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Abstract: Multimodal sensing and data processing have become a common approach in modern
assisted living systems. This is widely justified by the complementary properties of sensors based on
different sensing paradigms. However, all previous proposals assume data fusion to be made based
on fixed criteria. We proved that particular sensors show different performance depending on the
subject’s activity and consequently present the concept of an adaptive sensor’s contribution. In the
proposed prototype architecture, the sensor information is first unified and then modulated to prefer
the most reliable sensors. We also take into consideration the dynamics of the subject’s behavior and
propose two algorithms for the adaptation of sensors’ contribution, and discuss their advantages and
limitations based on case studies.
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1. Introduction

Nowadays, in developed countries, significant progress in the process of aging is observed—the
percentage of elderly people in the population is higher than the percentage of young people. It is
expected that in these countries the current 20%-proportion of people age 60 years and above will
increase by 32% by the year 2050. Over 50 years between 1950 and 2000 the median age increased from
29.0 years to 37.3 years and its continued growth is estimated to be 45.5 years by the year 2050 [1].

These figures force the governments of developed countries to carry out adequate actions.
They mainly consist of the monitoring of health parameters and physical activity for the purposes of
prevention against all types of diseases and life risks such as falls and frailty due to the absence of
systematic physical exercise, selected on the individual level. Taking care of people who need special
treatment (older, with disabilities, during recovery after injuries, accidents, or serious illnesses) is not
limited to satisfy their physiological or material needs, but first of all involves physical, psychological,
and social stimulation [2]. As early as in ancient times, not without reason, Aristotle said that
“movement is life—life is movement”. Thus, all attempts and efforts towards achieving practical
support for such people by encouraging their psychomotor autonomy are of great importance.

To face the above needs, projects of technical solutions proposed worldwide aim at the non-invasive,
convenient, and secure monitoring of supervised human vital signs [1,3]. Such monitoring is expected
to reduce the costs of expensive medical equipment or specialized medical and rehabilitation staff and
to assist non-professional individuals in taking continuous care of ill people.

Every approach to an assisted living system raises three issues:

• Adequacy of the applied sensor set;
• Intrusion of measurement devices in the subject’s environment and behavior;
• Violation of the subject’s privacy and vulnerability of the collected data.
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With the rising demand for applying the new technical solutions in the field of ambient assisted
living, scientific works and their outcomes are widely presented [4]. Therefore, various types of
approaches of ambient sensor-based monitoring technologies detecting elderly events (activities of
daily living and falls) can be found in the current literature such as non-contact sensor technologies
(motion, pressure, video, object contact, and sound sensors), multicomponent technologies
(combinations of ambient sensors with wearable sensors), smart technologies, and sensors in robot-based
elderly care.

With the aim of non-intrusively monitoring human wellbeing at home, the domestic energy
supplies can be also disaggregated in order to detect appliance usage by means of machine learning
and signal processing [5]. This enables the identifying of behavioral routines, detecting anomalies in
human behavior, and facilitating early intervention.

To support the independent life of seniors and people with chronic conditions and potential
health-related emergencies an Internet of Things (IoT) network is implemented for continuous
monitoring [6]. The solution is based on the network including mobile phones to transmit the data
generated by the IoT sensors to the cloud server and the 3rd party unknown mobile relays.

Since the home environment is usually monitored by sensors collecting a vast volume of collected
data, the computational methods should process it in an appropriate time [7]. This implies the need for
an event-driven framework in order to detect unusual patterns in such environments.

Another important point is designing and implementing an indoor location and motion tracking
system in a smart home setup [8]. The role of such a system is to track human location based on the
room in which the supervised person is located at a given time and to recognize the current activity.

Since in real daily life human behavior is not so predictable, a hybrid framework for human
behavior modeling could take a great role in managing the changing nature of activity and behavior.
The feedback-based mechanism could be significant to recursively append new events and behavior
and classify them into normal or abnormal human behavior [9].

Due to the rapid evolvement of Ambient Assisted Living (AAL), there is also the necessity of
standardization, uniformities, and facilitation in the system design [10]. The paper presents the latest
survey of the AAL system’s models and architectures. The authors investigated the AAL system
requirements and implementation challenges, Reference Models (RM) and Reference Architectures
(RA) definitions, demands, and specifications.

Simple unimodal approaches propose using a motor signal that adequately describes the state
and behavior of the monitored person. This type of measurement allows not only to initiate an alarm
in the dangerous or unusual situation [11,12] but also allows to specify a degree [13] and a type of
daily physical activity [14]. It was also found helpful in the evaluation of rehabilitation progress and
providing biofeedback to support the growth of psychological motivation and engagement in physical
exercises [15].

In multimodal approaches, the activity sensors use various physical measurements and data
fusion methods to provide consistent information about the subject’s activity. This usually raises a
question about the adequate usage of particular sensor types accordingly to their advantages in specific
scenarios. Studying numerous papers on ambient assisted living, considering personal longstanding
experience, and being inspired by rules of nerve sensitivity modulation in humans, we were motivated
to propose a multisensor system with an adaptive contribution of particular sensors to the final
behavior classification accordingly to the present and most probable future actions. The scope of the
reported research includes the analysis of the performance of the four most commonly applied assisted
living sensors (three of them are wearable) in six elementary reversible activity types of the human.
Based on this analysis background rules of sensor contribution have been proposed and applied to
build an auto-optimizing multimodal surveillance system. The main purpose of the work is to confirm
the complementary competencies of the sensors and benefits resulting from their adaptive contribution
in realistic assisted-living scenarios.
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Consequently, the main novelty presented in this paper is the concept of a system for the
recognition of human daily activity that adapts the process of multimodal data fusion following the
criteria of sensitive, selective, non-intrusive, and privacy-protective measurements (Section 3).

To this point, we tested basic behavioral measurements with a custom-built multimodal
surveillance system (Section 4), registered and interpreted many different vital signs from supervised
people with low-cost and easy-to-use sensors, and compare their sensitivity and selectivity of action
recognition. Elements of this system have been developed as the result of different previous
projects focused on single sensing modalities such as control of the living environment with the
eye movements [16], motor cortex rhythm [17], facial information [18], and sound recognition [19].
The cooperation of several sensors with different characteristics has been proposed in two other projects
dedicated to the supervision of humans during sleep [20,21]. We also contributed to the research aimed
at the development of sensor networks for supervising the human in motion based on motion patterns
from wall-mounted cameras [12,22] or data from wearable devices [23,24]. Finally, two approaches of
sensor data fusion from multimodal sensing systems have been proposed in [25,26].

This research summarized in Section 5 paved a way to propose two algorithms for continuous
modulation of the extent of influence from each particular sensor to the final recognition (Section 6).
Section 7 presents the case studies, Section 8 contains discussion and Section 9—concluding remarks.

2. State-of-the-Art

Multimodal systems used in home monitoring of people can be considered in the context
of simultaneous acquisition of either a variety of human biomedical signals—motion, EEG, ECG,
acoustic [20,21,23–25], or the same signal (motor) but using different sensing methods. In this paper,
we focus on the motor activity of the subject and propose a multimodal motion recording system.
Consequently, the review below includes basic approaches to human motion sensing.

2.1. Behavior Sensing Techniques

Scientific work of Suh and Park [27] presented a monitoring system based on motion sensors of
various types: inertial (built of three-axis gyroscope and three-axis accelerometer, attached on a foot
back) and pressure (FlexForce A201 from Tekscan company, positioned under a heel). Eight ADL states
were analyzed: sitting, walking, walking up and down (walking on an uphill and downhill road),
running, running up, running down, and standing. For the estimation of the above states, the filter
of the Hidden Markov Model (HMM) was proposed. The 802.15.4 wireless modules were used to
identify where the activities were taking place. During detection, such activities as walking or running,
the measurements were performed using inertial navigation algorithms.

