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Abstract: The segmentation of high-resolution (HR) remote sensing images is very important in
modern society, especially in the fields of industry, agriculture and urban modelling. Through the
neural network, the machine can effectively and accurately extract the surface feature information.
However, using the traditional deep learning methods requires plentiful efforts in order to find a
robust architecture. In this paper, we introduce a neural network architecture search (NAS) method,
called NAS-HRIS, which can automatically search neural network architecture on the dataset. The
proposed method embeds a directed acyclic graph (DAG) into the search space and designs the
differentiable searching process, which enables it to learn an end-to-end searching rule by using
gradient descent optimization. It uses the Gumbel-Max trick to provide an efficient way when
drawing samples from a non-continuous probability distribution, and it improves the efficiency of
searching and reduces the memory consumption. Compared with other NAS, NAS-HRIS consumes
less GPU memory without reducing the accuracy, which corresponds to a large amount of HR
remote sensing imagery data. We have carried out experiments on the WHUBuilding dataset and
achieved 90.44% MIoU. In order to fully demonstrate the feasibility of the method, we made a
new urban Beijing Building dataset, and conducted experiments on satellite images and non-single
source images, achieving better results than SegNet, U-Net and Deeplab v3+ models, while the
computational complexity of our network architecture is much smaller.

Keywords: deep learning; high-resolution remote sensing; image segmentation; neural architecture
search; neural network optimisation; urban monitoring

1. Introduction

In recent years, with the progress and popularization of remote sensing technology, satellite
imaging and aerial photography are becoming more and more advanced [1]. We can get images
which contain large amounts of information. These images have been applied in many fields, like
agriculture [2], forestry, geology, military, environmental protectio n[3], urban planning [4], etc.
High-resolution (HR) remote sensing images include high spatial, temporal and spectral resolution.
The HR remote sensing image in this paper mainly refers to the high spatial resolution (2 m resolution
and better) remote sensing image. The high spatial resolution remote sensing images capture the
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surface of the earth in great detail. With the increasing spatial resolution of remote sensing images,
there is a need to improve and innovate the method of analyzing remote sensing images.

Image segmentation of remote sensing images can be used for land area estimation,
fire monitoring, urban planning, crop detection and yield modelling and many other
applications [5,6]. Moreover, it is essential for observing the growth and evolution of complex urban
systems, including slum detection, suburban growth, change in temperature in urban heat island,
identifying disaster-damaged urban infrastructures, etc. [7–10].

Image segmentation aims to partition an image into homogenous regions such that no union of
two adjacent regions is homogenous [11]. Remote sensing image segmentation has always been an
important part of the remote sensing preprocessing process; how to improve the segmentation accuracy
is always a difficult point [11]. Traditional HR remote sensing image segmentation is classified into
four categories according to the principle of segmentation: the first is pixel-based algorithms, including
the simplest segmentation algorithm—thresholding algorithm and cluster algorithm [12]. The second
is boundary-based algorithms; the boundary-based algorithm usually looks for the sharp transition
of gray value in the image to determine the boundary of the object region. The third is region-based
algorithms, which are mainly divided into local regions based on the similarity between adjacent pixels
to achieve segmentation. The fourth is physical-model-based algorithms, and the physical model is
obtained from the imaging procedure, which describes the relationship between images and factual
detail of the Earth’s surface [13].

With the popularization of remote sensing image segmentation and the development of
artificial intelligence, the data-driven methods are getting more attention. Remote sensing image
segmentation has attracted more attention from the computer vision and machine learning community.
Convolutional Neural Networks (CNNs) have achieved state-of-the-art results in many computer
vision tasks, which bring semantic segmentation into a new era [14–16]. As an improved architecture
of CNNs, Fully Convolutional Network (FCN) demonstrated the state-of-the-art results for semantic
image segmentation. FCN adopts deconvolution filter to conduct up-sampling on the feature map of
the ultimate convolutional Layer. Compared to CNNs, FCN can recognize images at the pixel level
and ensure robustness and accuracy simultaneously [17,18].

