitude shift
at a fixed excitation frequency and discuss its advantages and drawback in regards with the classic
method that consists in the vibrations amplitude measurements at the resonances. The measure of a
variation in vibration amplitude due to a RtF shift is already exploited in atomic force microscopy for
instance [22]. The concept of hybrid system along with its design are detailed in Section 3. It includes
a description of the digital filter, the analog resonant filter based on a QCM and the complete hybrid
system. Section 4 gives experimental results that confirm the theoretical ones that are presented in
Section 2 by the means of particle depositions on the QCM of our system. It also gives a tuning protocol
and a description of the experiments. These results are finally discussed in Section 5, where many
perspectives are also exposed.

2. Theoretical Developments

We first demonstrate that exciting a pair of coupled resonators at a fixed excitation frequency
(lower frequency of the resonance bandwidth) yields higher amplitude sensitivities to mass
perturbations than the classic method, which consists in tracking the resonances. To do so, we provide
analytical developments and simulation results on the maximum reachable NS and the sensitive
range according to the Q-factor of the resonators in a two DoF weakly coupled resonators system.
The sensitive range is here defined as the normalized perturbation at which the NS drops by
half. Both resonators are modeled by the classic linear mass-spring (undamped resonator) or
mass-spring-damper (damped resonator) in the analytical developments in order to provide general
knowledge on ML. The proof of Properties 1 and 2 are given in Appendix A.
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Property 1. Expression of ns1, the maximum normalized sensitivity (NS) in amplitude following the resonance
in a 2 DoF undamped resonators system taking mode aliasing into account.

ns1 ' 0.25×Q (1)

where Q is the Q-factor of the damped resonator.

Property 2. Expression of ns2, the NS in amplitude at fixed excitation frequency f1 = fr ·
(

1− 1
2Q

)
for a

single damped resonator of resonant frequency fr.

ns2 ' 0.35×Q (2)

where Q is the Q-factor of the damped resonator.

Properties 1 and 2 show that exciting a single resonator at the frequency f1 (the RtF minus half
the bandwidth) enables reaching maximum sensitivity to mass perturbation, most likely in a limited
sensitive range. Because ns2 > ns1, there is apparently no sensitivity gain when using a two DoF
weakly coupled resonators system. However, it could be considered to exploit both phenomena at the
same time: exciting a coupled structure at f1 should indeed enable to observe a signal variation due to
both ML and the RtF downshift.

We now demonstrate the two results from Properties 1 and 2 by the mean of Matlab R©2016.b
simulations on coupled and uncoupled damped resonators; the models are given in Figure 1 and
Equation (3).

m1 m2

k1, η1 k2, η2kc

Resonator 1 Resonator 2

x0,1 x0,2

−→
F1

−→
F2

−→x1 −→x2

+

−

+

−

+

+

κ

Coupling

F1

A0 · sin(ω · t)

F2

A0 · sin(ω · t+ φ)

H2(s)

Resonator 2

H1(s)

Resonator 1

x1

x2

(a) (b)

Figure 1. Two coupled resonators having linear stiffness ki and damping ηi, where κ = kc
k1

.
(a): Mass-spring like coupled resonators (b): Equivalent block diagram of (a).

H(s) =
1

(1 + ε) · s2 + 1
Q · s + 1

(3)

The perturbation ε = δm
m is only applied on resonator 2. These simulations enable comparing

the sensitive range of both methods. The NS are computed for a range of coupling κ = kc
k1

and mass
perturbation ε, for each mode i and resonator j. Each mode of each resonator is tracked in order to
calculate this NS, following its definition

ns(i, j, Q, κ, ε) =
1

xr,ε=0,κ=0(Q)
· ∂xr

∂ε
(i, j, Q, κ, ε) (4)
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where xr,ε=0,κ=0 and xr are the resonance amplitudes before mass perturbation and without coupling,
and after mass perturbation, respectively.

Each of the graphs from Figures 2 and 3 should be read line by line, from left to right, which is for
a fixed coupling value κ and increasing mass perturbation ε. Hot and cold colors represent a signal
increase and decrease, respectively. Figure 2 depicts the NS of a 2 DoF damped resonators system
where both resonators are excited, with a phase of 90 degrees on the second resonator so that both
modes appear in the frequency response. The first observation is that these sensitivities, perturbations
and couplings are linked by the Q-factor. Indeed, the same graphs are obtained for different scales,
as long as Q � 1. The second observation is the presence of mode aliasing that indeed prevents
the sensitivity from spiking. This phenomenon does not appear exactly at the same coupling value
because an anti-resonance between both modes appears on resonator 2 due to the excitation phase of
90 degrees. The observed maximum sensitivity is |nsmax| = Q

4 , which is consistent with Property 1.
Finally, it can be observed that the NS decreases rapidly when either κ or ε increase, a known property
of ML.

The NS of amplitude shift at the fixed frequency f1 (Figure 3) has also been computed with
Matlab R©for the damped resonators system. These simulations show that the NS value for κ = 0
and ε = 0 is −0.35×Q, as predicted by Property 2. Moreover, one can observe the first mode of the
second resonator without coupling (κ = 0, case of a single resonator subjected to a mass perturbation).
The amplitude first increases until the resonance reaches f1 at ε = 1

Q . This perturbation value doubles
when the system is not subjected to mode aliasing (around κ = 0.5

Q ), since the RtF decreases with a NS
twice lower because of the coupling, 1

4 instead of 1
2 (these values can be calculated from Property A1

in Appendix A). As a consequence, the amplitude gain due to the RtF downshift decreases by half as
well when there is no mode aliasing, which is balanced by the effect of ML.
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Figure 2. NS graphics of a 2 DoF damped resonators system with a mass perturbation on resonator 2.
Output metrics: Resonance amplitude shift. The reference amplitude is the resonant amplitude of a
single resonator.
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Figure 3. NS graphics of a two DoF damped resonators system with a mass perturbation on resonator

2. Output metrics: Amplitude shift at f1 = fr ·
(

1− 1
2Q

)
for both resonances. The reference amplitude

is the resonant amplitude of a single resonator.