In [28], surface electromyography was compared with accelerometry in the detection of eleven
Functional Motor Activities (FMAs). The sensors were placed on the limbs and trunk. The features
vectors, extracted in the signal processing, were used as input data to the Multilayer Feedforward
Neural Network (MFNN) with two hidden layers (of 44 and 22 neurons). With a classification
error of 10% for both types of sensor, the sensitivity was over 80%, and the specificity was over
97%. The sensitivity for signals received from the ACC was almost 5% higher than from the EMG.
Further analysis showed that for some activities the classification based on the EMG sensor is much
more sensitive. Across persons, the ACC signal was characterized by less diversity than the EMG.
These results were the motivation for the authors to carry out preliminary tests with a hybrid system,
which consisted of five ACC and three EMG sensors. With a classification error below 10% the used
combination of sensors brought slightly better results than those given separately by the eight-element
set of ACC and EMG.

Hsieh et al. [29] designed and built an independent system—an exoskeleton for the monitoring and
analysis of the particular events and phases of gait. In order to measure the plantar forces’ distribution
and angles of the hip and knee joints four force sensors FlexiForce (under the first metatarsal head,
forth metatarsal head, hallux, and heel) and two angles changes sensors—potentiometers (in the hip
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and knee joints) were used. The results obtained from the proposed system and the reference systems
(Vicon and dynamometer platform) were similar.

Mizuno et al. [30] introduced a multimodal system for the recognition of ADL activities of
monitored persons. The system integrates piezoresistive pressure sensors, a motion detector placed in
a watch, a sound sensor in glasses, an ultrasonic sensor (closed in a pen) measuring a distance from
a ceiling, and a position sensor (Bluetooth and GPS). The proposed system enables the detection of
walking, running, standing, eating, talking, and office work.

In [31], the physical activity of persons during rehabilitation after the stroke was monitored. For this
purpose, the integrated three-axis accelerometric and one-axis gyroscopic sensors (positioned bilaterally
to the subjects’ ankles and wrists) were used. Two accelerometers and a pressure sensor were attached
to the cane used by the examined person. Measurement data were recorded during level walking,
walking carrying an object, walking on an uneven surface, walking up a ramp, walking down a
ramp, walking up a flight of stairs, walking down a flight of stairs, walking over an object, pivoting,
and opening a door. Each motor activity was identified by a neural network. For all activities at
an average specificity of 95%, the sensitivity ranged from 75.1% to 97.4%. Then, the use of the cane
was studied in the context of a particular type of activity. The studies were performed based on the
measurements data from sensors located on the cane.

An extensive review of methods used in ambient assisted living systems was provided in [32].
The variety of methods used for sensing particular behavior patterns (e.g., fall detectors) raises

the question of their substitution or complementary use. This issue was studied in our group [33] and
several other authors provided comparative results for the efficiency and accuracy of different sensor
types in specific everyday living events. These findings paved the way to a concept of multimodal
sensing where sensors of different types are used in the following scenarios:

• Simultaneous: information from both sensors are gathered concurrently and fused together to
yield features of higher sensitivity and specificity;

• Complementary: information from sensors is switched selecting the best sensor accordingly to
the changes in recording conditions (e.g., indoor/outdoor).

While the simultaneous scenario has been applied in numerous proposals, the complementary
scenario is also worth studying in a pursuit for continuous surveillance of a mobile human.
Consequently, surveillance of physiological parameters may be employed in the healthy population as
an essential part of prevention programs and on the other hand, ill or disabled people will not be sent
to their beds or premises without the chance of physical exercise or a social life.

An alternative concept was proposed in [34]. Five sensors: pulse, chest accelerometer,
limb accelerometers, camera, and microphone were used in pairs for the detection of seven elementary
poses, which in turn contributed to the representation of actual behavior. In that previous work, we used
graph representation with node values standing for pose contribution and edge flow representing the
activity in time. This approach used complementary premise-fixed and wearable sensors, simple yet
reliable algorithms for recognition of elementary poses, and a concise representation of any behavior,
even unknown at the setup stage.

2.2. Data Fusion Techniques

One of the most cited is the work by Boonma and Suzuki [35], which presents the basics of
biologically-inspired architecture for Sensor Networks (BiSNET) with implemented key biological
mechanisms such as energy exchange, pheromone emission, replication, and migration. The authors
evaluate the BiSNET for oil spill detection in the coastal environment. The network is based on agents
without a centralized service to coordinate them, thus it is lightweight, scalable, and self-healing.
This means the sensor nodes autonomously adapt their states and data transmission according to
dynamic changes of conditions, retain their power efficiency, against the increase of network size
(up to 600 nodes), and collectively detect and eliminate false-positive data. Cohen and Edanb [36]
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propose a sensor fusion framework that adaptively selects the most reliable sensor set and the most
suitable algorithm. To this point, the algorithm implements measures continuously quantifying sensor
performance. The concept has been software simulated with a grid-map paradigm, logical sensors,
and performance measures to allow the random setup of sensors producing multiple data types.
The performance was measured as a difference of each particular setup and the final fused map,
which has to be known beforehand. The sensor re-configuration procedure is applied once a
low-performing sensor is detected.

The system presented by Marti et al. [37] is built with several sensors and a centralized automatic
reasoning module that integrates partial descriptions with contextual information of the system,
and combines available sensor data, to produce a fused output that best satisfies the goals following
given ontology. The system is robust to temporary sensor unavailability, variable reliability of sensor
information, and supports on-the-fly redefining its goals. The proposal has been implemented and
tested in the ground vehicle navigation.

A comprehensive review of the state-of-the-art techniques on multi-sensor fusion in the area
of BSN can be found in [38]. The paper particularly focuses on physical activity recognition and
widely discusses the data fusion pros and cons at levels of data (suitable for homogenous sensor set),
features, and decisions (allowing for the combination of data from heterogeneous sensors). Moreover,
centralized, distributed, and hybrid approaches to collective decision making are studied. Although a
waste literature review is presented, only one example of context-adaptive fusion was provided in the
work by Cook et al. [39].

Koping, Shirahamaand, and Grzegorzek [40] address the need for a general data fusion framework
for a specific smartphone-based multi-sensor body area network. Since the framework is dedicated to
a general-purpose surveillance system, it supports the heterogeneous sensor set and the data fusion is
performed on the feature vector level through code-based learning. Specific signals are first processed
at the sensors with adequate feature extracting algorithms. This approach is also used in the proposed
solution; however, we do not follow the static data fusion paradigm.

Very recently Lin et al. [41] proposed a smart sensors data fusion system targeted to support
stable, safe, and efficient medical patient-robot interaction. The medical services provided by
autonomous robots require real-time monitoring of the state of both users. To this point, various sensor,
communication, robot, and data processing technologies have been applied. The proposed hybrid body
sensor network architecture is based on multi-sensor fusion employing an interpretable neural network.
However, the data integration process seems to be fixed for the given patient. Bazo et al. [42] propose the
combination of radiofrequency-based positioning and computer vision-based human pose estimation
as a tool for behavioral analysis and activity recognition. The two subsystems have complementary
properties i.e., the radiofrequency localizer solves the occlusions that may occur in the computer vision
detector, and the computer vision subsystem increases the accuracy of positions measured with the
radiofrequency localizer. This model falls in the larger category of bimodal position and activity
sensing systems also developed by other authors for analysis of shoppers [43,44], pedestrians [45,46],
or just human pose recognition [47]. Both subsystems are independent and separately process the
RF and RGBD sensors produced data. The sensor fusion module uses the tag and skeleton and
iteratively seeks for its stable state expressed by maximizing data persistence. The priority of visual or
radiofrequency data is used solely to avoid ghosting.