U-Net innovatively adopts the encoder–decoder architecture for semantic segmentation, i.e.,
the first half is divided into feature extraction and the second half is divided into upper sampling.
U-net employs a totally different feature fusion method where features are spliced together in channel
dimension to form a thicker feature [19,20]. Furthermore, in addition to the encoder–decoder structure,
the fully connected Conditional Random Field (CRF), Atrous Convolution, Atrous Spatial Pyramid
Pooling (ASPP), depth-separated convolution, and Xception technique are applied to the models in
Deeplab family. This effectively improves the accuracy of boundary segmentation and the speed of
training [21–23].

Although the above methods based on deep learning greatly enhance the accuracy and efficiency
of remote sensing image segmentation [24–26], a robust model usually requires relevant experts
to spend a lot of time and energy to complete it. Feature extraction and fusion are key for robust
and effective image processing in remote sensing [27]. Especially due to the diversity of sources for
remote sensing images, and the fact that the image features obtained by different methods are quite
different [28,29], a method is required that can automatically search the optimal architecture for
different data. The emergence of Neural Architecture Search (NAS) solves this pain point.

As an important derivative of automatic machine learning (Auto-ML), it replaces the manual
process of architecture design as the machine’s automatic search for the neural architecture. MIT [30]
and Google [31] proposed using reinforcement learning in 2016 to let computers automatically search
for neural network architectures. The model obtained from the NAS achieves good accuracy in the
image classification task. However, the initial neural architecture search required a large number of
computing resources. For example, Google conducted an architecture search on the CIFAR-10 dataset,
used 800 Graphical Processing Units (GPUs) and trained for 28 days. Such high computational costs
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make the work of ordinary researchers unrealistic. Therefore, how to reduce the cost of the search has
become a problem that the NAS has had to face since its birth. Researchers have done a lot of work in
recent years to get rid of high memory consumption [32,33].

Before doing an architectural search, we need to define the search space. The common search
space is chained and it is formed by stacking lays with operators. Many deep neural networks have
many similar parts, which are gradually abstracted into a cell, so the search space is greatly simplified.
A cell is usually designed as a directed acyclic graph (DAG) [32,34–36].

There are three main types of search strategy. The first one is based on reinforcement learning. The
generation of the architecture is regarded as an agent choosing the action, and the reward is obtained
through the effect prediction function on a test set [30,31]. The second type of strategy is based on
Genetic Algorithm (GA), a derivative-free optimization algorithm that may yield a global optimal
solution, but is less efficient relatively [36,37]. The gradient-based method makes discrete search space
continuous, and the objective function becomes a differentiable function, making it possible to use a
gradient-based optimization method to find the optimal structure. The cell-based search space was
applied into our works, and we use the gradient descent search strategy to search the space [32].

Here, we propose an improved HR remote sensing image segmentation method based on a neural
architecture search, named NAS-HRIS. We applied NAS-HRIS to three different types of HR remote
sensing dataset, to efficiently search out suitable architectures themselves.

Summarizing, our contributions are listed as follows:

1. The NAS of the HR remote sensing image segmentation is explored for the first time;
2. Our work embeds DAG into the search space and designs the differentiable searching process,

which enables learning an end-to-end searching rule by using gradient descent optimisation
[38]. We use the Gumbel-Max trick to provide an efficient way to draw samples from a
non-continuous probability distribution, and it improves the efficiency of searching and reduces
the memory consumption;

3. We provide a new HR remote sensing image segmentation dataset: the Beijing building datasets
(BBD) that can be useful for image segmentation applications such as building segmentation for
urban planning; (Figure 1)

4. Conducted search on a variety of remote sensing images, and training was conducted in aerial
images, satellite images and Google earth image, obtaining and we got 98.52% pix accuracy, and
90.44% Mean Intersection over Union (MIoU) by using NAS-HRIS on the WHU dataset.

