
sensors

Article

CoNTe: A Core Network Temporal Blockchain for 5G

Steven Platt 1,* , Luis Sanabria-Russo 2 and Miquel Oliver 1

1 Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona,
Spain; miquel.oliver@upf.edu

2 Telecommunications Technological Centre of Catalonia (CTTC/CERCA), 08860 Castelldefels, Spain;
luis.sanabria@cttc.es

* Correspondence: steven@ieee.org

Received: 19 August 2020; Accepted: 11 September 2020; Published: 15 September 2020
����������
�������

Abstract: Virtual Network Functions allow the effective separation between hardware and network
functionality, a strong paradigm shift from previously tightly integrated monolithic, vendor, and
technology dependent deployments. In this virtualized paradigm, all aspects of network operations
can be made to deploy on demand, dynamically scale, as well as be shared and interworked in
ways that mirror behaviors of general cloud computing. To date, although seeing rising demand,
distributed ledger technology remains largely incompatible in such elastic deployments, by its nature
as functioning as an immutable record store. This work focuses on the structural incompatibility of
current blockchain designs and proposes a novel, temporal blockchain design built atop federated
byzantine agreement, which has the ability to dynamically scale and be packaged as a Virtual Network
Function (VNF) for the 5G Core.

Keywords: blockchain; 5G-specific blockchain; software-defined networks; network functions
virtualization; distributed algorithms

1. Introduction

Unlike alternative distributed ledger structures, such as Block Lattice [1], Directed Acyclic
Graph [2], and Distributed Hash Tables [3], which gain flexibility through modification or
fragmentation of the underlying hashed-linked storage; blockchain allows little manipulation of
its base structure outside of consensus model and block size. This rigid chain structure guarantees
auditability, making it especially well-suited to policy-based operations demanding transparency
and coordination among unmanaged network peers. For example, in events of natural disaster,
or widespread infrastructure failure, having access to a trusted, secure, and decentralized data store,
can be extended to allow infrastructure coordination, such as network slice allocation and other
decentralised cyber-physical control, delivering neutral carrier emergency services to endpoints who
would not otherwise be known subscribers.

Understanding that blockchain has the structural capability to allow for coordination among
infrastructure peers, recent research has moved to focus on how to fit such coordination within
existing and popular blockchain mechanics and, as a result, places incentive mechanics as core and
requisite to operation. These range from shared infrastructure deployment of a virtual LoRaWAN
network [4], resource management in neutral carrier [5], and 5G small cell deployment [6], as well as
macro-level spectrum trading and management [7]. Beyond these, bespoke wireless network-specific
forks of Ethereum have also been deployed to handle coordination of mesh infrastructure and last
mile connectivity [8,9]. Underneath each of these is a limitation that is imposed by using a linear
forward-hashed blockchain system that includes currency operations; they cannot be easily fragmented,
since, by nature, currency transactions rely on the preceding balance recorded in perpetuity.

Sensors 2020, 20, 5281; doi:10.3390/s20185281 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0954-1017
https://orcid.org/0000-0003-3993-3660
http://www.mdpi.com/1424-8220/20/18/5281?type=check_update&version=1
http://dx.doi.org/10.3390/s20185281
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5281 2 of 21

An inability to split up or retire ledger history has a secondary effect of reducing compatibility
with the latest 5G and beyond network designs, which rely on virtual network functions with
temporal/limited lifecycles and the ability to not only scale up, but also scale down. As network
infrastructure is increasingly abstracted and replaced with software-defined platforms for 5G and
beyond generations of deployment, use of blockchain allows for sharing and coordination in ways
both known and unknown, and this shows further need for blockchain that is generalized and made
widely compatible with cellular design. One way of doing this is returning blockchain to the function
of ‘dumb’ storage and, in doing so, allow all cellular operations that store data, to make use of its
decentralizing and immutable nature. On the path to generalizability in cellular deployment, it is
important to recognize limitation in blockchain as a data structure, in that it is linear storage and,
as such, does not scale in applications, where transactions have potential to be highly bursty, or
expand exponentially, such as at the network edge. Recognizing this, and further time-bounds of edge
operation, we target application of blockchain at the cellular core.

Permissionless Blockchains Lack Lifecycle Control

In order to address concern of its monolithic structure and unbounded resource use, Ethereum
has progressed through investigating a number of methods to scale down and make modular its
monolithic blockchain, including horizontal data sharding [10], and state channels [11], as well as a full
migration away from its original proof-of-work consensus, to a less compute intense implementation of
proof-of-stake, named Capser, allowing for linear compute complexity (O2) [12]. In each case, although
more efficient, total storage remains unbounded, and without lifecycle, so the original difficulty to
wholly package the system for temporal network function use remains. Further blockchain systems
have focused on efforts to scale, but make no allowance for temporal use. Tendermint provides
for scaling up and down by implementing federation in consensus that creates smaller clusters of
consensus that overlap to guarantee a minimum byzantine fault tolerance [13]. These smaller clusters
of consensus allow for controlled network segmentation and isolation, but lose the ability to deploy
permissionless, as network topology and membership must be known to enforce its consensus cluster
overlap for fault tolerance. The Stellar project is structurally similar to Tendermint, but it does not
guarantee fault tolerance [14]. This federated model of consensus that removes fault tolerance but still
guarantees safety and liveliness was named Federated Byzantine Agreement and first appeared with
Stellar. Removing the guarantee of fault tolerance has the added benefit of allowing the consensus
model to be used permissionless, but, because Stellar also includes a native currency, its ledger is
monolithic and cannot be made temporal, so long as any participant carries a balance or need to
transact on a previous history. In each of these systems, a work around for perpetual storage, and to
assign a lifecycle terminus, is to use the systems in private deployment. In this model, a smaller group
of participants can deploy ledgers for a single use and retire the ledger when that use is complete.
However, in private deployment, these systems again lose any ability to function permissionless
and, instead, behave in a manner similar to the permissioned and enterprise focused Hyperledger
Sawtooth [15]. Table 1 provides an overview and comparison of these systems, as well as Conte, a new
blockchain system presented in this research.

Table 1. Comparison of selected blockchain distributed ledger systems.

Ledger Consensus Compute
Complexity Model Currency Temporal

Ethereum (Casper) [12] Proof of Stake O(n) Permissionless Yes No
Tendermint [13] BFT O(n) Permissioned Yes No
Hyperledger Sawtooth [15] PBFT O(n2) Permissioned No Yes
Stellar [14] FBA O(n2) Permissionless Yes No
Conte FBA O(n) Permissionless No Yes

Sensors 2020, 20, 5281 3 of 21

To the authors knowledge, we present the first permissionless blockchain which achieves the
following properties:

• Lifecycle Control: Participants create single use chains that are immutable while being updated, and
can be retired when no longer in use. By removing currency and contract functions, the remaining
data storage function does not play a role in forward balance history, nor is it required for ledger
security.

• Network Function Compatibility: As a data store, the blockchain is made agnostic to use case;
combining this with lifecycle control allows for the system to be used for temporal 5G virtual
network functions.

This research diverges from currency and contract focused research in two important ways; first,
a deliberate focus is placed on blockchain use solely as secure, decentralized storage, rather than a
mechanism of direct policy and incentive control; second, cellular design was given priority, with the
goal of packaging blockchain to accommodate cellular operations rather than the inverse. This second
goal, meaning to package blockchain as a standard virtual network function, one that can be scaled
up, down, deploy, and to retire-allowing orchestration and lifecycle management, fitting 3GPP 5G
Core [16], and Common API Framework [17] designs. To achieve this, a wholly new blockchain design
is required. This research presents this design, which we name Conte.