He et al. [48] give a critical review of state-of-art solutions for scalable fault-tolerant information
fusion in a distributed wireless sensor network. The authors indicate the most challenging areas in
sensors application, which are different sensing modalities enriching the robustness but demanding
more than simple fusion of homogenous data and a wide range of uncertainties in sensing and
communication (misdetection, false alarms, unavailability, or delays). The paper also highlights several
interesting areas of future improvements such as mutual calibration and verification of data consistency.

Proper instrumentation and interpretation software enable detecting particular events and
classifying human behavior in several categories of risk. Extending this scope leads to a continuous
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predict-and-verify scenario, where the detection of unexpected behavior provides signs of possible
health setbacks [49]. In that previous research, the information of the currently identified pose was not
utilized to improve the sensing performance of the current state nor prepare the sensing system for
the most probable subject pose. A novel concept stemming from our previous studies is presented
in this paper. It combines behavior prediction and sensor reconfigurability schemes into a behavior
tracking system that continuously adapts the sensor contribution to the present and most probable
future activity of the supervised subject.

3. Concept of Adaptive Sensing

The concept of continuous adaptation of sensors’ contribution in a multimodal system originates
from rules of information propagation in living neural systems. Let us shortly recall two different
types of chemical synapses: ionotropic, with a quick and short synaptic response, specialized in fast
sensory or executory, excitatory or inhibitory pulse messaging, and metabotropic, with a delayed
and long-standing response, being primarily responsible for the modulation of pulse conduction.
All mammals select the dominating and auxiliary senses that they actually use to perceive the
surroundings thanks to these two complementary types of synaptic junctions.

Mimicking the above-mentioned natural rule of neural modulation in a technical multisensor
assisted living environment requires solving two issues:

• Determining competence areas and performance hierarchy in a given sensor set;
• Specifying data stream modulation rules, allowing to adapt each sensor’s contribution to a

final decision.

Initially, we assume each sensor to have an exclusive sector of competence area, where no
other sensor is applicable, and its complementary sector, where it competes with one or more other
sensors. Although the accuracy and reliability are most naturally selected as competence criteria, a
variety of other parameters are applicable in a real surveillance system: availability, intrusiveness,
energy consumption, etc. Moreover, the cooperation of two sensors in a common competence sector
yields valuable information about the coherence of their data streams, which may be useful in other
scenarios to assess the quality of measurements relying only on the auxiliary sensor (e.g., when the
principal sensor data are unavailable).

In the following sections, we develop this concept by examining the sensor set and sensor-specific
preprocessing software (Section 4) in an experimental detection of human motor activities (Section 5).
The discussion of the experiment outcome is followed by a proposal of two data stream adaptation
algorithms (Section 6) and the presentation of a use case (Section 7). The discussion and future remarks
(Section 8) conclude the paper.

4. Experimental Examination of the Sensor Set

4.1. Components of the Sensor Set

All experiments were carried out indoor in a large room (approx. 150 m2) by means of four
different motion signals measurement devices (Figure 1): a wireless (WLAN) EMG biopotentials
amplifier ME6000 (Mega Electronics) with MegaWin software (B), a wireless feet pressure measurement
system ParoLogg with Parologg software (C), ACC Revitus module with dedicated software (D), and a
digital video camera Sony HDR-FX7E (E) [50]. Table 1 illustrates a sampling frequency for each of the
used sensors:
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Figure 1. Motion signals measurement devices: (a) sensor B—a wireless (WLAN) EMG biopotentials
amplifier ME6000 (Mega Electronics) with MegaWin software; (b) sensor C—a wireless foot pressure
measurement system ParoLogg with Parologg software; (c) sensor D—ACC Revitus module with a
dedicated software; (d) sensor E—a digital video camera Sony HDR-FX7E.

Table 1. Sampling frequency (Fs) for sensors B ÷ E.

B (EMG) C (Pressure) D (Accelerometer) E (Video)

Fs (Hz) 200 100 100 25

Eight-channel electromyographic signals were surface recorded from the muscles of both lower
limbs: quadriceps—vastus lateralis (1), biceps femoris (2), tibialis anterior (3), gastrocnemius—medial
head (4). Time-series foot pressure signals were obtained from the 64 built-in pressure sensors insoles
(each foot insole has 32 independent sensors). A three-dimensional accelerometric signal was recorded
with the use of Revitus located on the human sternum, while for video measurements a digital camera
placed on the left side of the examined person was set up (720 × 576 pixels).

4.2. Preprocessing of the Measurement Data

The successive steps of processing the measurement data from each of the sensors B ÷ E were
presented and described in detail in [50]. The scheme in Figure 2 illustrates the main parts of the
proposed signals processing.

The sensors were used individually and in sets of two to four sensors. The classification of motor
activities was based on feature vectors recorded by one to four sensors simultaneously. The feature
vectors for each setup are presented in Table 2. In the case of multiple sensors, we simply combined
the feature vectors of each sensor.

Table 2. Vectors for classification of the selected motor activities.

Sensor L
Vector Length Vector Structure

B (EMG) 320 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4]
C (pressure) 240 [L1 L2 L3 P1 P2 P3]

D (accelerometer) 120 [X Y Z]
E (video) 320 [B1 B2 B3 B4 B5 B6 B7 B8]

BC 560 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4 L1 L2 L3 P1 P2 P3]
BD 440 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4 X Y Z]
BE 640 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4 B1 B2 B3 B4 B5 B6 B7 B8]
CD 360 [L1 L2 L3 P1 P2 P3 X Y Z]
CE 560 [L1 L2 L3 P1 P2 P3 B1 B2 B3 B4 B5 B6 B7 B8]
DE 440 [X Y Z B1 B2 B3 B4 B5 B6 B7 B8]

BCD 680 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4 L1 L2 L3 P1 P2 P3 X Y Z]

BCE 880 [EL1 EL2 EL3 EL4 EP1 EP2 EP3 EP4 L1 L2 L3 P1 P2 P3
B1 B2 B3 B4 B5 B6 B7 B8]
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Figure 2. Steps of processing the measurement data from sensors: (a) B; (b) C; (c) D; (d) E.
L—left, R—right.

4.3. Materials

In the experiment, 20 volunteers performed 12 selected physical activities (1a ÷ 6b, Figure 3) with
about 30 repetitions (19 ÷ 46) for each one:

• Squat (1a) and getting up (1b) from a stand position;
• Sitting on a chair (2a) and getting up from a chair (2b) to a stand position;
• Reaching (3a) and return from reaching (3b) the upper limb forward in the sagittal plane (standing);
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• Reaching (4a) and return from reaching (4b) the upper limb upwards in the sagittal plane
(standing);

• Bending (5a) and straightening the trunk (5b) from bend forward from a stand pose in the
sagittal plane;

• A single step with the right (6a) and the left (6b) lower limb (stance phase).
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4.4. Feature Classification Methods

Supervised classification of the selected motor activities was performed with the use of k-NN
(k-Nearest Neighbors) method and Manhattan metric. The sizes of learning and test sets were in the
ratio of 1:3. With the final results presentation in mind, several variables were introduced [50]:
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• Correctness of recognition for all volunteers—Rs a;
• Calculation error of Rs_a − Us_a—a measure of the results dispersion comes from inter-subject

differences (weighted standard deviation due to different numbers of activity repetitions for
each volunteer);

• Percentage of correct recognitions for all activities and all volunteers—Rs_ALL;
• Calculation error of Rs_ALL − Us_ALL;
• Percent recognition for all activities—Rs_V;
• Calculation error of Rs_V − Us_V—a measure of results value dispersion arising from differences

between different activities (weighted standard deviation due to different number of repetitions
of each activity for each volunteer);

• Calculation error of Rs_V − Us_ALL—a measure of the dispersion of the results due to recognitions
of the individual activities.