(b)(a)

Figure 1. Example image from the Beijing building dataset (BBD), (a) is original data, and (b) is the
associated label.
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Other parts of this paper are structured as follows. In Section 2, we provide our proposed
methodologies in detail. The datasets, experimental settings and comparison results are presented in
Section 3. At last, we discuss our work and put forward prospects for the future work in Section 4. We
have released our code at https://github.com/zhangmingwei98/NAS-HRIS.

2. Methodology

In this article, we used NAS to construct the architecture of the encoder for the segmentation
model Figure 2. The neural architecture search consists of three parts: search space design, search
strategy formulation and evaluation method. We defined a search space composed of several cells,
and we used the search strategy of gradient descent to select the weights of each edge of the directed
acyclic graph, and so used the Gumbel-max trick to do continuous relaxation.
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Figure 2. The model uses the encoder-decoder structure. And the encoder is composed of cells which
are searched by the NAS.

2.1. Architecture Search Space

2.1.1. Cell Level

In NAS-HRIS, all cells are represented as a DAG (see Figure 3): the node of the graph stands for the
input image or feature map, and the edge of the graph represents the operation, such as convolution and
pooling. Each DAG consists of seven nodes: two are input nodes, four are intermediate nodes, and one
is the output node. The output node is defined as the concatenation of four intermediate nodes as in
Figures 4 and 5. Our cell is designed according to [32,34–36]. The preorder node ni becomes the
subsequent node nj after the calculation of operation p as follows

N(j) = ∑
i<j

pi,j(N(i)) s.t. pi,j ∼ Pi,j (1)

https://github.com/zhangmingwei98/NAS-HRIS


Sensors 2020, 20, 5292 5 of 15

Cell-based 

Search Space

Gradient-descent 

Search Strategy

Evaluate

Segmentation 

Performance

High-

Resolution 

Remote 

Sensing 

Image

α 
The 

performance 

of  α 

(a)

0

1 2

3

? ?

?

?
? ?

0

1 2

3

? ?

?

?
? ?

(a)

0

1 2

3

? ?

?

?
? ?

(c)

0

1 2

3

(c)

0

1 2

3

(d)

0

1 2

3

0

1 2

4

(b)
n

The nth node

The candidate
operations

The selected 
operation

Figure 3. NAS-HRIS used the gradient descent search strategy to search the architecture of encoder in
the cell-based search space and optimized the parameters by continuously evaluating the performance
of the architecture. (a) operation of each edge in DAG is unknown; (b) candidate operations on each
edge to continuous relaxation of the search space are set; (c,d) each edge is finalized by applying the
reparameterization trick to sampling.
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Figure 4. The normal cell searched by NAS-HRIS on WHUBuilding_Dataset.
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Figure 5. The reduction cell searched by NAS-HRIS on WHUBuilding_Dataset.

In NAS-HRIS, the candidate operations set P has nine operations: (1) identity, (2) 3 × 3 avg
pooling, (3) 3 × 3 max pooling, (4) 3 × 3 separate conv, (5) 5 × 5 separate conv, (6) 7 × 7 separate conv,
(7) 3 × 3 dilated spearate conv, (8) 5 × 5 dilated spearate conv, (9) none.
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2.1.2. Network Level

We look for two different cells, i.e., a normal one and a reduction one. They are similar in structure,
and their feature maps are padded. However, there is a difference between normal and reduction cells.
The stride of all operations is set to 1 for the normal cell, whereas the stride is set to 2 for all operations
at the reduction cell. The purpose of reduction cell is to reduce the feature map resolution.