The following research is split into six parts. The first provides an overview of the modular
structure of the 5G cellular core, and presents areas where blockchain can be matured in order to
improve its general compatibility by moving to a format as temporal general storage, rather than
more prescriptive currency and contract designs. The second section details the consensus model
used in Conte (Federated Byzantine Agreement), its safety, liveliness, and intentional omission of
fault tolerance controls. Following these are details of our proposed Conte blockchain protocol, its
block structure, protocol messages, and algorithmic complexity. The fourth section explains how
Conte handles congestion and flow control, while a fifth section returns us to our initial cellular core
context, to detail how Conte can be deployed as stand-alone temporal storage, or bundled as storage
underpinning existing virtual network functions in real-world environments. Finally a conclusion is
provided as a closing to the research, declaring potential improvements identified and planned future
research directions.

2. Unbundling Blockchain for General Network Function Compatibility

Early blockchain research has focused largely on individual use cases and, as a by-product, makes
a toy example of the wider cellular network dependencies. However, this framing does not fully
acknowledge the heterogeneity of wireless networks whose hardware is modified and upgraded over
time; for example, the coordination of Mobile Network Operators (MNO) and subscribing Mobile
Virtual Network Operators (MVNO), where blockchain can ensure the verifiability of data, but each
carrier operates its own diverging, and possibly competing services. A given MVNO may even utilize
infrastructures across multiple MNO’s and, in this case, a level of compatibility, optionality, and
generalizability of blockchain application would be desired.

When the 3GPP specification for 5G networks was released in 2018 [16], it explained its
architecture as being comprised of many Network Service Functions (NSF) to support Network
Function Virtualization (NFV) and Software Defined Networking (SDN) paradigms. It achieves
this through modularity, separating hardware infrastructure into Control Plane (CP) and User Plane
(UP) functions that are temporal, independently scalable, and loosely coupled to prevent structural
dependencies when possible. Eighteen total service functions are identified within the “Architecture
Reference Model” section of the 3GPP specification, and they are listed below:

Sensors 2020, 20, 5281 4 of 21

• Authentication Server Function (AUSF)
• Access and Mobility Management Function

(AMF)
• Data Network (DN)
• Unstructured Data Storage Function (UDSF)
• Network Exposure Function (NEF)
• Network Repository Function (NRF)
• Network Slice Selection Function (NSSF)
• Policy Control Function (PCF)
• Session Management Function (SMF)

• Unified Data Management (UDM)

• Unified Data Repository (UDR)

• User Plane Function (UPF)

• Application Function (AF)

• User Equipment (UE)

• (Radio) Access Network ((R)AN)

• 5G-Equipment Identity Register (5G-EIR)

• Security Edge Protection Proxy (SEPP)

• Network Data Analytics Function (NWDAF)

Today, there are two dominant paths of blockchain development. Either a bespoke chain
can be created for the intended purpose, or a monolithic, single purpose chain may be deployed.
Bitcoin contributed to the early work of Haber and Stornetta [18] in proving a system that could
remain secure while being public [19]. As a digital currency, it was designed to be decentralized
and permissionless; two traits not requisite in the original Haber and Stornetta digital notary use.
To achieve this however, Bitcoin deploys resource intensive Proof-of-Work (POW) consensus that
imposes throughput constraint and is difficult to deploy to resource constrained network environments,
such as IoT. This conflict is manifested in examples, such as [20,21], which require the deployment of
proxy devices that are able to run resource intensive POW calculations, or store the entirety of a public
ledgers history, which is then referenced by appendage devices through an informal star topology.
Taken in isolation, this full and light node separation can be understood as a symptom of the research
relying on the POW variant of the Ethereum blockchain—but, in a macro perspective, represent a risk
in network environments where the design and traits of a given blockchain evolve independently
and potentially in conflict with wireless network design. An existing example evolution includes the
introduction of Ethereum state channels, which impacts the auditability of data that would otherwise
be stored in the main ledger [22].

Adopting a general use blockchain, such as Ethereum presents risk in that it lacks modularity of
consensus, currency, contract, or other behaviors of operation. In Ethereum’s case, this means adopting
behaviors to support a POW permissionless security model backed by currency functions which may
be superfluous or even detrimental to the intended cellular network use. For example, if a universal
record such as currency balance is not being mandated, it is then possible to form and retire chains for
individual network operations as the shared data reaches the end of its useful life. Modularity of this
type is not possible for the most popular blockchain systems, such as Ethereum.

2.1. Unbundling of Currency

The ability to use currency payment and reward in POW blockchains to incentivize behavior
desired in network environments, such as resource sharing, was an early focus in cellular use. Taking
a specific example, Maksymyuk et al. propose a spectrum sharing solution that identifies spectrum
owners, infrastructure owners, ISP, and end users as independent participants in a dynamic market
driven by the Nash equilibrium in game theory [23]. In the Maksymyuk model, end users make digital
currency payments to infrastructure (base station) operators, who, in turn, pay for dynamic spectrum
access to incumbents and regulators, while also paying for ISP backhaul services to carry traffic to
the wider internet [23]. For specific controls relating to spectrum sharing operations, the research
proposes a game theoretical scenario, where each operator has equal currency to use for spectrum
access and it is incentivized not to overuse resources, as they would lose access once their balance
reaches zero. The balance is only regained in this case, by supplying access to competing providers in a
model that is designed for reaching Nash equilibrium of serving and receiving access. Although Nash
equilibrium format is novel, it is, however, an example of a currency model that assumes a balance of

Sensors 2020, 20, 5281 5 of 21

infrastructure and customer that is difficult to guarantee in production networks. Another concern of
the model is that it does not account for operations in congestion and peak demand scenarios where
all of the participants have competing incentives to consume access, risk service disruption, or total
service outage.

To best fit existing mechanics of network environment, blockchain must be evolved to function
under competing operational incentives, such as resource management, network investment levels,
and demand growth, which may be uneven among equivalent providers. One way of servicing
this structure is through the sharing of context and data, such as tower location and channel
occupation-which are required for functional operation of everyone—decoupling any awareness
of economic model from the chain. Conte fully removes currency, for generalized network use.

2.2. Unbundling of Contract

Blockchain is a rigidly time ordered structure by nature of its linear forward hashing. The general
speed of code execution tied to the contribution of blocks will be inversely proportional and dependent
on block consensus time. This means that a blockchain deployment seeing an increase in block
contributions will also see a corresponding decrease in how quickly those blocks and corresponding
information can be processed; all else remaining unchanged. In systems, such as Ethereum, where
end-to-end operations occur within its own virtual machine-behavior controls again fall back to
currency incentive, where impacts of block additions can be partially controlled by charging a digital
currency fee proportional with delay being imputed on the system [24].