In conclusion, it can be stated that the normalized sensitivity in amplitude variation, measured
at a fixed frequency for a single resonator, is slightly higher than that of a weakly coupled system
with two DoF. This result calls into question the relevance of the use of mode localization from the
point of view of sensitivity. The sensitive range of coupled systems is around 2

Q both if the resonances
are tracked or at the fixed excitation frequency f1, which makes the fixed frequency method worth
investigating experimentally. Therefore, both methods are experimentally tested here with our high
Q-factor hybrid system.

3. Materials and Methods

3.1. Concept of the Hybrid System

The idea behind a hybrid weakly coupled resonators system lays on the replacement of mechanical
and non-tunable components by non mechanical but tunable elements in a classic MEMS array.
Implementing ML on piezoelectric resonators provides an interesting approach, since the electro
mechanical transduction is naturally done with such materials in both ways.

When considering a transfer function approach, both of the resonators and the coupling
contribution can be separated. Therefore, if a piezoelectric resonator, such as a QCM, could be
integrated in an electrical circuit with two terminals, an input and an output, the coupling contribution
could be simply replaced by a signal processing in closed loop such as depicted in Figure 1, where the
yellow part represents the mechanical resonator on which the mass perturbation is introduced and
the red part are functions implemented in a hardware. In this way, the coupling value could indeed
be easily tuned and also implemented with any kind of piezoelectric resonator, independently from
its geometry.

3.2. Mathematical Tools

Digital filters do not have the limitations of electrical filters: any polynomial transfer function can
be implemented and all of their coefficient can be chosen and finely tuned with no drift due to ambient
conditions. In addition, a hardware can host a routine for signal recording, data processing, graphical
user interface (GUI), and so on. However, the use of a hardware requires an appropriate mathematical
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tool to describe the sampled dynamic behavior of the system: the Z-transform of complex variable z
can be seen as the discrete equivalent of the Laplace transform of complex variable p, which is broadly
used in the continuous system analysis. This equivalence is done through the formula:

z = e
p
fs (5)

where fs is the sampling frequency. Therefore, Equation (5) introduces non-polynomial transfer
function from the Laplace transforms of a dynamic system. Knowing that in sinusoidal excitation
of angular frequency ω, p = j · ω and ω � 2π · fs, there is

∣∣∣ p
fs

∣∣∣ � 1. This, Equation (5) can be
approximated, which has the drawback to distort frequencies, a phenomenon called warping [23].
Therefore, a pre-warp bilinear transform allows to compensate this shift at a given angular frequency
ω0. The filter response then follows that predicted by the continuous model around this particular
frequency. The expression of the normalized Laplace variable s = j · ω

ω0
for the pre-warp bilinear

transform is given by

s =
1

tan
(

ω0
2 fs

) · z− 1
z + 1 (6)

The use of the system Laplace transform and Equation (6) yield the Z-transform of the system
transfer function Z(H):

Z(H) =
∑n

k=0 αk · z−k

∑n
k=0 βk · z−k

(7)

where β0 6= 0.
Denoting Si the output and Ei the input of the filter for a given time sample i, the previous equation

can also be written as a linear combination of the input, previous inputs and outputs, as follows:

Si =
n

∑
k=0

ak · Ei−k −
n

∑
k=1

bk · Si−k (8)

When bk = 0, ∀k ∈ {1 . . . n}, the output only depends on the input. Such filters are called finite
impulse response filters (FIR). In contrast, if ∃k ∈ {1 . . . n}, bk 6= 0, the filter is called an infinite
impulse response filter (IIR). Dynamic systems are usually IIRs, which demands careful design, since
the feedback can lead to instability. However, Equation (8) is a simple linear combination of signals at
different time and such a sequential logic equation can be implemented in hardware that performs
calculations at a high sample rate.

3.3. Requirements and Hardware

The system to design is made of a first filter based on a QCM coupled with a second filter
implemented in a hardware. These constraints require mainly two conditions to fulfill. Firstly,
the sampling frequency fs of the hardware must be high enough when compared to the RtF fr.
The Nyquist condition demands fs > 2 fr, and a minimum of 10 samples per period is fixed here
to describe each sine wave in the digital system. The minimum sampling frequency then satisfies
fs = 10 fr. Given that the lowest RtF of commercial QCMs is between 1 MHz and 2 MHz, we can then
set the highest RtF for which our design can work at 2 MHz, which thus requires a minimum sampling
frequency of fs = 20 MHz. Secondly, Equation (8) requires each addition and multiplication to be done
within only a few time samples because of the IIR feedback. The different operations thus have to be
carried out in a few nanoseconds only: massive parallel computation is then necessary.