In NAS-HRIS, a cell is treated as the basic block and stacked by certain rules to form neural
network. We also apply DAG to structure the network topology. The two input nodes of cell Cellk are
the output nodes of the preorder Cellk−1 and Cellk−2, respectively. Convolutions of 1× 1 are filled in
where necessary. In the network, reduction cells were set in the location of 1/3 and 2/3 of the total
network depth. We define architecture variable as α and the weight of architecture as ω. α can be
composed of αnormal and αreduction, αnormal and αreduction are shared by all the normal and reduction cells,
respectively. In our work, we search for αnormal and αreduction values. NAS-HRIS selects the optimal
operations from candidate operations according to the weight value in the search procedure. In the
training procedure, we update the value of the selected operation by gradient descent.

2.2. Continuous Relaxation and Search Strategy

As we can see the search space in Figure 3, before the NAS-HRIS search architecture, the operation
of each edge in DAG is unknown (a). We set up a certain number of candidate operations on each
edge to continuous relaxation of the search space (b). Each edge of the finalized by applying the
reparameterization trick to sampling (c,d).

Our goal is to gain the optimal architecture α∗ and its weight ω∗ within all operations. We
introduced the loss function L to achieve our goal. Ltrain and Lvalid are train loss and valid loss,
respectively. We regard this problem as a bi-level optimization problem. We find α∗ that minimizes
Lvalid(α

∗, ω∗) in the case of obtaining the optimal weight ω∗α , as we can see in (2) and (3).

min
α

Lvalid(w∗α, α) (2)

s.t. ω∗α = arg min
ω

Ltrain(ω, α) (3)

An architecture α consists of many repeating cells: λ
p
i,j is the p-th element of a |P|-demensional

learnable αi,j. We adopted the softmax function to get normalized probability f p
i,j for sampled operation

p between Ni and Ni. The process of selection a operation was relaxed, as can be seen in (4).

f p
i,j =

exp(λp
i,j)

∑
p′∈P

exp(λp′
i,j)

(4)

In order to back-propagate gradient though λi,j, we propose using the Gumbel-Max trick [39,40]
to re-formulate Equation (1), which makes it possible to sample from a discrete probability distribution
in an efficient way, as can see in (5) and (6). This method is proposed to perform NAS for the first time
in GDAS [41]. DARTS needs to keep all intermediate results in memory, but the Gumbel-Max trick
selects only one operation at a time. Therefore, if there are P candidate operations, the computing
resource consumption is about 1/P. Because the search efficiency of DARTS is mainly limited by
memory resources, NAS-HRIS has a faster search speed in an environment with the same memory

Nj =
j

∑
i=1

∑
p∈P

ϕ
p
i,j p(Ni; ω

p
i,j) (5)

s.t. ϕi,j =

{
1, (i, j) = arg max(λp

i,j + ςp)

0, otherwise
(6)
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where ςp are Gumbel-distributed noise which are identically distributed and independently drawn
samples from Gumbel(0, 1)1 in (7). The ϕi,j vector we obtained is a one_hot vector, and we multiply
this vector by the range vector of x, and we end up with the x that we’re sampling. ω

p
i,j is the weight of

operation p ∼ P between Ni and Nj.

ςp = − log(− log(u)) with u ∼ Uni f orm[0, 1] (7)

We apply so f tmax to relax argmax in Equation (6), hence Equation (5) is differentiable. We replace
ϕ

p
i,j with approximately ϕ̃

p
i,j. This makes Equation (5) differentiable in back-propagation

ϕ̃
p
i,j =

exp((λp
i,j + ςp)/τ)

∑
p′∈P

exp((λp′
i,j + ςp′)/τ)

(8)

where τ is the softmax temperature.
NAS-HRIS use gradient descent to optimize Lvalid, similar to using RL or evolutionary architecture

search, where validation set performance is seen as reward or fitness. See Algorithm 1 for the detailed
searching process, which uses the gradient descent method to fine-tune α and ω

ω = ω− ξ∇ω Ltrain(ω
∗, α) (9)

α = α− ξ∇αLval(ω− ξ∇ω Ltrain(ω, α), α) (10)

where ξ is learning rate.