Modern networks are built using an unbounded variety of hardware configurations and radio
resource management algorithms. Within networks of an identical generation, configuration for
antenna geometry, sectoring, deployment density, backhaul capacity, and algorithms deployed to
maintain quality and coverage can differ and conflict among networks and be further modified in
time. Contractual code execution assumes a level of heterogeneity and coordination that does not
fit with existing or expected future network design. Contracts cannot easily account for all possible
transitions in heterogeneous networks or multiple operators. The latency of contract checks and
block propagation cannot be completed at sub-millisecond scale, as required for time varied channel
conditions/controls. It is possible to modify the algorithms for achieving consensus to get around
these limitations. Blockchain systems can be manipulated to process higher transaction volumes,
or also control resource usage by allowing for nodes to keep full (full-node) or partial (light-node)
states [25]. Deploying such modification however, shows consensus latency in blockchain under best
case scenarios, are reduced to one second [26]. This present scalability limitation reveals blockchain
structure as largely incompatible with operations at µ-second scale at the network edge, such as
real-time radio resource control and dynamic accesses not set on a semi-permanent basis. This again
reveals a general benefit of limiting blockchain deployment to the decentralization of data. In part to
mitigate known limitations of contract execution and corresponding cyber-physical control bound by
block delay, Conte fully removes the function of contracts for generalized network use. In doing so,
network operators can still share data in an immutable, decentralized record, while also independently
updating and swapping out systems of cyber-physical control over time. The integration of Conte
within a 5G system assumes a Cloud-Native 5G Core, whose composing functions/services (e.g., AUSF,
NEF, etc.) are exposed via well-defined APIs (e.g., CAPIF, ETSI NFV IFA 013, etc.) under the Mobile
Network Operator’s (MNO) policies. Conte operates as the Unstructured Data Service Function,
making it not specific to any single network function, but rather it is agnostic storage that can be
accessed and used by any network function, as defined by the previously mentioned 3GPP 5G
Architecture Reference Model. This allows a network to decentralize storage and accounting for all
or just a smaller subset of network functions. Figure 1 shows a logical example, where only a single
network function (AUSF) uses the Conte blockchain for its storage, while all other functions retain an
unmodified design.

Sensors 2020, 20, 5281 6 of 21

5G Core.pdf 5G Core.pdf

Conte
Blockchain
Storage

AMFAUSF SMF

NSSF NEF NRF PCF UDM AF

UE (R)AN UPF DN

Control Plane

Figure 1. A logical representation of 5G network functions, with a single function (AUSF) being
decentralized by using Conte blockchain storage.

3. Federated Byzantine Agreement Consensus

A consensus model must be deployed that functions in this mode of operation to make a
blockchain that is temporal. The following section details how the Conte blockchain maintains
safety, while removing currency and contract mechanics from its design.

When compared to permissionless consensus models, such as Bitcoins Proof-of-Work (POW),
classic Byzantine Fault Tolerant (BFT) algorithms have been favored for permissioned or consortia
deployments due to its lower resource consumption achieved in exchange for a reduced and adjustable
fault tolerance, commonly set as low as 20% for environments consisting of known peers [13].
However, BFT models, in turn, carry risk in lacking the standardization and interworking required of
heterogeneous network deployment. A more recent approach extended for this research is the FBA
model, which balances the permissionless decentralization of POW, with the lowered resource use of
BFT consensus.

Conte handles consensus while using a modified implementation of the Federated Byzantine
Agreements (FBA) structure first introduced with the Stellar Consensus Protocol [14]. FBA functions
by dividing networks into smaller clusters of interlinked consensus, aptly named ‘slices’. Partitioning
the network into slices in this manner allows for deploying BFT agreements at internet scale, while
making the trade-off of slower consensus speed. Functionally, these slices behave in a manner similar
to network subnetting, eliminating traffic storms formed during broadcast consensus in existing
Byzantine Fault Tolerant (BFT) algorithms and, at a macro level, allows for consensus to mirror the
unbounded peer-wise model of backbone internet, with nodes spanning consensus slices, functioning
as gateway.

Modern blockchain consensus algorithms are characterized on the three matrices of safety,
liveliness, and fault-tolerance. The FLP Impossibility Theorem states that any asynchronous
consensus mechanism can only guarantee and choose two among the three [27]. Extending from
this, FBA diverges from Classic BFT consensus in being asynchronous and, consequently, foregoes
guarantees of fault tolerance. An example BFT consensus algorithm guaranteeing 25% fault tolerance
uses an n≥ 3f + 1 security model, with total nodes N, faulty nodes f∈N, and n = { x∈N | x/∈f }. For such

Sensors 2020, 20, 5281 7 of 21

a guarantee to function, classic BFT algorithms must, at minimum, operate in partial-synchrony,
often using a global stabilization time (GST) to end voting, and with a known registry of nodes N in
order to reliably identify f nodes at a given time T [28,29].

Through choosing safety and liveness over fault tolerance in its core algorithm, Conte does not
need to restrict participation or incentivize behavior among unmanaged nodes in order to reach
agreement. In this manner, it functions in a manner mirroring internet backbone peering; where
connectivity is piecemeal, extending unbounded in all directions, and changing in time-based on trust
relationships not managed by the blockchain itself. In this structure, Conte offers an ideal starting point,
allowing for blockchain connectivity to be locally managed under existing infrastructure paradigms
(as temporal virtualized network functions), while safely settling and distributing finalized blocks
among unmanaged and heterogeneous networks. For this research, we define safety and liveliness as:

• Safety: nodes operating a Conte blockchain enjoy safety if node outputs are consistent, with no
two nodes committing a conflicting values for the same block.

• Liveness: nodes operating a Conte blockchain enjoy liveliness if they are able to reach consensus
on new blocks without the participation of failed or malicious nodes.

Replacing Fault Tolerance with Network Quorum

Consensus in FBA’s operates on a structure known as a quorum slice. A quorum slice is a
grouping of network peers whose pairwise peering is symmetric. Transposed to wireless network
context, a quorum slice could consist of all tier-1 mobile network operators (MNO) of a region, who all
peer with each other. Within a quorum slice, block additions may be considered final, after a threshold
amount of peers confirm the block. However, this functionality on its own does not consist a federation.
To form a federation, quorum slices are intended to intersect, such that nodes operating in multiple
quorum slices function as relay, extending consensus to the wider network of intersecting slices. In the
5G core network context, this would occur when some portion of regional MNO’s within a quorum
slice, also peer with MNO’s or another region, or internationally. Federated Byzantine Agreement
Systems (FBAS) and Quorum are formally defined as [14]:

• Federated Byzantine Agreement Systems: a federated Byzantine agreement system, or FBAS, is a
pair 〈V, Q〉 comprising a set of nodes V and a quorum function Q : V ⇒ 22V\{∅} specifying one
or more quorum slices for each node, where a node belongs to all of its own quorum slices—i.e.,
∀v ∈ V, ∀q ∈ Q(v) , v ∈ q. (Note that 2x denotes a powerset of X.)

• Quorum: a set of nodes U ⊆ V in FBAS 〈V, Q〉 is a quorum iff U 6= ∅ and U contains a slice for
each member—i.e., ∀v ∈ U, ∃q ∈ Q(v) , such that q ⊆ U.

A quorum is a set of nodes that sets the threshold or reaching agreement, and it may be larger
than a single quorum slice. Consider Figure 2, which shows two clusters of nodes, each participating
in a single quorum slice with symmetric pair-wise connection. Assuming that 100% confirmation
is required, node v5 can reach agreement with confirmations from peers {v1, v2, v3, v4, v6}; however,
since node v6 has additional peers {v7, v8, v9, v10}, they must also agree to the update before it is
accepted; therefore, v4 must agree to an update from v8, etc.

Figure 2 represents a worse case scenario of federated agreement. In this example, the pairwise
relationship of v5 and v6 represent a single point of failure in reaching consensus. Systems, such as
Ripple [30], compensate for this by enforcing, at all times, a minimum connectivity between federated
nodes ≥ its maximum fault tolerance (and in turn, making it Byzantine Fault Tolerant). However,
doing this again imposes the centralizing requirement of recording and enforcing connectivity among
known participants-precluding unmanaged permissionless operation. FBA, as deployed in Conte,
instead makes an alternate scenario possible, in which consensus resilience increases as additional
unmanaged pair-wise relationships are formed elsewhere in the network-in a manner mirroring that
of global internet (Figure 3).