A FPGA is a configurable integrated circuit allowing to carry out parallel calculations for
combinational logic circuits and data storing (registers) for sequential logic circuits at a rate of several
dozen of megahertz. The FPGA is then the hardware chosen here, and we specifically selected
the Red Pitaya card to implement our design, since this board integrates all of the components
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needed for our application. Indeed, it includes two processor cores along with the FPGA (Zynq7000),
two analog-to-digital converters (ADC) and two digital-to-analog converters (DAC) for communication
with an analog system, a SD card slot, and an Ethernet connector. The clock signal of the DACs and
ADCs, also used to synchronize the registers in the FPGA, is equal to 125 MHz, which satisfies
our requirements.

3.4. Filter Model

The filter output must represent the resonator displacement or its equivalent the electrical
charge in order to implement mode localization between two filters following Figure 1. From this
consideration, a filter including a QCM based on the Butterworth-Van-Dyke model can be designed,
by simply connecting one of its terminals to a capacitor Ce in parallel of a resistor Re, as depicted in
Figure 4.

•

Rm Lm
Cm

C0

•

CeRe

VoutputVinput

Piezoelectric resonator

(QCM)

Figure 4. Low pass quartz cristal microbalance (QCM)-based resonant filter model.

The transfer function H(s) of this electrical circuit is given by

H(s) =
(1 + ε) · s3 + 1

Q · s2 + (1 + g1) · s
(1 + ε) · (1 + g2) · s3 +

[
1+g2

Q + g2 · g3 · (1 + ε)
]
· s2 +

[
1 + g1 + g2 +

g2·g3
Q

]
· s + g2 · g3

Q =
1

Rm
·
√

Lm

Cm
, ω0 =

1√
Lm · Cm

, ε =
δLm

Lm
, g1 =

Cm

C0
, g2 =

Ce

C0
, g3 =

ωe

ω0
, ωe =

1
Re · Ce

s = j · ω

ω0

(9)

The parameter g1 only depends on the QCM, and g2, g3 must be chosen. In particular, g3

must satisfy g3 � 1 in order to obtain an integrator behavior of the output impedance, then almost
equivalent to a single capacitor. Indeed, the output impedance, at the angular frequency ω0, equals :

Ze(ω0) =
Re

1 + j
g3

(10)

3.5. Digital Filter Implementation

Replacing Equation (6) in Equation (9) yields an expression in the form of Equations (7) and (8).
Figure 5 depicts its implementation in the FPGA. The entire design was done under Vivado design
suite 2019.1 and a Python 3 GUI has been programmed for the control of the filter parameters as well
as data recording. Figure 6 illustrates this GUI.
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Figure 5. Simplified diagram of the implemented digital filter in the field programmable gate array
(FPGA) and representing resonator 1 in Figure 1. The black and bold numbers are the blocks identifiers.
The numbers in red correspond to the number of bits on which the numbers are encoded and d is
the decimation factor. The hexagonal blocks are registers, the circular ones with a cross inside are
multipliers, the green blocks are tunable values, and the orange ones are custom sources detailed in
Table 1.

Figure 6. Graphical user interface (GUI) screenshot: Webserver on the left (buttons, sliders, and spin
boxes for parameters tuning) and GNU radio on the right (numerical oscilloscope).
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Table 1. Expressions of the transfer functions from Figure 5.

Source H1 H2 H3

Expression β = α1 · 2α2 β = α1
2α2 β = α1, for α2 = 1 β = 0 otherwise

Implementation Left bit-shifting Right bit-shifting Conditional loop
Number of required registers 0 0 0

Equation (8) requires strict timing constraints that may not be met by the hardware, especially
in the IIR part. It can be seen that a multiplication and an addition must be done during the same
time sample (blocks 28–31, 26–29, and 24–25), which the FPGA cannot do experimentally. Therefore,
an additional Verilog source has been set up in order to proceed to a down-sampling based on the
decimation factor d (natural number). The new sampling frequency fd then follows Equation (11).

fd =
fs

d
(11)

This new clock is applied to each block of the filter to the other blocks of the design. Experimentally,
the lowest value of d for which the timing constraint is respected is d = 2, regardless of the number of
digits on which the numbers are coded due to the parallel computation.

Appendix B provides more details on the digital filter design.

3.6. Fabrication of the QCM Based Filter

Now that the digital filter is set up, the model from Figure 4 needs to be implemented with analog
components, namely a QCM, a capacitor, and a resistor. First of all, it is necessary to carry out an
impedance matching. Indeed, the input signal of the filter corresponds to the output of the Red Pitaya
DAC. Since this output is designed to supply circuits with an impedance equal to 50Ω, it is necessary
to add a 50Ω Rload resistor in parallel before the QCM. In order to ensure that the impedance of the rest
of the circuit is constant and sufficiently high compared with Rload, a first voltage follower OA1 is set
up between Rload and the QCM. Because the output amplitude may not exceed 1 V because of the ADC
voltage range, it is necessary to add a voltage divider stage between the output of the QCM and the
ADC, which is the role of R1 ∈ [0 . . . 2 kΩ] and R2 = 1 kΩ, a sufficiently low impedance as compared
to that of the ADC (1 MΩ). Once more, a voltage follower OA2 is added to ensure high impedance
at the QCM output, so as not to disrupt the behavior of the filter. Finally, a resistor R0 of 50Ω is
connected before the QCM input to avoid experimental high-frequency parasitic oscillations between
the two operational amplifiers which have a high slew rate. The operational amplifier chosen for our
application is the OA LT1358 from Linear Technology, because of its slew rate and gain-bandwidth.
Indeed, we are working with 2 MHz RtF resonators having a gain around 10 only at the resonance
because of the feedthrough transmission (parallel capacitance of the QCM electrical model).