Algorithm 1 NAS-HRIS Search Encoder for High-Resolution Remote Sensing Image Segmention

Require: Dtrain: the training set; Dvalid: the validation set; n: batch size; initialized operation set P;

Ensure:

1: initialized the architecture variable α and the weights ω randomly, learning rate ξ, search epochs

2: repeat

3: Sample batch of data Dt from Dtrain;

4: compute Ltrain(ω, α)− Dt;

5: Updata ω by gradient descent:

ω = ω− ξ∇ω Ltrain(ω, α);

6: Sample batch of data Dv from Dvalid;

7: compute Lvalid(ω, α)− Dv;

8: Updata ω by gradient descent:

α = α− ξ∇αLvalid(ω− ξ∇ω Ltrain(ω, α), α);

9: until converge

Compared with DARTS [32], NAS-HRIS saves |P| times the GPU memory cost, making the
implementation of NAS in large-scale datasets possible. This satisfies the large data characteristics of a
high-resolution remote sensing image.



Sensors 2020, 20, 5292 8 of 15

2.3. Evaluation Criteria

There are many criteria to evaluate the segmentation effect, most of which are based on
accuracy and IoU. And different criteria represent different evaluation meanings. We selected several
representative indicators to represent the performance of the segmentation task. In order to easily
represent these criteria, we set the number of positive samples correctly predicted as TP, the number
of positive samples wrongly predicted as FP, the number of negative samples correctly predicted as
TN, and the number of negative samples wrongly predicted as FN.

2.3.1. Pixel Accuracy (PA)

This is one of the simplest metrics, and it represents the percentage of pixels that are
properly classified.

PA =
TP + TN

TP + TN + FP + FN
(11)

2.3.2. F1 Score

F1 Score is defined as the harmonic mean of the precision and recall.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 · Precision · Recall
Precision + Recall

(14)

2.3.3. Mean Intersection over Union (MIoU)

This is the standard metric for segmentation tasks. It represents the mean ratio of intersection to
union of two sets.

MIoU =
TP

TP + TN + FP
(15)

3. Experiments and Results

We describe the implementation of NAS-HRIS on three different datasets in detail. All the
experiments were done in a single Tesla V100 GPU which has 32G memory. Our experiments consist
of three stages. First of all, we use NAS to search the optimal architecture on the specified dataset,
according to Algorithm 1. After this step , we can get the certain normal cell and reduction cell. The
second stage is to retrain the optimal architecture and obtain a better performance model. In the first
two steps, the training set and validation set are used. At last, we use the testing set to assess the
performance of the architecture we have searched. We define each cell as consisting of seven node and
eight candidate operations, and the depth of the encoder is eight layers. The learning rate is 0.025.

3.1. Experiments on Aerial Dataset

We chose the WHUBuilding dataset [42] for aerial images. The dataset is composed of more than
22,000 independent buildings in Christchurch, New Zealand. These buildings are extracted from aerial
images with a spatial resolution of 0.0075 m and a coverage area of 450 km2. Most of the images are
down-sampled to 0.3 m spatial resolution and cropped into 8189 non-overlapping blocks to form the
whole dataset. They are divided into three parts, 4736 images for training, 1036 images for validation,
and 2416 images for testing.

The architecture search process was carried out on the WHUBuilding dataset for about 12 hours
for 30 epochs, and the resulting normal cell is shown in Figure 4, and the reduction cell in Figure 5.
We ran the NAS-HRIS three times and the deviations of the PA, F1, and MIoU were 0.12%, 0.38%, and
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0.25%, respectively, indicating the MIoU being nearly invariant. We compared NAS-HRIS with SegNet,
U-Net and Deeplab v3+. The comparison results are shown in Table 1 and Figure 6. As we can see, the
MIoU was higher than 5.93% and the F1 was higher, 4.81%, than SegNet. Due to the simple design of
the search space, our model is very small, only 1/164 times the size of SegNet.