Sensors 2020, 20, 5281 8 of 21

V4

V3 V5

V2

V1

V10

V6 V9

V7

V8

Figure 2. Two quorum slices, intersecting at nodes {v5, v6}.

V4

V3 V5

V2

V1

V10

V6 V9

V7

V8

Figure 3. Two quorum slices intersecting at nodes {v2, v4, v5, v6, v8}.

4. The Conte Blockchain Protocol

Conte operates permissionless, without an explicit membership or validator set; each block,
however, is signed using the public key of the submitting node and is by design, not anonymous.
Each block update is assigned an incrementing index number, such that only one block can be valid at
a given index position, with each node able to independently confirm block sequencing against its
local set (its local blockchain). Block submissions are then forward propagated until reaching a graph
edge, where edge nodes begin a ripple effect through the back-propagation of an acknowledgment
for a given block vote [30]. Blocks that are settled in consensus are then added to local blockchains
using SHA-256 encryption. Because Conte is intended to operate with an unknown number of peers,
there are no leader election processes, or transaction batching as done in Byzantine Fault Tolerant
blockchain systems, such as Facebook’s Libra [29]. Rather, any participating node can submit a block
at any time, relying on congestion control measures borrowed from medium access controls in IEEE
802.11 networks (carrier sensing multiple access with collision detection (CSMA/CD)). Exponential
back-off timers [31] within Conte allow peers to send a negative acknowledgment, triggering a cool
down period for a proposing node if receiving blocks out of order, or with conflicting index values
to those received from disjoint peers; the details of this mechanism are provided later in the paper.
Conte further combines these network behaviors with novel federated byzantine agreement consensus,

Sensors 2020, 20, 5281 9 of 21

which establishes finality without traditional fault-tolerance, to allow its temporal network function
deployment, while also not sacrificing consensus safety.

4.1. Block Structure and Storage

Blocks within Conte are composed of three parts; the block header, a list of transactions, and
the previous block hash. Rather than a bespoke programming language and contract syntax, Conte
flattens and standardizes possible operations to aid in interworking between networks, in a similar
manner to IP packet structure. Each transaction is atomic and contains all of the information required
for processing operations of the specific network function for which it is deployed, while also adhering
to a single global format containing the sections below.

• Contract ID: a globally unique integer value, serving as the identity of an Federated Byzantine
Agreement (FBA).

• Contract Name: a non-unique string value, serving as a human readable name for a given FBA.
• Message Signature: the cryptographic signature, or public key of the network node proposing

a transaction.
• Function: a rigidly defined struct value-defined as standard for each network function. An example

struct being: [NF Name]; [Operation]. In the AUSF use case, this would designate: [AUSF];
[authorize], [AUSF]; [revoke], or others standard operations of the chains’ designated network
function.

• Message Body: an array value containing the core transaction data. In the example AUSF use case,
this is the 5G Globally Unique Temporary Identifier (the 5G subscriber ID).

• Index Number: an incrementing integer value, designating a records position in the hashed chain.

Conte is structured to allow a node to participate in multiple independent chains simultaneously.
Rather than a monolith chain that grows in perpetuity, Conte intends new chains to be created, run in
parallel, and retired after serving an intended purpose. This managed lifecycle can be months, years,
or an indeterminate amount of time; partner networks may, for example, share subscriber data to grant
access in cases of natural disaster. Because Conte requires full agreement to settle consensus, meaning
that all peers of a given node must provide block confirmation before a block is considered to be final;
there is no risk of fork and no increase of security through increasing the ledger length in perpetuity.
This paradigm facilitates the negotiation of software upgrades among smaller subsets of peers for
individual chains, and also with consideration to the expectation that network data is real-time data,
whose value trends towards zero in time.

Because the Conte blockchain stores living network data, it is important to allow a mechanism
to prune or optimize storage. This is done in two ways; during an initial sync or in ongoing pruning.
Returning to our example scenario of authorization, let us assume a network requirement where
devices must be reauthorized every 90 days through a transaction renewing its permissions. Assuming
that each network has an external record retention policy and mechanisms of network logging,
this effectively places a 90-day expiry on the utility of transactions in the chain. In a scenario such
as this, a node requesting to sync can do so by requesting all transactions from N date, rather than
an entire chain growing in perpetuity. Because the chain length is not a mechanism of security, as in
Ethereum, or assisting in reaching finality as in IOTA, the chain can be partially synced in this manner
without risking safety of ongoing consensus, as defined by the intended use of the single chain, or
microchain (Figure 4).

Sensors 2020, 20, 5281 10 of 21

AMF
Blockchain

NSSF
Blockchain

PCF
Blockchain

PCF
Blockchain

MNO 1

MVNO 1

MNO 2

MNO 3

Figure 4. Example of multiple network function-specific blockchains running across operators.

4.2. Transaction and Protocol Messages

Joining consensus on a Conte blockchain occurs by configuring a peer and mutually validating
identity through exchange of public keys. In addition to public key exchange, a peering request
arrives with either a genesis block, containing a randomly generated contract ID, or a request to sync,
containing the contract ID of an existing chain that is the target of synchronization. It is assumed
that 5G core networks are connected pair-wise, rather than fully peer-to-peer. Structuring consensus
in this way allows it to function when networks are operating peer-to-peer, but also when sensitive
infrastructure is siloed behind firewalls and strict route controls.

Nodes may also proxy or pass block proposals while using NEF operations, in compliance
with 3GPP 5G design. Conte exposes secure RESTful APIs for protocol messaging between nodes,
including GET and POST operations. Protocol messages include: peer, sync, propose, acknowledge,
negative acknowledge, commit, and prune.

• Peer: initialize connection to new contract peer.
• Sync: after initial connection, or during conflicting commits, a node can request to sync transactions.

This sync includes a check to confirm a known peer with the longest change, and a verification of
new blocks by re-hashing them using the SHA-256 algorithm.

• Propose: issue a new transaction. A new block can be proposed by any member of the network.
The block must be signed with a cryptographic key to validate identity. Each block is sent as
unicast to all peers of a given node, which forwards the proposal, until reaching nodes at the graph
edge. For bandwidth efficiency, a node may delay block proposal, until it has multiple transactions
to submit-in which case, these may be bundled into a single block. A node is considered a graph
edge after receiving the same proposed block from all its known peers.

• Acknowledge: provides confirmation of acceptance of new transaction blocks. Once a proposed
block is received, its header, body, and signature data is validated and an acknowledgment
is returned. A node must receive an acknowledgment for each forwarded block proposal,
before propagating back its own aggregate acknowledgment. Nodes receiving invalid blocks,
competing blocks with the same index value, or out of sequence blocks send a negative
acknowledgment, aborting consensus.

• Negative Acknowledge: deny confirmation of blocks in case of conflicting block data, such as
index position, aggregate hash, or message signature.

Sensors 2020, 20, 5281 11 of 21

• Commit: a final notification that a block is committed locally by a proposing node, signaling that
remaining nodes handling consensus as clear to add the block into their respective local chains.
Conte ensures that no two nodes store different blocks with the same index value, by aborting
consensus when encountering conflicting data or error. In states where acknowledgment is
received from all peers, the block is committed to the local chain and a final commit message is
issued to peers (Figure 5), who commit the block in their local chain and propagate the commit
forward toward edge nodes.

• Prune: nodes that fail to reach consensus may initiate a request to prune from peer lists, any peer which
has failed to respond to three consecutive proposals. Prune requests forward propagate in a manner
that is similar to a propose message, with the full network reaching consensus to prune the peer. A
negative acknowledgment may be sent if the target peer is responsive elsewhere in the network.