The chosen QCM is a simple quartz resonator of RtF 1.8 MHz and its packaging is removed in
order to access the surface of the quartz. Its electrical characteristics are measured by the mean of
an impedance analyzer E4990A from Keysight, so as to calculate the different parameters from
Equation (9). In particular, its Q-factor equals to 115,000. Concerning the output impedance,
the condition g3 � 1 must be satisfied while avoiding additional unwanted behavior. For instance,
high values of Ce will lead to very low output amplitudes, and low values of Ce will induce high output
amplitudes and, thus, a saturation of the Red Pitaya’s ADC voltage. As a consequence, the chosen
values are Re = 100 kΩ and Ce = 100 pF. The fabricated electrical circuit including the QCM is
depicted in Figures 7 and 8.
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Rload

−
+

OA1
R0 QCM based

resonator

−
+

OA2

R2
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•Voutput

Figure 7. Detailed circuit of the entire analog filter standing for resonator 2 in Figure 1. The QCM
based resonator corresponds to Figure 4.

Filter input and output

Operational amplifiers

Power supply

Prototype board

3D printed base

Connected to
impedance
analyzer

Screwed QCM

Filter passive components (QCM excepted)

Switch

Figure 8. Picture of the fabricated QCM based resonator corresponding to Figure 7. The QCM is
set horizontally in order to facilitate further mass deposition on its surface through a liquid drop
deposition, and a switch has been added to enable the QCM to be connected either to the rest of the
filter or to an impedance analyzer. The QCM can be easily changed, since it is fixed with simple screws.

The different components of the QCM based filter have been hand-soldered on a prototype board,
which is screwed onto a 3D printed base. SMA connectors are used to connect the device to the rest of
the system.

3.7. Implementation of the Coupled System

Figure 9 depicts a sketch of the entire system.

z0

NCO (sinus)

z0

NCO (cosinus)

z−d

Coupling

z−τ2z−d
+

−

z−d
+

−

z−d
+

+
z−α1

DAC

z−α2

ADC

z−2d

Corrector

z0

Resonator 2

z−5d

Resonator 1

z−τ1

Figure 9. Global sketch of the coupled system, including the delays corresponding to each operation.
The only non digital element is resonator 2 (QCM based filter), in blue. Tunable delays were added for
timing compensations, in red.

The numerically controlled oscillator (NCO) generates a sinus or a cosinus signal on 14 bits with
a tunable frequency. A sinus from the NCO is chosen to be the reference for the phase and, therefore,
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for the delays. Each mathematical operation (addition or multiplication) requires one register that
releases data every d samples. The corrector contains both an addition and a multiplication since its
role is to multiply resonator 2 output by the inverse gain of the voltage divider R1 and R2 from Figure 7,
and it also compensates any potential offset with an addition. The DAC and ADC have a delay of a few
dozen of nanoseconds and are denoted α1 and α2, respectively. Resonator 1 introduces a delay of 5.d,
which corresponds to the delay between the input and output signals that can be counted in Figure 5,
and resonator 2 is considered not to add any delay. Two additional tunable registers were added to
balance these delays. Indeed, τ1 enables both resonators to be in phase, and τ2 ensures the coupling
contribution is in phase with the resonators output on the next period. Without this last tuning,
the second mode amplitude is greater than it should be, thus leading to a ADC and DAC saturation.

A picture of the experimental setup from Figure 9 is given in Figure 10. It allows the experimental
demonstration of ML, as presented in the following section.

DC GeneratorRed Pitaya

QCM and its electronics

Computer (tailor-made GUI)

Impedance analyzer

Figure 10. Experimental setup including the piezoelectric resonator, a DC generator, a computer and
its GUI, the Red Pitaya, and an impedance analyzer E4990A from Keysight that enables to measure
the QCM RtF after each mass deposition for further comparison with ML based methods. The DC
generator supplies the operational amplifiers.

4. Results

4.1. Description of the Experiments

Before the implementation of ML in the hybrid system, the digital resonator parameters must be
adjusted, so that both resonators responses are identical, using the following simplified protocol:

1. No coupling is applied.
2. The output resistance R1 must be tuned to set the resonance amplitude to less than 1 V (limit

imposed by the ADC of the Red Pitaya).
3. The values of the different parameters are entered in the FPGA.
4. Both excitation signals are set in phase.
5. f0 (digital filter) is tuned such as the resonances of the two filters experimentally match.
6. The corrector gain is tuned: it makes possible to compensate the voltage divider but also to

experimentally adjust the resonance amplitude of the QCM-based filter to that of the digital filter.
7. Tuning the digital Q-factor enables the bandwidth of the two filters to be experimentally identical.
8. τ1 is modified so that the two uncoupled resonators are experimentally in phase and τ2 must be

adapted to this value according to the relation τ1 + τ2 + 8d = fs
fr

.
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9. The two excitation signals are set with a phase of π
2 rad in order to observe both modes.

10. The coupling value is eventually tuned to fit the best configuration in terms of sensitivity.

The experiment consists in the deposition of micro particles at the surface of the QCM. After each
deposition, frequency responses are measured over a frequency range containing both modes.
The change in the resonant frequency of the QCM alone is also measured, which will be used for
the calculation of the added masses thanks to the normalized sensitivity of the RfF of one half.
Each NS value is then calculated as the relative amplitude shift over the relative mass shift for each
deposition of particles. The particles used in these experiments are fluorescent melamine resin particles
MF-NB-COOH-S1058 from microparticles GmbH, Berlin. They have a diameter of 920 nm, a density of
1.510, and are put in an ethanol solution for its high wetability and evaporation rate. The volume of
the drop is fixed at 1 µL, because such a drop experimentally spreads all over the electrode without
overflowing the edge of the QCM, as visible in Figure 11.