(a) (b) (c) (d) (e) (f)

Figure 6. Examples of segmentation results with the SegNet, U-Net, Deeplab v3+ and NAS-HRIS,
respectively, on the aerial dataset. (a) Image. (b) Label. (c) SegNet. (d) U-Net. (e) Deeplab v3+.
(f) NAS-HRIS.

Table 1. Testing result on WHUBuilding_Dataset

Architectures Parameters (M) PA (%) F1 (%) MIoU (%) Search Time (h) Train Time (h)

SegNet 29.4441 97.77 88.96 84.51 - 7.4
U-Net 23.3565 98.30 93.56 88.41 - 6.2

Deeplab v3+ 13.3953 98.09 94.47 90.20 - 4.0
NAS-HRIS 0.1868 98.52 93.77 90.44 12.1 16.4

As can be seen in Figure 6, the ability of SegNet to divide independent buildings is strong, and
there is little adhesion between buildings, but the integrity of building segmentation is not high. In the
aerial HR remote sensing images, U-Net does not perform as well as in the field of medical images.
Although the MIoU is higher than SegNet, the independence of segmentation is not strong, and it
is difficult to distinguish the areas between buildings. In the three groups of control experiments,
Deeplab v3+ is the most prominent; the edge of the building is clearly divided, but there will be
regional misclassification in the middle part of the building. As can be seen from the third picture, the
distinction between roads and houses is still a difficult point in building segmentation, especially in
areas with similar features. Obviously, the best performance is NAS-HRIS, the edge is clear, and the
building segmentation is complete.

We used search time and train time to measure our approach NAS-HRIS. Because Segnet, U-net
and deeplab are fixed architecture, there is no search time, so we have listed the respective trian time
in relevant experiments. It is worth mentioning that because the DARTS method consumes a lot of
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memory, especially in the case of high-resolution remote sensing images with such a large scale of data,
experiments cannot run on 32G GPU, so we do not give the relevant data, which precisely reflects the
significance of our method improvement.

3.2. Experiments on Satellite Dataset

Gaofen Image Dataset (GID) is a dataset for land cover classification. It contains 150 HR images
captured from more than 60 cities in China [43]. Each original image is 7200 × 6800, and we cut them
into 182 images, each with a size of 512 × 512. Due to some problems with image labels, we selected
10,000 images as our dataset. Among them, 6000 images are for training, 2000 images for validation,
and 2000 images for testing. There are five classes of tag in GID, which are built-up, farmland, forest,
meadow, and waters, as can be seen in Figure 7.

By analogy with WHUBuilding, we used the three architectures of SegNet, U-Net, Deeplab v3+
as a comparison. The MIoU of NAS-HRIS is 7.37 % to 8.84 % higher than the other three methods
(see Table 2), which shows the superiority of the customized architecture obtained by architecture
search in complex datasets. Because there are many unmarked parts in the source image, in order
to show the effect, we deliberately selected four images and compared them in this experiment. As
can be seen from Figure 7, in satellite images, the two methods are not satisfactory for the boundary
control of segmentation. There are functional disorders in the classification of forest by Segnet and
functional disorders in the classification of meadow by NAS-HRIS. Note that in the last image, there
are some ships parked on the water; although it is not marked in detail in the label, both methods have
reflected that.