Proposing Node

Node 2

Node 3

Node 4

Node 5

Propose Acknowledge Commit

Figure 5. Conte Single Round Block Commit.

Because Conte requires full confirmation in order to reach finality in a manner that is similar to
TCP error correction, a given message is repeated if an expected response is not received within a
given timeout, until a pruning state is triggered. Algorithm 1 shows simplified pseudo-code of Conte
message functions.

Algorithm 1: Conte Messages for node v ∈ q

Function Message(type, local Index, key):
msg.index ← local Index
msg.type← type // peer, sync, propose, or prune
msg.peer ← peer
msg.signature← key

return msg

Function Response(type, msg.index, key):
msg← Message(type, peer, key)
msg.response← type // acknowledge or negative acknowledge
msg.peer ← peer
msg.signature← key

return msg

Function Commit:
ackv ← msgv

ack.index ← msg.index
quorum← quorumACK(ack.index, {msg.signature | v ∈ q})

return quorum

Sensors 2020, 20, 5281 12 of 21

5. Handling Transmission Contention

As an asynchronous system without a static resource allocation, additional controls are needed
in order to handle contention in transmissions. In addition to time-to-live limits on transactions,
Conte handles conflict in the network using a binary exponential back-off mechanism, mirroring that
of CSMA/CD in WiFi networks. The channel sensing in this case is the monitoring of the directly
connected peered network interfaces for the transaction traffic of peer nodes. Under the CSMA/CD
model [31], a transmitting node must wait some minimum sensing period in order to confirm the
transmission medium is idle. In practice, if the transmission medium is not idle, then the node selects a
random back-off duration, in seconds (contention window), and counts down. This back-off is chosen
uniformly in the range [0, 2iW0 − 1], where i is the number of times a node has attempted to issue the
transaction (back-off stage), initialized at 0, and W0 is the minimum sensing period [32]. If a node
receives subsequent transactions during the sensing period, it pauses its countdown, and continues
decrementing once the transmission medium is clear. After transmitting successfully, i is reset to 0.
A maximum m number of retransmissions attempts i is also set, to apply a bound for maintaining
liveliness. Again, matching the behavior of CSMA/CD, a node makes two attempts at the maximum
back-off stage, before considering the block a failed transmission. This mechanism of congestion
control is chosen, as it represents a worst case scenario in which only directly connected peers are
known-with no visibility beyond, as opposed to Reno, Tahoe, and other congestion control algorithms
available directly in TCP, which require maintaining a route table that eventually extends to includes
all graph hosts. A summary pseudocode of Conte consensus, inclusive of back-off timing, is provided
in Algorithm 2.

The CSMA/CD model provides four contention probabilities that can be represented as a
two-dimensional Markov chain with one step transition probabilities, as explained in [32] with possible
states represented where t in our case is a block retransmission attempt, and s is the sensing period.
These Markov transition probabilities are represented as (1), where Pw is the contention probability of
the transmission medium, W0 is the minimum sensing period length, Wi = 2iW0 is the sensing period
length at a given block attempt i, and i = m at the maximum retransmission attempt:

P{t, s|t, s + 1} = 1, s ∈ (0, Wi − 2) t ∈ (0, m + 1)

P{0, s|t, 0} = 1−Pw
W0

, s ∈ (0, W0 − 1) t ∈ (0, m + 1)

P{t, s|t− 1, 0} = Pw
Wj

, s ∈ (0, Wi − 1) t ∈ (1, m + 1)

P{0, s|m + 1, 0} = pw
W0

, s ∈ (0, Wm − 1)

(1)

In descending order, these probabilities (1) are the transition probability of going from idle to
successful transmission; the second representing the transition probability after successful transmission
of having a subsequent successful transmission; the third represents the transition probability after an
unsuccessful transmissions, in which the contention window W0 is doubled, as defined by [0, 2iW0− 1];
the last equation represents the transition probability after a fully failed transmission in which the
contention window resets to 0. Letting an expired timer (or closed contention window) be represented
as bt,0, accounting for the distribution of Markov transition probabilities, the probability of a node
sending a block in any 1 s time period τw is represented as (2):

τw = ∑m+1
t=0 bt,0 = 2

W0

(
(1−(2Pw)m+1)(1−Pw)+2m(Pm+1

w −Pm+2
w)(1−2Pw)

(1−2Pw)(1−Pm+2
w)

)
+1 (2)

A given node can only listen to the transmission medium of its connecting peers within a single
quorum slice and, consequently, nodes on disjoint slices are occluded. To compensate for this, it is
assumed that the binary exponential back-off is triggered either by listening directly on the transmission

Sensors 2020, 20, 5281 13 of 21

medium, or by a known peer sending a negative acknowledgment on a transaction, as done in cases
when it has already received a superseding transaction time stamp or index position from elsewhere
in the network.

Algorithm 2: Conte Consensus for node v ∈ q

for msg.index← 1,2,3,... do

Propose State
wait for minimum sensing period: Wi ← {Wiv | 0}
newBlock← msg
multicast newBlock

Acknowledge State
wait for newBlock from peer: v ∈ q
wait for minimum sensing period: Wi ← {Wiv | 0}

if newBlock msg.index > localIndex then
send response: msg← {msg.response | acknowledge}

end
else

send response: msg← {msg.response | negativeacknowledgement}
end

Commit State
As proposer:
wait for peer response: quorum← {msg.response | acknowledgement(∀v ∈ q)}

for msg.response = negative acknowledgement do
send message: msg.type← sync

end
if no msg.response then

unicast newBlock: msg.peer ← ∀v ∈ q(/∈ quorum)

end
else

send commit: quorum← quorumACK(ack.index, {msg.signature | ∀v ∈ q)}
end

As peer:
wait for quorum from proposer(msg.index)

end

6. Performance and Scalability

Because Conte does not deploy topology constraint, it is valid to represent its network scalability
as a model of congestion control, where the performance bounds of the total system are held by link
propagation and block contribution rate. Two simulations were implemented in Python in order to
model the scalability of Conte CSMA/CD congestion control. In the first simulation, peer nodes were
placed equidistant at 1500 km apart, roughly the distance between the cities of Barcelona and Berlin.
For the second simulation, peer nodes are set an order of magnitude further at 15,000 km, representing
the equivalent distance between Los Angeles and Singapore. These two distances allow for evaluating
Conte under both regional and global network delay.

All other parameters were set identical, with link speed of all nodes at 1 Gbps and block size at
1500 bits. Because of the randomness introduced through retransmissions using a binary exponential
back-off, each simulation was run ten times, with the results taken as the average. The simulations were

Sensors 2020, 20, 5281 14 of 21

run in two sets, one with node sizes ranging between two and 10 peers, and a second with node sizes
that range between 10 and 50 peers. It is important to note that node sizes do not represent the absolute
number of possible network participants, rather the maximum number of peer hops between the
network graphs furthest edges, to present a worst case. As a system designed for policy orchestration
at the cellular core, the first simulation set with a node maximum value of 10 is representative of cloud
native deployment, where regional data center and points-of-presence (POP) locations potentially
house carrier cores. The second set with node sizes reaching 50 represents an outlier scenario of
possible network loops or misconfiguration. Conte simulation code is available online and it has been
open-sourced [33].