5. Sensor Set Performance Results

Based on the data presented in Tables 3 and 4 and Figures 4 and 5 we concluded that the
measurements carried out simultaneously with two, three, or four sensors lead to a significant
improvement of recognition reliability.

Table 3. Table of recognition Rs_a (in %) of motion activities 1a ÷ 6b in the test set for all volunteers
together for sensors B ÷ E and their sets. Calculation errors Us_a are placed in orange areas.

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b ALL

B 96.9 100.0 99.5 98.5 99.0 99.3 99.1 98.6 97.9 98.2 96.0 97.6 98.4
3.9 0.0 1.5 3.7 3.4 1.8 3.2 3.1 3.7 3.5 12.7 7.5 1.8

C 90.8 91.8 95.7 96.7 94.9 92.4 95.3 93.6 87.0 88.2 94.9 97.1 93.1
10.0 10.8 12.4 15.5 6.9 6.4 10.2 7.6 15.0 14.6 14.1 8.2 5.7

D 95.2 97.2 95.5 94.2 96.6 95.1 98.4 97.6 97.9 99.3 96.5 96.0 96.7
17.2 11.2 15.8 15.4 6.6 8.8 3.2 4.1 2.8 1.9 12.3 12.1 5.2

E 99.7 99.5 95.5 95.5 99.3 97.6 96.0 79.8 99.3 99.3 91.7 92.3 95.5
1.1 1.6 17.7 18.8 1.8 4.4 7.9 25.0 1.7 1.7 9.1 8.4 4.4

BC 99.2 100.0 99.2 99.5 99.3 99.0 98.4 98.1 97.3 97.5 96.0 97.9 98.4
1.9 0.0 1.9 3.1 2.3 2.0 5.2 5.2 4.5 5.9 12.3 5.7 2.3

BD 98.2 100.0 99.5 99.2 99.5 99.8 99.3 99.5 99.5 100.0 96.3 97.9 99.1
3.4 0.0 1.5 2.4 2.2 1.1 2.2 1.4 1.4 0.0 12.8 7.0 1.6

BE 99.0 100.0 99.7 100.0 99.5 99.8 100.0 96.5 99.5 99.8 96.3 97.1 99.0
2.1 0.0 1.1 0.0 1.5 1.1 0.0 11.4 1.4 0.9 11.7 10.1 2.1

CD 96.4 99.2 97.5 98.2 99.3 98.3 97.9 97.9 98.6 99.3 95.2 96.8 97.9
8.6 2.7 8.3 6.3 1.8 4.8 5.4 5.5 2.5 2.0 14.0 8.5 3.1

CE 99.5 99.7 99.7 100.0 99.5 97.3 98.8 94.1 98.9 99.5 95.2 96.5 98.3
1.6 1.1 1.1 0.0 1.5 4.9 2.6 14.9 2.8 1.8 12.5 10.5 2.5

DE 99.7 100.0 99.7 100.0 99.8 98.0 99.1 96.2 99.5 99.8 97.6 97.1 98.9
1.1 0.0 1.1 0.0 1.1 4.0 2.5 11.4 1.4 0.8 5.8 6.4 1.2

BCD 99.0 100.0 99.7 99.7 99.5 99.5 98.6 99.8 99.3 99.5 96.5 97.9 99.1
2.6 0.0 1.2 1.5 1.5 1.5 4.2 1.0 1.7 1.2 12.0 5.7 1.5

BCE 98.7 100.0 100.0 99.7 99.8 99.3 99.5 97.2 98.9 99.5 96.5 97.9 98.9
2.8 0.0 0.0 1.1 1.1 1.8 1.2 9.2 2.5 1.8 10.6 5.7 1.6

CDE 99.7 100.0 100.0 100.0 99.5 98.0 99.3 96.0 99.5 99.5 95.7 97.3 98.7
1.1 0.0 0.0 0.0 1.5 4.6 1.6 14.3 1.3 1.8 11.1 7.3 2.1

BDE 99.2 100.0 100.0 99.7 100.0 99.8 100.0 98.4 100.0 100.0 96.5 97.9 99.3
1.8 0.0 0.0 1.1 0.0 1.1 0.0 7.1 0.0 0.0 11.7 7.0 1.4

BCDE 99.2 100.0 100.0 99.7 99.5 99.3 99.8 98.1 99.3 99.5 96.5 97.9 99.1
1.8 0.0 0.0 1.1 1.5 1.8 1.0 7.1 1.7 1.8 10.6 6.1 1.6
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Table 4. Table of recognition Rs_V (in %) of all motor activities for volunteers V1 ÷ V20 in test set for sensors B ÷ E and their sets. Calculation errors Us_V are placed in
orange areas.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 . . . ALL

B 99.1 94.8 98.4 98.3 98.7 99.1 99.6 97.7 98.3 98.0 98.4 99.6 92.6 100.0 99.6 99.1 97.3 99.6 99.6 100.0 ... 98.4
2.0 7.8 2.4 4.6 3.1 1.9 1.5 4.1 3.3 4.5 3.7 1.4 15.8 0.0 1.4 2.9 4.3 1.1 1.1 0.0 ... 1.1

C 98.2 94.8 98.0 97.9 92.3 97.4 97.3 94.9 95.7 91.2 94.4 88.0 85.3 97.1 87.3 88.9 75.2 94.7 93.5 98.4 ... 93.1
2.5 5.6 3.3 2.2 11.6 5.9 5.0 7.8 4.1 12.5 7.2 17.2 15.9 3.3 13.4 13.6 22.7 13.1 11.8 4.4 ... 3.3

D 96.9 93.1 99.2 96.9 98.3 98.7 100.0 76.2 93.1 97.6 99.2 99.2 91.1 98.2 100.0 98.3 94.6 100.0 100.0 100.0 ... 96.7
3.9 11.1 1.9 6.5 2.5 3.2 0.0 33.8 11.3 4.1 2.7 1.9 17.2 2.9 0.0 2.5 9.1 0.0 0.0 0.0 ... 1.5

E 97.4 95.3 95.9 88.8 97.9 99.1 99.6 97.7 94.4 93.6 99.2 81.0 96.5 94.9 99.2 98.3 92.3 97.3 97.7 94.8 ... 95.5
6.4 9.7 7.4 23.4 3.6 1.9 2.0 3.1 10.5 14.7 1.9 31.8 5.3 16.2 1.9 3.9 16.1 4.7 4.5 11.2 ... 5.8

BC 99.6 96.6 99.2 99.7 99.6 99.1 99.6 98.6 98.7 96.0 98.8 99.2 91.1 100.0 99.2 100.0 94.1 100.0 100.0 99.6 ... 98.4
1.6 5.9 1.9 1.1 1.5 1.9 1.5 3.3 3.1 8.8 3.6 2.0 15.1 0.0 1.9 0.0 6.8 0.0 0.0 1.4 ... 1.1

BD 99.1 95.7 99.2 99.0 100.0 100.0 100.0 98.6 99.1 99.2 99.6 99.6 93.8 100.0 100.0 100.0 99.1 100.0 100.0 100.0 ... 99.1
1.7 8.4 1.9 2.9 0.0 0.0 0.0 2.4 2.9 2.6 1.4 1.4 15.4 0.0 0.0 0.0 3.0 0.0 0.0 0.0 ... 1.1

BE 99.1 96.1 99.6 99.7 100.0 99.6 100.0 99.1 99.6 95.6 100.0 100.0 91.9 100.0 100.0 100.0 99.5 99.6 100.0 100.0 ... 99.0
2.0 8.2 1.4 1.1 0.0 1.4 0.0 2.1 1.5 14.4 0.0 0.0 16.4 0.0 0.0 0.0 1.5 1.1 0.0 0.0 ... 1.4