(a) (b) (c)

Figure 11. Surface of the QCM electrode before and after a single deposition of around 3× 105

fluorescent particles. Images taken with the microscope Axio from Zeiss and a magnification of 2.5.
(a): Before deposition and under red lightning (b): After deposition and under red lightning (c): After
deposition and without red lightning.

In order to demonstrate ML, we wish here that the sensor operates within the sensitivity range
that is up to a normalized perturbation ε = δm

m = 2
Q , as shown by the theoretical results previously

presented. With our Q-factor of 115,000, this limit can roughly be set around ε = 20 ppm. In order to
stay in the sensitive range, a maximum value of ε f = 15 ppm is chosen. The effective mass m of the
QCM must now be estimated to calculate the mass perturbation δm f corresponding to ε f , knowing

that ε f =
δm f
m . This effective mass m can be calculated using the Sauerbrey equation and the RtF

sensitivity to mass perturbation, as written in Equation (12).
δm = −A · √ρq · µq

2 f 2
r

· δ f

δ fr

fr
= −1

2
· δm

m

(12)

where A, ρq, µq, and fr are the electrodes area, density, shear modulus of quartz and resonant frequency,
respectively.

The combination of these equations leads to Equation (13), which is the effective mass expression.

m =
A · √ρq · µq

4 fr
(13)
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In our case, the electrode is a square of side 7.3 mm, fr = 1.843 MHz, ρq = 2648 kg m−3 and
µq = 2.947× 1010 kg m−1 s−2, which leads to

m = 64.0 mg (14)

As a consequence, δm f = 1 µg. For a proper demonstration of ML, five consecutive mass
depositions are carried out, requiring δm = 200 ng to be dropped each time, which approximately
corresponds to 3× 105 particles. The available solution has therefore been diluted to reach this amount
of particles per volume of 1 µL.

The vibration amplitudes are calculated as the average of peak-to-peak amplitude values over
several periods: each of this vibration amplitude is obtained from four uncorrelated data set from the
FPGA of 2048 time samples, which roughly correspond to 118 periods at a frequency of 1.8 MHz.

4.2. Experimental Results

Five mass depositions have been carried out at the QCM surface in order to demonstrate ML
in our hybrid system using the tracked resonance or fixed frequency methods. The system is tuned
to achieve a high sensitivity before the experiment, which was performed four times. The applied
coupling stiffness equals κ = 0.15 in order to avoid mode aliasing on both resonators. This coupling
value is much higher than those that are shown on the maps in Figures 2 and 3. This is due to the fact
that with the transfer function from Equation (9), mode aliasing occurs for higher coupling values
because the frequency of the second mode is located between series and parallel resonances. However,
the above-mentioned properties on sensitivities and sensitive ranges are conserved with this system.

Figure 12 depicts the amplitude Bode diagrams of such an experiment. It is observed that the first
mode localizes again on the resonator on which the mass perturbation is introduced and that mode
aliasing almost occurs on resonator 1, which is not the case of resonator 2, because of the anti-resonance
generated by the excitation phase. The proximity of both resonances and this anti-resonance is also
the cause of the lower amplitude on resonator 2. These phenomena due to the phase of 90 degrees
between both excitation are inverted when its sign is changed. The resonant frequency of the first
mode for the second resonator, in the balanced configuration (red curve), fr, enables calculating f1,
also depicted in Figure 12.

The relative amplitude shifts of the four experiments are plotted with respect to the relative
perturbation ε = δm

m in Figure 13, along with the calculated NS for both methods, based on mode 1 of
resonator 2. It is first observed that the maximum perturbation is around 20 ppm as chosen previously.
Moreover, both experimental and theoretical data are close, showing the successful implementation
of ML. The small drifts observed are most likely due to measurement noise and a slight mistuning
of the system. We also observe that both of the methods are nonlinear, and that the fixed frequency
one yields higher NS, up to a value above 3× 104. With our Q-factor, the maximum theoretically
reachable NS with this method is around 4.4× 104. However, this value is not reached here, because the
coupling value has been chosen in order to avoid mode aliasing: it must be slightly lower to enhance
the NS. Indeed, as visible in Figures 2 and 3, mode aliasing occurs on resonator 1 for the optimum
configuration. The NS value drops by half, from around 3× 104 down to 1.5× 104 for both methods,
as predicted. However, two NS values surrounded in black on both graphs are drastically lower for the
fixed frequency method, which corresponds to the two highest perturbations: for ε = 2

Q , the resonance
is reached and the NS drops down to zero at the fixed excitation frequency f1.
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Figure 12. Experimental amplitude Bode diagrams of the coupled system digital-QCM for a coupling
ratio κ = 0.15 and different mass perturbations εi applied on resonator 2, which is excited with a phase
of π
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Finally, this new method yields sensitivities slightly higher than the classic amplitude shift at
the resonance while avoiding the design of a closed loop or the need to proceed to time consuming
frequency sweeps. Its dynamic range is limited to 2

Q , which is not the case when the resonances are
followed. However, both of these methods have a similar sensitive range (still 2

Q ), which is not a
limitation when it comes to lower the limit of detection (LoD).