The first simulation that is depicted in Figure 6 shows total block throughput and network
efficiency for three rates of block contribution: one block per hour, one block per minute, and one block
per second. Simulating block contribution at orders of magnitude is done to reflect a wide range of
update frequencies possible across 5G core network functions. At 1500 km, block throughput scales
up to handle network updates at rates as fast as 1 block per second without significant degradation.
Network efficiency, measured as the percent of packets transmitted successfully as compared to total
packets, reduces as low as 69% at this peak load. At 1500 km, both block throughput and network
efficiency scale linearly at rates below one block per second.

Node Count

B
lo

ck
 T

hr
ou

gh
pu

t (
1

ho
ur

)

0

1000

2000

3000

2 4 6 8 10

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Node Count

N
et

w
or

k
E

ffi
ci

en
cy

0

25

50

75

100

2 4 6 8 10

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Figure 6. Performance and scalability of Conte at 1500 km node distances and maximum hops to graph
edge of 10. Block Throughput (left) and Network Efficiency (right).

At 15,000 km, Figure 7 shows the performance roll off as a result of the additional network
delay. In this simulation, as delay increases an order of magnitude, block contribution capacity
drops correspondingly, with the network only able to scale to 1 block per minute without significant
degradation. Network efficiency above this rate falls as low as 50%, with the additional overhead of
retransmissions causing sustained reductions in block throughput beyond four graph hops at the one
block per second rate. The one block per second contributed rate also shows how the system degrades
under abnormally large network delays.

Increasing node sizes to 50 at 1500 km (Figure 8) shows marginal impact at block rates of one
per hour, while network efficiency begins to fall sooner, seeing reductions at the 1 block per minute

Sensors 2020, 20, 5281 15 of 21

transmission rate that was previously little impacted at smaller node sizes. It is important to note that
overall throughput does continue to improve, and remains above the peak of the initial simulation set
which capped node sizes at 10. With one block per second rates at 1500 km, we see the system become
overwhelmed with block throughput dropping sharply, having a throughput rate at 50 nodes that is
below that of a system having only three in the first simulation.

Simulation results at 15,000 km (Figure 9) exhibit similar behavior, and they continue a downward
trend already present at smaller node sizes. An interesting behavior we can see in aggregate is that
network efficiency measures do not drop to levels suggested by the raw block throughput numbers.
This can be explained by the CSMA/CD algorithm implementation being assigned a maximum
retransmission attempt value of 10. Network efficiency as reflected here, does not consider a packet
dropped, until it has already attempted transmission 10 times. Adjusting this maximum retransmission
attempts also has potential to impact performance, but this is outside the scope of this writing.

Node Count

B
lo

ck
 T

hr
ou

gh
pu

t (
1

ho
ur

)

0

250

500

750

1000

2 4 6 8 10

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Node Count

N
et

w
or

k
E

ffi
ci

en
cy

0

25

50

75

100

2 4 6 8 10

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Figure 7. Performance and scalability of Conte at 15,000 km node distances and maximum hops to
graph edge of 10. Block Throughput (left) and Network Efficiency (right).

Sensors 2020, 20, 5281 16 of 21

Node Count

B
lo

ck
 T

hr
ou

gh
pu

t (
1

ho
ur

)

0

1000

2000

3000

10 20 30 40 50

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Node Count

N
et

w
or

k
E

ffi
ci

en
cy

0

25

50

75

100

10 20 30 40 50

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Figure 8. Performance and scalability of Conte at 1500 km node distances and maximum hops to graph
edge of 50. Block Throughput (left) and Network Efficiency (right).

Node Count

B
lo

ck
 T

hr
ou

gh
pu

t (
1

ho
ur

)

0

100

200

300

400

500

10 20 30 40 50

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Node Count

N
et

w
or

k
E

ffi
ci

en
cy

0

25

50

75

100

10 20 30 40 50

1 Block Per Hour 1 Block Per Minute
1 Block Per Second

Figure 9. Performance and scalability of Conte at 15,000 km node distances and maximum hops to
graph edge of 50. Block Throughput (left) and Network Efficiency (right).

7. Deploying Conte as a Temporal Network Function

Conte is intended to be packaged as standalone temporal storage, or inside of other Virtual
Network Functions (VNF) within an operators’ Network Functions Virtualization Infrastructure
(NFVI). Delivering a Conte node to the 5G core network is relatively straightforward thanks to

Sensors 2020, 20, 5281 17 of 21

virtualization technology. 5G adopts virtualization approaches commonplace in cloud data centers
to realize virtual network functions (VNF), as opposed to relying on traditional network functions
with a tight coupling between software and hardware, as mentioned previously. VNFs, or more
generally, a Virtual Function (VF) can be thought of as a block of functionality running within a
virtualization container (e.g., Virtual Machine, containers), which can then be connected together via
Virtual Links (VL) and Software Defined Networks (SDN) to provide a service (e.g., 5G Core). In
5G, the way VF is described, deployed, managed, and destroyed has been defined by the ETSI NFV
group [34]. Furthermore, resource and service isolation in multi-service multi-tenant environments
is achieved via the concept of 3GPP Network Slices, which effectively treats a collection of VFs as a
single administrative entity, allowing for administrators to scale VFs individually, destroy or create
multi-VF services [35].

Conte can be deployed as a VNF in an operators’ Network Functions Virtualization
Infrastructure (NFVI). An example architecture of such deployment is provided in Figure 10.
In Figure 10, the standard NFV Management and Orchestration (MANO) architecture is displayed,
including reference points that enable communication among its components [36]. Moreover,
two example slices (labeled Slice 1, and Slice 2) are displayed to describe how VNF’s share an
underlying NFVI, which also allows communication among slices via Virtual Networks.

NFV Management and
Orchestration

Virtualised
Infrastructure

Manager (VIM)

Service, VNF and
Infrastructure
Description

Hardware Resources

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtualisation Layer

Virtual
Computing

Virtual
Storage

Virtual
Network

NFV Infrastructure (NFVI)

OSS/BSS

Or-Vi
|

Nf-Vi
|

- Vi-Vnfm

- Or-Vnfm

VNF
Catalog

NS
Catalog

NFVI
Resources

NFV
Instances

Ve-Vnfm-em

Ve-Vnfm-vnf

Os-Ma-Nfvo
|

VNF Manager
(VNFM)

Vi-Ha

Vn-Nf

Execution reference points
Main NFV reference points
Other reference points

NFV Orchestrator (NFVO)

3GPP slice-related
management

functionsVn-NfVn-Nf

VNF

EM

VNF VNF

EM

Slice 1 Slice 2

Figure 10. ETSI NFV MANO Architecture: highlighting slices’ reference points and manager in an
integrated NFV MANO model [36].

From the architecture proposed in Figure 10, Conte orchestration on operator’s NFVIs can be
realised as a separate slice (e.g., to isolate life cycle management operations), or as an additional VNF
within 5G Core Network slice (or equivalent).

7.1. Evolving Alongside a Cloud Native 5G Core

In order to achieve the advertised dynamicity and reconfigurability of the 5G core (e.g., placing
UPF at the network edge), its implementation is expected to evolve towards stateless micro services [37].
Such micro services can be considered equivalent to VF, albeit often referred to as Container
Network Functions (CNF), because they are implemented within lightweight virtualization containers
(e.g., Docker containers). Such move towards micro services would allow a new set of functionalities

Sensors 2020, 20, 5281 18 of 21

(e.g., rolling updates, roll-back), and capabilities (e.g., placement of functions at resource-constrained
devices at the edge, admit automation), while increasing performance when compared to VNF due to
container’s reduced virtualization overhead.