CD 99.6 97.0 99.6 99.3 98.7 97.4 99.6 92.1 99.1 97.2 100.0 97.1 93.0 100.0 100.0 100.0 88.3 99.6 99.2 100.0 ... 97.9
1.6 6.9 1.4 1.7 2.3 6.3 1.5 12.5 1.9 6.8 0.0 5.8 15.8 0.0 0.0 0.0 13.3 1.1 1.9 0.0 ... 1.2

CE 99.1 97.0 99.6 99.7 100.0 100.0 100.0 99.5 98.7 94.0 98.8 97.1 94.2 98.5 99.6 98.7 90.5 99.6 100.0 100.0 ... 98.3
2.0 6.0 1.4 1.0 0.0 0.0 0.0 1.6 3.1 18.3 3.0 6.2 11.4 4.2 1.4 3.1 16.6 1.1 0.0 0.0 ... 2.0

DE 99.1 96.1 99.2 98.6 99.1 100.0 100.0 99.1 98.7 95.6 100.0 99.2 98.8 98.5 99.6 99.6 99.5 100.0 100.0 97.2 ... 98.9
1.8 8.4 1.9 4.1 2.1 0.0 0.0 2.3 2.3 14.4 0.0 2.9 2.1 4.1 1.4 1.5 1.4 0.0 0.0 6.5 ... 1.3

BCD 99.6 97.4 99.6 99.7 100.0 99.6 100.0 99.1 98.7 98.0 100.0 100.0 94.6 100.0 100.0 100.0 95.9 100.0 100.0 100.0 ... 99.1
1.6 6.0 1.4 1.1 0.0 1.5 0.0 2.1 3.1 5.3 0.0 0.0 14.2 0.0 0.0 0.0 4.8 0.0 0.0 0.0 ... 1.0

BCE 99.6 96.6 99.6 99.3 99.6 100.0 99.6 99.5 98.7 96.0 100.0 99.6 94.6 99.6 100.0 100.0 96.4 100.0 100.0 100.0 ... 98.9
1.5 8.2 1.4 1.5 1.5 0.0 1.5 1.6 3.1 11.8 0.0 1.4 11.4 1.4 0.0 0.0 5.7 0.0 0.0 0.0 ... 1.1

CDE 100.0 97.0 99.6 99.7 100.0 100.0 100.0 99.5 99.6 94.0 100.0 97.9 94.6 100.0 100.0 99.6 93.7 99.6 100.0 100.0 ... 98.7
0.0 7.4 1.4 1.0 0.0 0.0 0.0 1.6 1.4 18.3 0.0 5.8 11.4 0.0 0.0 1.5 9.8 1.1 0.0 0.0 ... 1.6

BDE 100.0 97.0 99.6 99.7 100.0 100.0 100.0 99.5 99.6 97.2 100.0 100.0 94.6 100.0 100.0 100.0 99.5 100.0 100.0 100.0 ... 99.3
0.0 8.3 1.4 1.3 0.0 0.0 0.0 1.6 1.5 9.2 0.0 0.0 14.3 0.0 0.0 0.0 1.5 0.0 0.0 0.0 ... 1.1

BCDE 100.0 96.1 99.6 99.7 100.0 100.0 100.0 99.5 99.1 96.8 100.0 99.6 94.6 100.0 100.0 100.0 96.8 100.0 100.0 100.0 ... 99.1
0.0 9.3 1.4 1.3 0.0 0.0 0.0 1.6 1.9 9.1 0.0 1.4 11.4 0.0 0.0 0.0 3.5 0.0 0.0 0.0 ... 1.0



Sensors 2020, 20, 5278 12 of 28
Sensors 2020, 20, x FOR PEER REVIEW 12 of 29 

 

 
Figure 4. Chart of recognition Rs_a (in %) for activities 1a ÷ 6b (numbers 1 ÷ 12) and for sensors B ÷ E 
and their sets (numbers 1 ÷ 15). 

 

Figure 4. Chart of recognition Rs_a (in %) for activities 1a ÷ 6b (numbers 1 ÷ 12) and for sensors B ÷ E
and their sets (numbers 1 ÷ 15).Sensors 2020, 20, x FOR PEER REVIEW 14 of 29 

 

 
Figure 5. Chart of recognition Rs_V (in %) for volunteers V1 ÷ V20 (numbers 1 ÷ 20) and for sensors B 
÷ E and their sets (numbers 1 ÷ 15). 

The experiment results prove that the overall activity recognition performance (right columns 
of Tables 3 and 4) can be improved by adapting the sensor set and the features used to the particular 
action and to the particular subject. This statement is a background of the proposed adaptation 
algorithms presented in Section 6. 

6. Reliability-Driven Sensor Data Fusion 

6.1. General Assumptions and System Design 

The general architecture of a multisensory environment for assisted living consists of sensors, 
dedicated feature extraction methods, and modality selectors. The proposed innovation replaces the 
selector by a modulator using weight coefficients Wk (Figure 6) to prefer the most pertinent features 
while discriminating the others. As the sensors use specific signals (muscular, pressure, acceleration, 
and video), one of the consequences of replacement of the feature selector by a modulator is the 
necessity of uniform representation of all features. To this point, the feature calculation step uniforms 
the information update rate and normalizes the feature values. The output of each sensor is given as 
a probability-ordered list of activities {Ai, pi} (see Figures 6 and 7). 

Figure 5. Chart of recognition Rs_V (in %) for volunteers V1 ÷ V20 (numbers 1 ÷ 20) and for sensors B
÷ E and their sets (numbers 1 ÷ 15).



Sensors 2020, 20, 5278 13 of 28

Matrices of the recognition errors (in %) of the individual motor activities 1a ÷ 6b in the test set
for all people together for sets of sensors B ÷ E (BC, BD, BE, CD, CE, DE, BCD, BCE, CDE, BDE, BCDE)
are shown in Tables A1–A11.

The experiment results prove that the overall activity recognition performance (right columns of
Tables 3 and 4) can be improved by adapting the sensor set and the features used to the particular action
and to the particular subject. This statement is a background of the proposed adaptation algorithms
presented in Section 6.

6. Reliability-Driven Sensor Data Fusion

6.1. General Assumptions and System Design

The general architecture of a multisensory environment for assisted living consists of sensors,
dedicated feature extraction methods, and modality selectors. The proposed innovation replaces the
selector by a modulator using weight coefficients Wk (Figure 6) to prefer the most pertinent features
while discriminating the others. As the sensors use specific signals (muscular, pressure, acceleration,
and video), one of the consequences of replacement of the feature selector by a modulator is the
necessity of uniform representation of all features. To this point, the feature calculation step uniforms
the information update rate and normalizes the feature values. The output of each sensor is given as a
probability-ordered list of activities {Ai, pi} (see Figures 6 and 7).Sensors 2020, 20, x FOR PEER REVIEW 15 of 29 
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detected behavior.

Three coefficients are proposed to modulate the influence of each sensor on the final decision
about the detected activity. These are listed and shortly explained below.

Hk is an activity-independent coefficient characterizing each sensor cost including hardware,
installation, and maintenance as well as human factors like acceptance of each particular sensor set
(cameras at home, accelerometer belt or bands, electrodes, etc.); all these factors we consider to be
constant in time thus these values need to be evaluated once per subject. In order to efficiently adapt
the sensors’ choice, extreme values of Hs should be avoided.