(a) (b) (c) (d)

Figure 7. Representative cases of image segmentation results with SegNet and NAS-HRIS, respectively.
(a) Image. (b) Label. (c) SegNet. (d) NAS-HRIS.
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Table 2. Testing result on GID_Dataset

Architectures Parameters (M) PA (%) F1 (%) MIoU (%) Search Time (h) Train Time (h)

SegNet 29.4441 79.96 71.50 63.19 - 18.3 h
U-Net 23.3565 80.37 73.71 64.66 - 13.2 h

Deeplab v3+ 13.3953 82.42 71.83 63.82 - 14.9 h
NAS-HRIS 0.1232 88.48 78.35 67.03 10.6 19.5 h

Compared to the cells searched by NAS-HRIS on WHUBuilding_Dataset, the cells searched by
NAS-HRIS on GID_Dataset in Figures 8 and 9 have a large number of avg_pooling. The reason for
our analysis is that GID_Dataset is a satellite image dataset, which has large area, many colors and
complex features. Furthermore, avg_pooling retains more background information from a wide range
of images.

0avg_pool_3x3

dil_conv_5x5 1
sep_conv_5x5

2dil_conv_5x5

avg_pool_3x3

avg_pool_3x3
3avg_pool_3x3

avg_pool_3x3
ck-1

ck-2

ck

Figure 8. The normal cell searched by NAS-HRIS on GID_Dataset.

0

avg_pool_3x3

3

avg_pool_3x3

avg_pool_3x3
1

sep_conv_3x3

avg_pool_3x3
2avg_pool_3x3

avg_pool_3x3 avg_pool_3x3ck-2

ck-2

ck

Figure 9. The reduction cell searched by NAS-HRIS on GID_Dataset.

3.3. Experiments on Non-single Source Dataset

In order to run NAS-HRIS in multiple environments, we have made a non-single source
dataset, namely Beijing Building Dataset (BBD). It is worth mentioning that BBD not only meets the
requirements of HR image segmentation labels, but also has the value of convenient application. BBD
is an elevation satellite image dataset, which is integrated by satellite image and aerial photographs
for building extraction and identification. It contains 2000 images from Google Earth History Map
of five different areas in Beijing in November 24th, 2016, and all these images are 512 × 512 with a
precision of 0.458 m. It covers more than 100 km2 geographic areas of Beijing both in suburbs and
urban areas. We split the dataset into three parts, 1200 images for training, 400 images for validation
and 400 images for testing.

In this experiment, we used the architecture searched on the WHUBuilding datasets. On this
basis, retrain was carried out. The results of NAS-HRIS compared with SegNet, U-Net and Deeplab
v3+ are shown in Table 3 and Figure 10.
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(a) (b) (c) (d)

Figure 10. Examples of segmentation results with the SegNet and NAS-HRIS, respectively, on the
non-single source dataset. (a) Image. (b) Label. (c) SegNet. (d) NAS-HRIS.

Table 3. Testing result on BBD_Dataset

Architectures Parameters (M) PA (%) F1 (%) MIoU (%) Search Time (h) Train Time (h)

SegNet 29.4441 95.48 82.11 74.12 - 5.4
U-Net 23.3565 95.21 83.56 74.66 - 2.8

Deeplab v3+ 13.3953 94.42 84.43 75.19 - 3.3
NAS-HRIS 0.2048 96.28 85.31 75.21 12.1 5.8

4. Discussions and Conclusions

We proposed an improved image segmentation algorithm for high-resolution (HR) remote sensing
images based on a neural architecture search (NAS-HRIS). NAS-HRIS uses a gradient descent search
strategy to search in a cell-based search space. Compared with traditional methods, NAS-HRIS realizes
the automatic design of neural networks and reduces the memory resources used in the automatic
search process. We created a new urban Beijing Building Dataset (BBD), which is an elevation satellite
image dataset integrated by satellite image and aerial photograph for urban building extraction and
identification. We applied NAS-HRIS to aerial images, satellite images, and non-single source images,
and achieved 90.44% MIoU on the WHUBuilding dataset. Although NAS-HRIS performs well in
the task of segmentation of the HR remote sensing datasets, it still needs to consume considerable
computing resources in the process of searching the architecture. Therefore, in the following work, we
will further optimize the search space and search strategy and get rid of the constraints of computing
resources on the neural architecture search.
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