Conte may be deployed as cloud-native application (i.e., a collection of micro services inside
Docker containers) on top of a Platform as a Service (PaaS) provided by the operator, e.g., following
ETSI NFV IFA 029 recommendations [38]. Such a PaaS may hold a Container Infrastructure
Service (CIS) instance configured with a NFV MANO-compatible Container Orchestration Engine
(COE, e.g., Kubernetes, OpenShift). Such a CIS will then support a cloud-native Conte, as well as
expose network resources to reach the operator’s 5G core.

7.2. Conte’s Carrier Security Model

Conte is permissionless, but not trustless. A limitation of the proposed Conte architecture is
that it does not enforce any specific security model for the chain itself; an approach differing from
blockchains designed to handle byzantine faults (BFT/PBFT) or incent network behavior through
currency reward (POW). This model allows for decoupling currency and code execution from the
underlying immutable storage and decentralized consensus of the blockchain, at the expense of
security in isolation. This modified format is what allows Conte to achieve a 3GPP 5G Architecture
compliant design.

By not directly enforcing security within the chain, Conte inherits SDN rules, and other
security measures that are specified in 3GPP’s Common API Framework (CAPIF) [17] to guarantee
secure and interoperable access to 5G Core functions (e.g., NEF)-both internally and across carriers.
Beyond 3GPP-defined CAPIF controls, it is still possible for a peer carrier to broadcast malicious or
misconfigured updates, making Conte vulnerable to update poisoning in a manner similar to BGP
route poisoning. For this reason, it is assumed that a carrier operates Conte blockchains only with
trusted peers. As peering expands, Conte remains permissionless in membership, but it does not
support a trustless model.

8. Discussion

Recently, blockchain and other distributed ledger systems have received increased attention as
a means of augmenting cellular networks. Using existing systems, such as Ethereum and Bitcoin,
however, requires accepting both a monolithic, never-ending ledger structure, as well as currency
and contract models that are not a native fit in existing cellular design. This paper introduces and
details a new blockchain protocol, named Conte, designed with a temporal structure, more suitable for
expiring data and as storage backing native network function with a known lifecycle terminus, fitting
within 3GPP and ETSI defined 5G dynamic function design. The Conte design that is presented in
this research is permissionless, decentralized, internet scalable, and structured to handle contention,
remaining immutable during its deployment lifecycle. To the authors knowledge, Conte is the first
blockchain system to be both permissionless and allow lifecycle control. The simulation results
show the system scales in regional deployment with block contributions as frequent as one block
per second, while global deployment supports block contribution at 1 per minute. As embedded
carrier infrastructure, the Conte design as proposed does not support trustless operation. Further
investigation in support of a trustless model has been identified for future research.

Author Contributions: Conceptualization, S.P.; investigation, S.P. and L.S.-R.; supervision, M.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Spanish and Catalan Governments through the project “Plan
Nacional”: AEI/FEDER TEC2016-79510 “Redes Con Celdas Densas y Masivas” and the SGR2017-2019.

Acknowledgments: The authors would like to give special thanks to Gulhan Yuzgec for reviewing this writing
for spelling and grammar.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 5281 19 of 21

Abbreviations

The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project
5G-EIR 5G-Equipment Identity Register
AF Application Function
AMF Access and Mobility Management Function
API Application Programming Interface
AUSF Authentication Server Function
BFT Byzantine Fault Tolerant
BGP Border Gateway Protocol
CAPIF Common Application Programming Interface Function
CIF Container Infrastructure Service
COE Container Orchestration Engine
CP Control Plane
CNF Container Network Function
CSMA/CD Carrier Sensing Multiple Access Collision Detection
DN Data Network
ETSI European Telecommunications Standards Institute
FBA Federated Byzantine Agreement
FBAS Federated Byzantine Agreement System
FLP Fischer, Lynch, and Paterson
GST Global Synchronization Time
IFA Interfaces and Architecture
ISP Internet Service Provider
LoRaWAN Long Range Wide-Area Network
MANO Management and Orchestration
MNO Mobile Network Operator
MVNO Mobile Virtual Network Operator
NEF Network Exposure Function
NF Network Function
NFVI Network Function Virtualization Infrastructure
NFV Network Function Virtualization
NRF Network Repository Function
NSF Network Service Function
NSSF Network Slice Selection Function
NWDAF Network Data Analytics Function
PaaS Platform as a Service
PCF Policy Control Function
POP Point of Presence
POW Proof-of-Work
RAN Radio Access Network
REST Representational State Transfer
SDN Software Defined Networking
SEPP Security Edge Protection Proxy
SMF Session Management Function
TCP Transmission Control Protocol
UDM Unified Data Management
UDR Unified Data Repository
UDSF Unstructured Data Storage Function
UE User Equipment
UP User Plane
UPF User Plane Function
VF Virtual Function
VL Virtual Links
VNF Virtual Network Function

Sensors 2020, 20, 5281 20 of 21

References

1. Ajtai, M. Generating hard instances of lattice problems (extended abstract). In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC’96), New York, NY, USA, 22–24
May 1996; pp. 99–108. [CrossRef]

2. Popov, S. The Tangle v1.4.3. 2018. Available online: https://www.iota.org/research/academic-papers
(accessed on 2 October 2019).

3. Chalaemwongwan, N.; Kurutach, W. State of the art and challenges facing consensus protocols on blockchain.
In Proceedings of the International Conference on Information Networking, Chiang Mai, Thailand, 10–12
January 2018; pp. 957–962. [CrossRef]

4. Lin, J.; Shen, Z.; Miao, C.; Liu, S. Using blockchain to build trusted LoRaWAN sharing server. Int. J. Crowd
Sci. 2017, 1, 270–280. [CrossRef]

5. Ling, X.; Wang, J.; Bouchoucha, T.; Levy, B.C.; Ding, Z. Blockchain radio access network (B-RAN): Towards
decentralized secure radio access paradigm. IEEE Access 2019, 7, 9714–9723. [CrossRef]

6. Mafakheri, B.; Subramanya, T.; Goratti, L.; Riggio, R. Blockchain-based Infrastructure Sharing in 5G Small
Cell Networks. In Proceedings of the 14th International Conference on Network and Service Management,
Rome, Italy, 5–9 November 2018; pp. 313–317.

7. Weiss, M.B.H.; Werbach, K.; Sicker, D.C.; Bastidas, C.E.C. On the application of blockchains to spectrum
management. IEEE Trans. Cognit. Commun. Netw. 2019, 5, 193–205. [CrossRef]

8. Ernst, J.; Wang, Z.; Abraham, S.; Lyotier, J.; Jensen, C.; Quinn, M.; Harvey, D. A Decentralized Mobile
Mesh Networking Platform Powered by Blockchain Technology and Tokenization. 2017. Available online:
https://www.rightmesh.io/whitepaper (accessed on 10 June 2019).

9. Tremback, J.; Kilpatrick, J.; Simpier, D.; Wang, B. Althea Whitepaper. 2020. Available online: https:
//althea.net/whitepaper (accessed on 12 April 2020).

10. Yu, G.; Wang, X.; Yu, K.; Ni, W.; Zhang, J.A.; Liu, R.P. Survey: Sharding in Blockchains. IEEE Access 2020, 8,
14155–14181. [CrossRef]

11. Dziembowski, S.; Faust, S.; Hostakova, K. General State Channel Networks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 949–966. [CrossRef]

12. Buterin, V.; Griffith, V. Casper the Friendly Finality Gadget. arXiv 2017, arXiv:1710.09437. Available online:
http://arxiv.org/abs/1710.09437 (accessed on 18 June 2020).