Rk(A) is an activity-dependent factor of reliability; as it was demonstrated in Section 5, sensors
show different performance in the detection of basic daily activities of the human; accordingly, in the
system paradigm, Rs is the primary factor adapting the contribution from sensors to the current activity
of the monitored subject.
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L(n) is a penalty factor that discriminates the influence from sensors depending on their position
n on the reliability ranking in determining the activity A by sensor k; the actual penalty factor is
calculated based on a coefficient p: low values of p equalizes the ranking list what makes the system
mostly working with multiple sensors and avoiding the worst, while a high value of p prefers the
winner to be a unique working sensor:

L(n) = n−p n ∈ {1 . . . 4}, p ∈ (0.1 . . . 10) (1)

The contribution of each sensor k may be thus determined as:

Ck = Hk·Rk(A)·L
(
nk, A

)
(2)

and normalized over the whole set of sensor weighting coefficients:

Wk =
Ck∑
n Cn

(3)

Accordingly, with the currently detected subject’s action, the system automatically adapts the feature
set (Table 2) to optimally detect the present action. The optimization criteria may be freely selected from
variables presented in Section 4.4 and used jointly with other attributes (including non-technical such as
acceptance, usage cost, etc.). To keep the presentation simple, we use the correctness of recognition
(given in Table 3). In a real system, besides the subject action, the selection of sensors also takes into
account constant factors like costs and availability or acceptance of a sensor by individual subjects.

Instead of applying recognition correctness generalized for all volunteers, an individual table,
equivalent to Table 3 may be built for each supervised subject. The personalization of the multisensor
environment improves the individual performance (compare columns in Table 4) but requires a set
of exercises performed under the supervision of a human assistant who annotates the activities and
checks the recognition correctness (or other optimization criteria).

Based on selected optimization criterion (in our example: generalized correctness of recognition,
Table 3) a hierarchy of feature vectors is built for each detected activity. Taking the action “bending”
(5a) as an example, we have sensor set hierarchy:
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(highest) BDE;
(BD, BE, DE, CDE);
(BCD, BCDE);
(CE, BCE);
CD;

(lowest) BC.

It is noteworthy that BD yields better results than BCD, therefore the use of more sensors does not
lead to better results, and adding a sensor (C in this case) may degrade the recognition correctness.

The modulation of the sensor’s contribution presented above is confirmative. Firstly, the detection
is roughly made with a possibly not optimal sensor set and then confirmed with an adapted set.
The modification closes the information loop and, like all kinds of feedback, raises the stability issue if
the action detected with adapted features does not match those initially detected. The other drawback
of confirmative detection is related to possible erroneous first detection leading to an even less optimal
sensor set and confirming the erroneous decision.

6.2. Stability Condition for Modulated Sensor Set

The stability issue in a sensor set with modulated contribution can be solved by limitation of the
weight modulation range. Let f be a function A = f (Sk;Wk) assigning a unique subject’s action A to
specific sensor outputs Sk modulated by Wk. This means all probability values pi of given activities Ai
from sensor k are multiplied by Wk:

A = f (Sk; Wk) = max
i

∑
k

({
Ai; pi,k·Wk

})
(4)

Let m be a function Wk = m(A) modulating the contributions from sensors Sk to maximize the
reliability of the recognition of A. Therefore, the modulator is stable if:

∀ f : f (Sk, Wk) = f (Sk, m(A)) (5)

which means the modulation does not influence the current recognition result.
Since we cannot expect the recognition result to be a linear function of the modulation depth,

we propose an iterative try and fail algorithm finding the modulation limits. To find the value of Wk,
between the original Wk1 and the desired target Wk2 the algorithm repeatedly bisects an interval and
then selects a subinterval in which both ends yield different actions for further processing.

Wk = Wk1 when f (Sk, Wk) = f (Sk, Wk1) (6)

Wk = Wk2 when f (Sk, Wk) = f (Sk, Wk2) (7)

All necessary steps of the modulation algorithm are performed within the subject state sampling
interval. New data gathered from the sensors are processed with optimized sensors’ contribution and
confirm the detected subject’s action.

The stability issue can be also avoided by applying a sensor set consistency rule. This rule uses
the past sensor set as a reference and requires the new set to be as similar as possible. Continuing the
example given in Section 6.1 if “bending” has been detected with BE sensors and a “straightening the
trunk” (5b) occurs thereafter, the sensor set hierarchy is the following:

(BD, BDE);
(BE, DE);
(CE, BCD, BCE, CDE, BCDE);
CD;
BC.
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Maintaining the BE configuration is preferred over changing to DE, despite their equal performance,
for the stability reason.

6.3. Predictive Modulation of Sensors’ Contribution

One may question the purpose of optimization if it only confirms the result of recognition already
made. Fortunately, in most assisted living environments, the prevention of dangerous events is
stressed as a primary goal, their architecture usually includes an artificial intelligence-based system
for learning of the subject’s habits and detecting unusual behavior as a potential sign of danger.
Such systems gather the information of individual habits in a form of database learned and updated
from real past behavior records. Such a database provides activity statistics, but, more interestingly,
for each given activity the most probable next activity can be determined. We propose to use the
information from the individual’s habits database to predict the subject’s upcoming action and adjust
the sensor’s contribution accordingly (Figure 7). The modulation is still made accordingly to the
stability requirements (see Section 6.2), but the sensor’s contribution now adapts to the most probable
next subject’s action.

Introducing the habits database in the feedback path has two benefits:

• Prediction of upcoming action takes into account multimodal time series instead of single points,
what stabilizes the prediction in case of singular recognition error;

• Focusing on optimal recognition for current action makes the system conservative (i.e., expecting
a stable status), whereas optimizing for future action makes it progressive (i.e., awaiting changes
of the status).

7. Case Studies

7.1. A Compound Action

The proposed sensor’s contribution modulation technique was analyzed in a previously proposed
multisensor environment for assisted living [33]. We also used previously recorded data from
20 volunteers (8 women and 12 men, aged between 22 and 61 years), acting accordingly to predefined
realistic scenarios. Table 5 presents an example compound action of searching a book on a wall-mounted
shell, consisting of elementary poses (defined in Section 4): squatting (1a, 1b), reaching forward (3a, 3b),
reaching upward (4a, 4b), and bending (5a, 5b).

Table 5. From sensors (in %) to the compound action recognition, “searching on the shelf”.

Time (s) Pose B (EMG) C (Pressure) D (Accelerometer) E (Video)

0 4a 60.0 7.5 7.5 25.0
1.4 4b 42.5 7.5 35.0 17.5
1.9 3a 42.5 5.0 42.5 10.0
3.2 3b 42.5 5.0 42.5 10.0
3.7 5a 17.5 5.0 60.0 17.5
4.9 5b 17.5 5.0 60.0 17.5
5.1 1a 42.5 5.0 42.5 10.0
6.7 1b 60.0 5.0 25.0 10.0

Multiple repetitions of patterns in the habits learning phase and opposed direction of elementary
poses labeled with a and b facilitate correct prediction of subsequent poses and respective adaptation
of sensors’ contribution. In the studied case, no abrupt corrections in the sensor set were necessary,
consequently, changes of weighting coefficients were linear and not restricted by stability limits.
The smoothing influence of prediction on sensors’ modulation is also revealed in Table 5. Nevertheless,
studies of correct work of the system for unexpected activities and possible errors in stabilizing the
algorithm need a recording of human performance according to purposely designed misbehavior.
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7.2. Change of Environment

In this scenario, we assume that a walking subject (alternating activities 6a and 6b) goes outdoor
and sensor E (the video system) no longer provides reliable data. Since the sensor set hierarchies
(Table 3) are the following:

• For 6a:

DE;
(BCE, BCD, BDE, BCDE);
(BD, BE);
BC;
CDE;
(CD, CE).

• For 6b:

(BC, BD, BCD, BCE, BDE, BCDE);
CDE; (BE, DE);
CD;
CE.