5. Discussion

The configurations for which the mass NS is maximum for a given pair of weakly coupled
resonators in terms of coupling value and Q-factor can be summarized, as follows. The maximum NS
is proportional to the Q-factor and inversely proportional to the coupling ratio κ, until mode aliasing
occurs. Furthermore, the sensitive range (here fixed when the NS drops by half) is also inversely
proportional to the mass mismatch ε. This sensitive range equals 2

Q when the resonance is tracked,

but also when the system is excited at a fixed frequency f1 = fr ·
(

1− 1
2Q

)
. It is also demonstrated that

this method yields sensitivities that are slightly higher than the classic amplitude shift at the resonance,
because the signal increase is due to both the RtF downshift and mode localization. This information
shows that mode localized sensors can operate at a fixed excitation frequency in open loop, which
avoid either a time consuming frequency sweep or the implementation of a positive feedback to follow
the resonance.

We implemented both methods experimentally in order to confirm these theoretical results. To do
so, we designed a new type of mode localized sensor based on a hybrid system enables to get rid
of any geometric constraints for the implementation of the coupling and make it possible to finely
tune the different resonator parameters. This way, mode localization can be efficiently implemented
on shear waves resonators yielding high Q-factors and, thus, high sensitivities. The experimental
amplitude shifts and corresponding sensitivities validate the theoretical results and our sensitivities
are among the highest in the mode localized sensors found in the literature, as shown in Table 2.

Table 2. Comparison of our hybrid sensor with a few devices using mode localization developed
in different teams. Both a previous published work on a QCM of 1 MHz RtF and those from this
manuscript are presented here.

Parameter Literature This Work

f0 (Hz) 1.34× 104 [4], 1.49× 104 [3] 1.84× 106

3.11× 105 [24] 1.00× 106 [21]
Q 1 1.34× 102 [4],2 6.22× 103 [3] 1.15× 105

2 2.12× 104 [24] 2 1.70× 105 [21]
Maximum normalized sensitivity reached

2 DoF 4.00× 102 [4], 3 2.34× 102 [24] 3.00× 104, 3.50× 104 [21]
3 DoF 4 1.36× 104 [3] future work

1 calculated from the bandwidth, 2 in vacuum, 3 calculated, knowing the normalized sensitivity of frequency
shift is 1

2 , 4 amplitude ratios as sensor output.

In summary, the main performances unique to our system can also be listed below. Indeed, our
system enables to:

• Generate a second mode of vibration and exploit mode localization on a shear wave resonator
widely used in bio-sensing (QCM) with high Q-factor (up to at least 200,000) and high resonance
frequency (up to at least 2 MHz).

• Carry out a complete tuning of the digital filter parameters and the coupling value before each
experiment. This allows to reach high NS values compared with the literature (up to 3× 104) and
to get rid of any initial imbalance between the resonators before the measurements.

• Replace the QCM easily and adapt to the geometry of the piezoelectric resonator if needed.
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• Exploit the mode localization phenomenon without tracking the resonances by exciting the system
at a fixed frequency f1 = fr ·

(
1− 1

2Q

)
.

If the performances of our system are satisfying in regard to the chosen figure of merit (normalized
sensitivity), our system in its current state still has limits. For instance, one advantage of ML is common
mode rejection, but the digital nature of one resonator prevents this phenomenon happening. Indeed,
any change in the ambient temperature or pressure affects only the QCM and not the digital filter,
thus leading to an imbalance, the localization of energy and a misinterpretation of the measurements.
Such an imbalance was however not observed in the time frame of the experiments. Even though our
system does not benefit from mode rejection, it is reminded that the system can be balanced before
each mass deposition, thus guaranteeing high and known sensitivity by the cancel of any long term
drift. However, a study on the temperature sensitivity should be carried out in a future work in order
to evaluate whether a temperature controlled environment is needed or not for this sensor.

Many improvements are possible on the presented hybrid system. For instance, the literature
shows that an array of resonators with less stiff external resonators yields higher NS for a given
coupling value κ. The resolution of the eigenvalue problem in the case of a 3 DoF system shows indeed
that the two first modes get closer in frequency for a given value of κ (compared with a 2 DoF system),
which increases the NS. Nonetheless, one should also keep in mind that mode aliasing might occur for
higher values of κ, which could thus prevent from reaching such high NS. As a first perspective of this
work, extended studies could be carried out to find out the actual gain in sensitivity and decrease in
LoD of such systems. If the decrease in LoD can be proved with a 3 DoF system with stiffer middle
resonator, a second digital filter could be implemented in the FPGA, allowing to reproduce and exploit
this configuration with our fixed frequency method.

Another possible development concerns the way to calculate the vibration amplitudes. Instead of
averaging the peak to peak values over many periods, it could be considered to average the amplitudes
of the Fourier transforms at the excitation frequency over several acquisitions, which should be
more accurate since the noise from the other frequencies is not taken into account in this calculation.
In addition, it could be considered to apply specific windows on the recorded signals such as the
Hanning window, in order to limit the spectral leakage around the resonant frequency. More generally,
the different noise sources that corrupt the signals should be identified and analyzed in order to find a
way to decrease the LoD quite high so far (quantization noise, operational amplifiers noise, clock jitter
and so on).

Furthermore, the Matlab R©simulations given in Figure 13 could provide calibration data in order
to calculate the mass mismatch using mode localization and not the frequency shift, which is the
primary purpose of the sensor. This calibration could even include a correction related to the change
in Q-factor caused by the particles depositions, since the NS is directly proportional to it, even though
no significant Q-factor drift were observed during the experiments.

Finally for time saving, the tuning protocol could be automatized. It is so far executed by an
operator, but the digital aspect of the system could accommodate an additional routine that would
automate this delicate part of the process either when the operator needs to apply it, or to guarantee
high sensitivity on a larger range by an automatic downshift of the digital filter resonant frequency as
the perturbation increases.