13. Buchman, E. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. 2016. Available online:
https://allquantor.at/blockchainbib/pdf/buchman2016tendermint.pdf (accessed on 14 April 2020).

14. Mazieres, D. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Dev. Found. 2015, 32, 1–45. [CrossRef]

15. The Linux Foundation. Hyperledger Sawtooth. 2020. Available online: https://www.hyperledger.org/proj
ects/sawtooth (accessed on 25 August 2019).

16. ETSI. 5G System Architecture for the 5G System (3GPP TS 23.501 Version 15.3.0 Release 15). 2018.
Available online: https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v
150300p.pdf (accessed on 18 April 2020).

17. 3GPP. Common API Framework (CAPIF). 2019. Available online: https://www.3gpp.org/common-api-fr
amework-capif (accessed on 14 April 2020).

18. Stornetta, W.S.; Haber, S. How to Time-Stamp a Digital Document. J. Cryptol. 1991, 3, 99–111. [CrossRef]
19. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; GitHub: San Francisco, CA, USA, 2016.
20. Polyzos, G.C.; Fotiou, N. Blockchain-assisted information distribution for the internet of things.

In Proceedings of the IEEE International Conference on Information Reuse and Integration, San Diego, CA,
USA, 4–6 August 2017; pp. 75–78. [CrossRef]

21. Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet
Things J. 2018, 5, 1184–1195. [CrossRef]

22. Weingärtner, P.T. Tokenization of Physical Assets and the Impact of IoT and AI. Ph.D. Thesis, Lucerne
University of Applied Sciences, Luzern, Switzerland, 2019; pp. 1–15.

http://dx.doi.org/10.1145/237814.237838
https://www.iota.org/research/academic-papers
http://dx.doi.org/10.1109/ICOIN.2018.8343266
http://dx.doi.org/10.1108/IJCS-08-2017-0010
http://dx.doi.org/10.1109/ACCESS.2018.2890557
http://dx.doi.org/10.1109/TCCN.2019.2914052
https://www.rightmesh.io/whitepaper
https://althea.net/whitepaper
https://althea.net/whitepaper
http://dx.doi.org/10.1109/ACCESS.2020.2965147
http://dx.doi.org/10.1145/3243734.3243856
http://arxiv.org/abs/1710.09437
https://allquantor.at/blockchainbib/pdf/buchman2016tendermint.pdf
http://dx.doi.org/10.1021/ja982417z
https://www.hyperledger.org/projects/sawtooth
https://www.hyperledger.org/projects/sawtooth
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://www.3gpp.org/common-api-framework-capif
https://www.3gpp.org/common-api-framework-capif
http://dx.doi.org/10.1002/pssb.201300062
http://dx.doi.org/10.1109/IRI.2017.83
http://dx.doi.org/10.1109/JIOT.2018.2812239

Sensors 2020, 20, 5281 21 of 21

23. Maksymyuk, T.; Gazda, J.; Han, L.; Jo, M. Blockchain-based intelligent network management for 5g
and beyond. In Proceedings of the 2019 3rd International Conference on Advanced Information and
Communications Technologies (AICT 2019), Lviv, Ukraine, 2–6 July 2019; pp. 36–39. [CrossRef]

24. Buterin, V. Ethereum Whitepaper. 2013. Available online: https://ethereum.org/whitepaper/ (accessed on
14 April 2019).

25. Vukoli, M. Rethinking Permissioned Blockchains [Extended Abstract]. IBM Res. 2017, 3–7. [CrossRef]
26. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Liu, Y. A Survey on the Scalability of Blockchain Systems. IEEE Netw.

2019, 33, 166–173. [CrossRef]
27. Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of Distributed Consensus with One Faulty Process.

J. Assoc. Comput. Mach. 1985, 32, 374–382. [CrossRef]
28. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. HotStuff: BFT Consensus in the Lens of Blockchain.

arXiv 2018, arXiv:1803.05069. Available online: http://arxiv.org/abs/1803.05069 (accessed on 4 April 2020).
29. Amsden, Z.; Arora, R.; Bano, S.; Baudet, M.; Blackshear, S.; Bothra, A.; Cabrera, G. The Libra Blockchain. 2019.

Available online: https://developers.libra.org/docs/the-libra-blockchain-paper (accessed on 4 April 2020).
30. Schwartz, D.; Youngs, N.; Britto, A. The Ripple Protocol Consensus Algorithm. 2018. Available online:

https://ripple.com/files/ripple_consensus_whitepaper.pdf (accessed on 12 April 2020).
31. IEEE 802.11 Working Group. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications. IEEE Std 802.11-2012. 2012. Available online: https://ci.nii.ac.jp/naid/10011815988/
(accessed on 7 April 2020).

32. Mehrnoush, M.; Sathya, V.; Roy, S.; Ghosh, M. Analytical Modeling of Wi-Fi and LTE-LAA Coexistence:
Throughput and Impact of Energy Detection Threshold. IEEE/ACM Trans. Netw. 2018, 26, 1990–2003.
[CrossRef]

33. Steven, P. Blockchain CSMA/CD Protocol Simulator [Source Code]. 2020. Available online: https://github.c
om/stevenplatt/blockchain-CSMA-CD-protocol-simulator (accessed on 16 August 2020).

34. ETSI. 2020. Available online: https://www.etsi.org/technologies/nfv (accessed on 14 April 2020).
35. 3GPP. Telecommunication Management; Study on Management and Orchestration of Network Slicing for

Next Generation Network, Specification #: 28.801. 2017. Available online: https://portal.3gpp.org/deskto
pmodules/Specifications/SpecificationDetails.aspx?specificationId=3091 (accessed on 14 April 2020).

36. ETSI. Network Functions Virtualisation (NFV); Architectural Framework, ETSI GS NFV 002 V1.2.1. 2014.
Available online: https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v0
10201p.pdf (accessed on 2 June 2020).

37. Nokia. Cloud Native Core. 2020. Available online: https://www.nokia.com/networks/portfolio/cloud-nat
ive-core/#benefits (accessed on 22 May 2020).

38. ETSI. Network Functions Virtualisation (NFV) Release 3; Architecture; Report on the Enhancements
of the NFV Architecture Towards “Cloud-native” and “PaaS”, ETSI GR NFV-IFA 029. 2019.
Available online: https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IF
A029v030301p.pdf (accessed on 16 August 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/AIACT.2019.8847762
https://ethereum.org/whitepaper/
http://dx.doi.org/10.1145/3055518.3055526
http://dx.doi.org/10.1109/MNET.001.1800290
http://dx.doi.org/10.1145/3149.214121
http://arxiv.org/abs/1803.05069
https://developers.libra.org/docs/the-libra-blockchain-paper
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ci.nii.ac.jp/naid/10011815988/
http://dx.doi.org/10.1109/TNET.2018.2856901
https://github.com/stevenplatt/blockchain-CSMA-CD-protocol-simulator
https://github.com/stevenplatt/blockchain-CSMA-CD-protocol-simulator
https://www.etsi.org/technologies/nfv
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
https://www.nokia.com/networks/portfolio/cloud-native-core/#benefits
https://www.nokia.com/networks/portfolio/cloud-native-core/#benefits
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Unbundling Blockchain for General Network Function Compatibility
	Unbundling of Currency
	Unbundling of Contract

	Federated Byzantine Agreement Consensus
	The Conte Blockchain Protocol
	Block Structure and Storage
	Transaction and Protocol Messages

	Handling Transmission Contention
	Performance and Scalability
	Deploying Conte as a Temporal Network Function
	Evolving Alongside a Cloud Native 5G Core
	Conte's Carrier Security Model

	Discussion
	References