The most reliable sets common for both activities are BCE, BCD, and BDE, and after the elimination
of sensor E data, the recognition relying on sensor D (accelerometer) data has equivalent correctness.
However, if the subject changes the activity, the equivalence of data from E and D is no longer
guaranteed (see 1a in Table 3 as an example). For this reason, sensor B starts to be taken into
consideration and the system prefers using BD.

In the case of an opposite event (i.e., the subject enters indoor), switching back to video-based
sensors is not justified by the possible improvement of recognition correctness, but the video sensor
will be more comfortable for the subject than the first choice accelerometer due to having one sensor
less to wear. In case the subject decides to take off the accelerometer belt, the persistent consistency of
information from B and E will cause a fast return to sensors BE instead of DE.

7.3. Cooperation of Sensors

The cases presented in 7.1 and 7.2 assume the presence or absence of a sensor and do not turn
to account the full potential offered by modulation of contributions from multiple sensors to the
activity recognition. Here we assume that: (1) all sensors are available but attributed by a quantitative
variable of cost and (2) the subject performs a compound action. The modulation is then expected to
continuously calculate and maximize the correctness-to-cost ratio. To this point, data on recognition
correctness given in Table 3 are considered to be discrete samples in a continuous space of possible
actions. The system is then expected to detect actual behavior as composed of simultaneously occurring
elementary poses (see [34]) and pose contribution are taken into account to select the best sensor set.
Adopting the data from the experiment (Table 3), we assume the subject is simultaneously getting up
from a chair (2b) to a stand position, and reaching the upper limb forward in the sagittal plane (3a).
In the first part of the action, 2b dominates, in the middle part the contribution, 3a takes over and
dominates in the terminal part (e.g., reaching a book on the shelf). To show the modulation process we
assume that we only have BCD sensors (no video sensor) and only two of them available at a time.
Accordingly to the data in Table 3, we have hierarchies:

• For 2b:

BC;
BD;



Sensors 2020, 20, 5278 18 of 28

CD...

• For 3a:

BD;
(BC, CD)...

Since the CD sensor pair is the least favorable, we are going to use sensor B (EMG signal) and,
in the course of action, modulate the contribution from C (pressure) and D (acceleration). Sensor C is
then successively replaced by D and BC becomes BD as the action initially resembling 2b is more and
more similar to 3a.

7.4. Unexpected Change of Action

The last presented case assumes that the subject stands up from the chair (2b), reaches forward (3a)
and, instead of returning from reaching (3b) which was the most probable action, bends (5a) searching
for the book on a lower shelf, then instead of return from bending (5b) he or she directly sits back to
the chair (2a). Therefore:

• In action 2b, the sensor priority set is:

BC;
BD;
CD...

• In action 3a, the sensor priority set is:

BD;
(BC, CD)...

• In foreseen, but not actually performed action 3b, the sensor priority set is:

(BE, BD, BDE);
BCD;
(BCE, BCDE);
BC...

• In action 5a performed instead, the sensor priority set is:

BDE;
(BD, BE, DE, CDE);
(BCE, BCDE)...

• In foreseen, but not actually performed action 5b, the sensor priority set is:

(BD, BDE);
(BE, DE);
(CE, BCD, BCE, CDE, BCDE)...

• In action 2a the sensor priority set is:

(BCE, CDE, BDE, BCDE);
(BE, CE, DE, BCD);
BD;
BC;
CD...
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The process of sensor selection may be in this case presented in a tree as in Figure 8.
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8. Discussion

The results showed that it is possible to recognize the selected motor activities of everyday life
with high reliability by using a different kind of individual sensor as well as their 2-, 3-, or 4-elements
sets. Although some activities are recognized with less reliability with the use of some sensors, in such
case there is a possibility to successfully use the data from other sensors (see discussion and conclusions
in [50]) or sensors sets for which the outcome is more reliable. As can be observed from Table 3 and
Figure 4 the recognition with the use of sensors sets very often has higher values (94.1–100%) than with
the use of the individual sensors, for any type of activity. The same observation can be also taken from
Table 4a, Table 4b, and Figure 5, which present very often better results from sensors sets (88.3–100%)
that from the individual sensors, for any volunteer. There are sometimes opposite cases, but only
when the individual sensor (with lower recognition for some activity or some volunteer) is applied
to a sensor set. In such a situation, this sensor decreases the recognition for the sensor set and this
recognition is lower than for the other individual sensor (with higher recognition).

To sum up, the individual sensors have complementary scopes of competences and their mutual
exchange depending on the current situation benefits better results than the usage of a rigidly defined
sensor set.

Studying sensors’ performance in recognition of six elementary daily living activities, we confirmed
that particular sensors show their optimal recognition accuracy at different movements (Table 3).
Consequently, due to the complementary competencies of sensors, combining information from
multiple different sensors is expected to give more reliable recognition. Unfortunately, in compound
actions, true recognition falls into the border area or actually moves from the area of competence of
one sensor to another. This remark was a foundation of the presented concept, design. and prototype
of an assisted living system with an adaptive sensor contribution.
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Based on the comparison of the accuracy of activity recognition by four different assisted living
sensors, we built activity-specific sensor priority lists and proposed a multimodal surveillance system
with adaptive sensor’s contribution. The setup we used as a model of a sensorized environment in
which multiple sensors of possibly different paradigms and performance cooperate in the surveillance
of a human. We assumed that sensors not only differ in reliability depending on the subject’s action
but also give consistent or contradictory results. We proved this assumption in experiments showing
that adding sensors may decrease the correctness of recognition (Table 3).

Since the sensor data differ in form and refresh rate, sensor-specific data processing was applied
first to provide data in a uniform format before fusion. The sensor-independent format was a list of
activities ordered by descending detection probability. Activity data matching and fusion are made on
the list level and also allows for continuous adaptation of sensors’ contribution to the final result of
the network. This proposal has been inspired by a neuromodulatory mechanism, which, although far
more complicated, also leads to modulation of the information flow from the senses to the brain.

Biomimetic modulation of a sensor’s contribution in a multisensory assisted living environment
puts forward their advantages according to the subject’s behavior. Being aware of limitations present
in any human behavior model, we took selected daily living activities as samples in a continuous space
of possible behaviors and tried to represent the actual behavior with a measure of similarity to these
primitives [34]. In this paper, we showed that sensors, due to the specificity of their work principle,
are somewhat ‘specialized’ in the recognition of particular poses or activities. Consequently, if a
compound activity is represented by a set of elementary poses of varying contributions (see Section 7.3),
the surveillance system, besides other limitations (see Section 7.2), should optimize the flow of sensor
data seamlessly.

Regarding the related works, the main novelty in this paper is the ongoing adaptation of the
sensor set dependent on the subject’s behavior. Since the range of activities is virtually unlimited and
the prediction of most probable future action is uncertain, given optimization rules had to be proposed
and were implemented as:

• Sensor cost—to balance the sensor usage;
• Penalty factor—to balance between multimodal and single mode-switching system;
• Stability check—to maintain decision on detected activity while modifying sensors’ contribution.

Since human activity is a dynamic process, the contribution of the sensors needs to be considered as
time-varying. To this point in the design of the multimodal assisted living system with adaptive sensor’s
contribution, we proposed to consider conservative and predictive adaptation. The conservative
adaptation assumes the sensor contribution is adapted after the activity recognition and, in case other
results were issued by the adapted system, raises the stability issue, which can be solved in several
ways (e.g., see 6.2). The predictive adaptation requires the use of a subject’s habits database, which has
to be created and trained, but it already contains a personalized factor. Moreover, the prediction of
behavior is never 100% accurate, something that needs to be taken into consideration in the design of
adaptation rules.