6. Conclusions

This paper presents a prototype of mass sensor based on mode localization in a hybrid system
made of a quartz resonator and a FPGA that yield higher sensitivities than those found in the literature.
The digital aspect enables to reach optimal conditions in term of sensitivity with a fine tuning of
different parameters such as the RtF or the coupling stiffness, and to implement a coupled structure
including shear wave resonators that have high Q-factors. Furthermore, we show both theoretically
and experimentally that the sensitive ranges are similar between two distinct excitation methods
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in open loop: a frequency sweep over both resonances allowing to measure the amplitudes at the
resonances on the one hand, and a fixed excitation frequency f1 = fr ·

(
1− 1

2Q

)
at which the vibration

amplitudes are measured on the other hand. The second one however yields higher sensitivities than
the first one, and their maximum sensitivities are 0.35×Q and 0.25×Q, respectively. These results
pave the way for a new generation of low LoD resonant mass sensors without resonance tracking,
which results in a gain of time in an open loop configuration.

Author Contributions: Conceptualization, software, validation and original draft preparation, C.H.; methodology,
supervision and writing—review, V.W., N.K. and T.L.; project administration and funding acquisition, V.W. and
T.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EIPHI Graduate School (contract “ANR-17-EURE-0002”).

Acknowledgments: We are indebted to our colleagues from the Time-Frequency department and the mechanical
and electrical common services for their valuable help.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog to Digital Converter
DAC Digital to Analog Converter
DoF Degree of Freedom
FIR Finite Impulse Response filter
FPGA Field Programmable Gate Array
GUI Graphical User Interface
IIR Infinite Impulse Response filter
LoD Limit of Detection
ML Mode Localization
NS Normalized Sensitivity
QCM Quartz Cristal Microbalance
RtF Resonant Frequency

Appendix A. Proofs of Properties 1 and 2

The proof of Property A1 is given in [24].

Property A1. Expressions of the eigenvectors shifts due to a small mass variation in a 2 DoF coupled array
made of undamped and initially identical resonators.

δωn ' −
δµn,n

2
·ω0n

δun ' −
δµn,n

2
· u0n +

δµp,n(
ω0p
ω0n

)2
− 1
· u0p

δµi,n = uT
0i · δM · u0n

n, p ∈ {1, 2}, p 6= n

(A1)

where u0n, δun and δωn are the nth eigenvector before the addition of mass, the small variation of this
eigenvector and the corresponding eigenfrequency shift after the introduction of a mass perturbation in the
system, respectively. δM is the diagonal two by two matrix containing the normalized small mass shifts δm

m
where m is the mass of each resonator and ω0n is the nth eigenfrequency.
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Proof of Property 1. Considering two identical and coupled undamped resonators of stiffness k, mass
m, coupling stiffness kc and with the notations from Property A1, we can write:

u01 =
1√
2
·
(

1
1

)
, u02 =

1√
2
·
(

1
−1

)
, ω01 =

√
k
m

, ω02 =

√
k + 2kc

m
(A2)

Assuming a mass perturbation ε = δm
m occurs on resonator 1, we have:

δµ1,1 = δµ2,1 =
ε

2
(A3)

Assuming weak coupling, the frequency gap between the two modes shrink and the influence
of the first eigen vector on its own variation becomes negligible. Therefore, the variation of the first
eigenvector is:

δu1 '
1
2
· ε(

ω02
ω01

)2
− 1
· u02 (A4)

Equations (A2) and (A4) give the famous result on low coupling NS [2]:

ns =
|δu1|

ε
=

1
4κ

(A5)

where κ = kc
k .

However this result does not take mode aliasing into consideration, where the two modes merge
because of the resonance bandwidth coming for internal losses. Assuming that damped resonators
have a frequency bandwidth ∆ω−3dB, we here set an anti-aliasing condition such as [3]:

ω02 −ω01 > ∆ω−3dB (A6)

Considering the the Q-factor can be expressed as follow:

Q =
ω01

∆ω−3dB
(A7)

The anti-aliasing condition becomes:(
ω02

ω01

)2
>

(
1 +

1
Q

)2
(A8)

Considering high Q-factors, we only keep the first order. The minimum anti-aliasing condition is
then defined below: (

ω02

ω01

)2
− 1 ' 2

Q
(A9)

Replacing Equation (A9) in Equation (A4) yields:

δu1 '
Q · ε

4
· u02 (A10)

Therefore:
ns1 =

|δu1|
ε
' Q

4
(A11)

.
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Proof of Property 2. Assuming that any signal amplitude variation at fixed excitation frequency
corresponds almost only to the resonance shift towards lower frequencies, there is at least one excitation
frequency at which the sensitivity to the mass perturbation is maximum. We aim at finding this
frequency along with the value of the maximum NS.

The transfer function displacement over excitation force of a damped resonator with a slight mass
perturbation ε = δm

m � 1 is:

H(s) =
1

(1 + ε) · s2 + 1
Q · s + 1

(A12)

where s = j · ω
ω0

, ω the excitation angular frequency and ω0 the resonant angular frequency. Let’s
excite the system at its RtF and define X as:

X = |H(s = j)|

X =
Q√

1 + ε2 ·Q2

(A13)

The NS is then written as:
ns =

∂X
∂ε · Xε=0

ns =
−Q2 · ε

(1 + ε2 ·Q2)
3
2

(A14)

We now aim at finding the maximum absolute value of this function.
ns is a negative function of ε which equals 0 when ε equals 0, and that tends to 0 when ε tends

to infinity. Therefore, ns has a maximum absolute value we wish to find. To this purpose, let’s now
derive ns with respect to ε:

∂ns
∂ε

=
−Q2 · (1 + ε2 ·Q2)

3
2 + Q2 · ε · (3Q2 · ε

√
1 + ε2 ·Q2)

(1 + ε2 ·Q2)3
(A15)

We now solve the equation

∂ns
∂ε

= 0⇔ −Q2 · (1 + ε2 ·Q2)
3
2 + Q2 · ε · (3Q2 · ε

√
1 + ε2 ·Q2) = 0

∂ns0

∂ε
= 0⇔ ε =

1√
2Q

(A16)

We then obtain an estimation of the maximum absolute value of the NS, using Equation (A14):

nsmax ' 0.38×Q (A17)

The amplitude variation is here mainly due to the RtF downshift. Assuming the frequency
response in amplitude is symmetric with the RtF, there are two frequencies at which the system can be
excited to obtain this maximum NS, above and below the RtF. Therefore, we can calculate one of these
two frequencies using the frequency NS of one half, as follow:

f1 − fr

fr
· 1

ε
= −1

2
(A18)

where fr and f1 are the RtF before and after mass deposition, respectively.
In order to obtain a sensitive range slightly higher, we rather choose ε = 1/Q, for which the NS

is still
ns2 ' 0.35×Q (A19)
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We then have:

f1 = fr ·
(

1− 1
2Q

)
(A20)

.

Appendix B. Digital Filter Details

This appendix provides additional details on the digital filter implemented in the FPGA. It mainly
refers to Figure 5.

Appendix B.1. Feedback Switch

When the filter coefficients are modified throughout the GUI (filter tuning), values of no
physical significance can appear and propagate in the closed loop of the IIR, thus generating
unpredictable output. This phenomenon last only a fraction of second before the correct steady
state is reached. However, the output value may reach high values, usually triggering overflow.
Overflow, once introduced in the closed loop, has no chance to stabilize since the meaningless numbers
do not only appear when the coefficients are modified, but propagates at each time sample and forever.
For this reason, an automatically controlled switch (block 37) has been added on the output feedback:
when the coefficient values are modified, the switch opens, sends a zero feedback and closes after one
millisecond, a time large enough to allow a few thousand samples to pass through (it must be above
3× d, which corresponds to the blocks 27, 30 and 34), and small enough not to be a nuisance to the
experiment. In this way, parametric instability can be suppressed when the coefficients are changed.

Appendix B.2. Precision of the Filter Coefficients

Another problem with the digital filter is the stability of the IIR. Indeed the roots of the following
function must have a modulus less than one.

H(z) = z3 + b1 · z2 + b2 · z + b3 (A21)

For a given set of parameters having a physical meaning such as Q > 0, the roots of Equation (A21)
always have their modulus smaller than one. However, the numbers implemented in the FPGA are
only integers. Therefore, there is a need to multiply the coefficients b1, b2 and b3 by a large integer
in order to minimize the approximations done over these coefficients when injected in the hardware.
Thus, these coefficients are multiplied by a power of two (parameter n0) which will facilitate the
inverse operation within the FPGA using right bit-shifting. This common method is called floating
point method.

The roots of the following function have then been computed using Matlab R©

H(z) = 2n0 · z3 + f loor(2n0 · b1) · z2 + f loor(2n0 · b2) · z + f loor(2n0 · b3) (A22)

where f loor(x) is the function that gives the greatest integer less than or equal to x. It can be
shown through this simulation that the stability condition is fulfilled when n0 > 22. This result
is experimentally confirmed with the digital filter in the FPGA.

The coefficients ai and bi introduced in the FPGA are then called ain0 and bin0 , with

a0n0 = f loor(2n0 · a0), ain0 = f loor(2n0 · ai), bin0 = f loor(2n0 · bi), i ∈ {1..3} (A23)

The IIR part of the filter (Figure 5) must include a division by 2n0 before the feedback loop in
order to get back to the real value of the output, which is the role of the block 36.

Even though the digital filter is stable when n0 > 22, its frequency response could not be the
expected one because of the approximations made on the coefficients. The only way to reduce this



Sensors 2020, 20, 5295 21 of 22

approximation is to increase the value of n0. Since this paper does not aim at the characterization of
the digital filter, we here only state that this phenomenon has been simulated on Matlab R©, following
the sketch from Figure 5 with the same parameter values. Increasing n0 up to n0 = 40 leads
to frequency responses much closer in amplitude than the theoretical ones, which has also been
experimentally validated.

Appendix B.3. Correlated Noise

Another phenomenon occurring within the digital filter is its unexpected variable output
amplitude: it can be clearly seen on the GUI oscilloscope that the output amplitude is varying over a
long period of time in comparison with the period of the signal. It was found that these variations are
due to the approximation done by the right bit-shifting of block 36: the number of digits on which is
encoded the feedback signal in the IIR has an influence on the time response. In order to reduce the
influence of this function on the response, the signal is multiplied by another factor 2n1 at the output
of the FIR, and is divided by the same constant at the output of the IIR (blocks 20 and 32). This way,
the feedback (between blocks 37, 24, 26 and 28) is coded on 45 bits and not on 20 since n1 can go up to
25. This additional floating point method enables to reduce the correlated noise in the IIR. This way,
for n1 = 10 and n0 = 40, the relative error of the output amplitude of the digital filter is less than 0.5%
compared to that of the analytical model.
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