We used four different sensors with quite good performance in the given experimental setup.
However, one should consider more difficult or unstable conditions (e.g., lighting) and simplified
sensors (e.g., when the energy consumption will be taken into consideration). The maximum error the
system will make in activity recognition is expected as equal to the error of the second sensor.

Conservative adaptation in the two-sensor mode, (p > 1) may give erroneous recognition which
(according to Table 3) may be inaccurate by 5.9% of cases (activity 4b, sensors C and E). The stability
check in conservative adaptation prevents the system from changing the recognition decision based on
an inappropriate change of sensors. The proposed new sensor set is applied in a subsequent sensing
step and if the previous activity is maintained and the new settings are appropriate, a more accurate
recognition will be issued.
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In predictive adaptation, the unexpected behavior may affect the sensor set adaptation making
the new proposed set inappropriate. In this case, again one should consider the case that a less
accurate sensor will be proposed, and the overall reliability will decrease. Unlike the conservative case,
the subject’s history (represented in Figure 7 as the “habits” database) helps to avoid the adaptation
mismatch. However, it is worth noting that we used only a single step prediction (i.e., next most
probable activity has been taken as a background for sensors adaptation), and future studies are
necessary to potentially extend the prediction range to a tree of n future activities.

Our studies presented here were performed with the data recorded from specific sensors (including
custom sensor-specific software, Figure 2) in the given test environment described by Smoleń [50].
With different sensors, particular findings (such as Table 3) may differ significantly, but a general rule
of building sensor set hierarchies is universal and worth follow-up by other scientists developing
multimodal human activity sensing systems. Therefore, we found it reasonable to present the
system operation in four case studies than to give a quantitative evaluation of setup-specific activity
detection efficiency.

The building of such a prototype system combining wearable and infrastructural sensors is the
aim of our next project. Also, the question of initial personalization of recognition and data flow rules
needs to be considered again in the context of a working prototype.

9. Conclusions

Based on the analysis of the performance of four different assisted living sensors in six elementary
reversible activity types of the human, we proposed the analysis rules with adaptive sensor contribution.
We applied them to the design of an auto-optimizing multimodal surveillance system and studied its
behavior in true-to-life assisted-living scenarios, including compound activities. We pointed out the
possible advantages of complementary competences of the sensors and confirmed benefits resulting
from their adaptive contribution.

The building of such a prototype system combining wearable and infrastructural sensors is the
aim of our next project. Also, the question of initial personalization of recognition and data flow rules
need to be considered again in the context of a working prototype.
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Appendix A

Matrices of the recognition errors (in %) of the individual motor activities 1a ÷ 6b in the test set
for all people together for sets of sensors B ÷ E (BC, BD, BE, CD, CE, DE, BCD, BCE, CDE, BDE, BCDE)
are shown in Tables A1–A11. The first column 1a ÷ 6b describes the types of activities recognized
by the classifier, the first line is the description of the performed activities. The percentage of correct
recognition for the individual activities is therefore placed on a diagonal matrix.
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Table A1. Table of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BC.

BC
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.5 0.0 99.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.3 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.0 0.0 0.0 0.2 98.4 1.9 2.1 0.5 0.3 0.0
4b 0.0 0.0 0.3 0.0 0.0 0.2 1.6 98.1 0.0 2.1 0.0 0.3
5a 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 97.3 0.0 0.0 0.0
5b 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.7 97.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.0 1.9
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 97.9

Table A2. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BD.

BD
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 1.0 0.0 99.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 99.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.2 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.0 0.0 0.2 0.0 99.3 0.2 0.2 0.0 0.0 0.0
4b 0.0 0.0 0.0 0.0 0.2 0.2 0.5 99.5 0.0 0.0 0.3 0.0
5a 0.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.3 2.1
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 97.9

Table A3. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BE.

BE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.5 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 100.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.0 0.0 0.0 0.0 0.2 0.2 100.0 3.3 0.5 0.0 0.0 0.0
4b 0.5 0.0 0.0 0.0 0.0 0.0 0.0 96.5 0.0 0.2 0.0 0.0
5a 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 99.8 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.3 2.9
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 97.1
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Table A4. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor CD.

CD
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 96.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
1b 0.5 99.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
2a 0.3 0.3 97.5 1.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
2b 0.5 0.0 2.0 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 98.3 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.3 0.0 0.7 0.0 97.9 2.1 0.5 0.0 0.0 0.0
4b 0.5 0.3 0.3 0.0 0.0 1.7 2.1 97.9 0.0 0.5 0.0 0.3
5a 1.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 98.6 0.0 0.0 0.0
5b 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.2 99.3 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.2 2.9
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 96.8

Table A5. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor CE.

CE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
1b 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.0 0.0 99.7 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 97.3 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.5 0.0 0.0 0.0 0.5 0.5 98.8 5.9 0.5 0.0 0.0 0.0
4b 0.0 0.3 0.3 0.0 0.0 2.0 1.2 94.1 0.0 0.5 0.0 0.0
5a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 99.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.2 3.5
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 96.5

Table A6. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor DE.

DE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
2a 0.0 0.0 99.7 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 98.0 0.0 0.2 0.0 0.0 0.0 0.0
4a 0.0 0.0 0.0 0.0 0.0 0.0 99.1 3.5 0.2 0.0 0.0 0.0
4b 0.0 0.0 0.0 0.0 0.2 1.7 0.2 96.2 0.0 0.0 0.0 0.0
5a 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0
5b 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.6 2.9
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 97.1
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Table A7. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BCD.

BCD
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.3 0.0 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.0 0.0 0.5 0.0 98.6 0.2 0.7 0.0 0.0 0.0
4b 0.0 0.0 0.3 0.0 0.0 0.5 1.4 99.8 0.0 0.5 0.3 0.3
5a 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.3 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.5 1.9
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 97.9

Table A8. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BCE.

BCE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.3 0.0 100.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.3 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.5 0.0 0.0 0.3 0.0 0.2 99.5 2.8 0.7 0.0 0.0 0.0
4b 0.3 0.0 0.0 0.0 0.0 0.5 0.5 97.2 0.2 0.5 0.0 0.0
5a 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 99.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.5 2.1
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 97.9

Table A9. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor CDE.

CDE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

ac
ti

vi
ty

1a 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.3 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 98.0 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.0 0.0 0.0 0.0 0.5 0.2 99.3 4.0 0.2 0.0 0.0 0.0
4b 0.0 0.0 0.0 0.0 0.0 1.7 0.7 96.0 0.0 0.5 0.0 0.0
5a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 99.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.7 2.7
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 97.3
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Table A10. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BDE.

BDE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.3 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2b 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.0 0.3 0.0 0.0 100.0 1.6 0.0 0.0 0.0 0.0
4b 0.3 0.0 0.0 0.0 0.0 0.2 0.0 98.4 0.0 0.0 0.0 0.0
5a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.5 2.1
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 97.9

Table A11. Matrix of recognition errors (in %) of 12 motor activities 1a ÷ 6b in test set for all volunteers
together for sensor BCDE.

BCDE
Performed Activity

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

R
ec

og
ni

ze
d

A
ct

iv
it

y

1a 99.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1b 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2a 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
2b 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3a 0.0 0.0 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3b 0.0 0.0 0.0 0.0 0.0 99.3 0.0 0.0 0.0 0.0 0.0 0.0
4a 0.3 0.0 0.0 0.3 0.5 0.2 99.8 1.9 0.5 0.0 0.0 0.0
4b 0.3 0.0 0.0 0.0 0.0 0.5 0.2 98.1 0.0 0.5 0.0 0.0
5a 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.3 0.0 0.0 0.0
5b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.0
6a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.5 2.1
6b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 97.9
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22. Mikrut, Z.; Smoleń, M. A neural network approach to recognition of the selected human motion patterns.
Automatyka 2011, 15, 535–543.
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